

AptarGroup

2025 CDP Corporate Questionnaire 2025

Word version

Important: this export excludes unanswered questions

This document is an export of your organization's CDP questionnaire response. It contains all data points for questions that are answered or in progress. There may be questions or data points that you have been requested to provide, which are missing from this document because they are currently unanswered. Please note that it is your responsibility to verify that your questionnaire response is complete prior to submission. CDP will not be liable for any failure to do so.

Read full terms of disclosure

.

Contents

C1. Introduction	8
(1.1) In which language are you submitting your response?	
(1.2) Select the currency used for all financial information disclosed throughout your response.	8
(1.3) Provide an overview and introduction to your organization.	8
(1.4) State the end date of the year for which you are reporting data. For emissions data, indicate whether you will be providing emissions data for past reporting years	9
(1.4.1) What is your organization's annual revenue for the reporting period?	ç
(1.5) Provide details on your reporting boundary	10
(1.6) Does your organization have an ISIN code or another unique identifier (e.g., Ticker, CUSIP, etc.)?	10
(1.7) Select the countries/areas in which you operate.	12
(1.8) Are you able to provide geolocation data for your facilities?	12
(1.8.1) Please provide all available geolocation data for your facilities.	13
(1.24) Has your organization mapped its value chain?	40
(1.24.1) Have you mapped where in your direct operations or elsewhere in your value chain plastics are produced, commercialized, used, and/or disposed of?	41
C2. Identification, assessment, and management of dependencies, impacts, risks, and opportunities	ies,
(2.2) Does your organization have a process for identifying, assessing, and managing environmental dependencies and/or impacts?	44
(2.2.1) Does your organization have a process for identifying, assessing, and managing environmental risks and/or opportunities?	45
(2.2.2) Provide details of your organization's process for identifying, assessing, and managing environmental dependencies, impacts, risks, and/or opportunities.	45
(2.2.7) Are the interconnections between environmental dependencies, impacts, risks and/or opportunities assessed?	61
(2.3) Have you identified priority locations across your value chain?	61
(2.4) How does your organization define substantive effects on your organization?	63
(2.5) Does your organization identify and classify potential water pollutants associated with its activities that could have a detrimental impact on water ecosystems or human health?	65
(2.5.1) Describe how your organization minimizes the adverse impacts of potential water pollutants on water ecosystems or human health associated with your activities	66
C3. Disclosure of risks and opportunities	70
(3.1) Have you identified any environmental risks which have had a substantive effect on your organization in the reporting year, or are anticipated to have a substantive effect on your organization in the future?	

(3.1.1) Provide details of the environmental risks identified which have had a substantive effect on your organization in the reporting year, or are anticipated to have a substantive effect your organization in the future	
(3.1.2) Provide the amount and proportion of your financial metrics from the reporting year that are vulnerable to the substantive effects of environmental risks.	112
(3.2) Within each river basin, how many facilities are exposed to substantive effects of water-related risks, and what percentage of your total number of facilities does this represent?	117
(3.3) In the reporting year, was your organization subject to any fines, enforcement orders, and/or other penalties for water-related regulatory violations?	126
(3.5) Are any of your operations or activities regulated by a carbon pricing system (i.e. ETS, Cap & Trade or Carbon Tax)?	126
(3.5.4) What is your strategy for complying with the systems you are regulated by or anticipate being regulated by?	126
(3.6) Have you identified any environmental opportunities which have had a substantive effect on your organization in the reporting year, or are anticipated to have a substantive effect your organization in the future?	
(3.6.1) Provide details of the environmental opportunities identified which have had a substantive effect on your organization in the reporting year, or are anticipated to have a substantive effect on your organization in the future.	
(3.6.2) Provide the amount and proportion of your financial metrics in the reporting year that are aligned with the substantive effects of environmental opportunities.	134
C4. Governance	137
(4.1) Does your organization have a board of directors or an equivalent governing body?	
(4.1.1) Is there board-level oversight of environmental issues within your organization?	138
(4.1.2) Identify the positions (do not include any names) of the individuals or committees on the board with accountability for environmental issues and provide details of the board's oversight of environmental issues.	
(4.2) Does your organization's board have competency on environmental issues?	144
(4.3) Is there management-level responsibility for environmental issues within your organization?	146
(4.3.1) Provide the highest senior management-level positions or committees with responsibility for environmental issues (do not include the names of individuals)	146
(4.5) Do you provide monetary incentives for the management of environmental issues, including the attainment of targets?	170
(4.5.1) Provide further details on the monetary incentives provided for the management of environmental issues (do not include the names of individuals).	17
(4.6) Does your organization have an environmental policy that addresses environmental issues?	178
(4.6.1) Provide details of your environmental policies.	179
(4.10) Are you a signatory or member of any environmental collaborative frameworks or initiatives?	18 ²
(4.11) In the reporting year, did your organization engage in activities that could directly or indirectly influence policy, law, or regulation that may (positively or negatively) impact the environment?	
(4.11.2) Provide details of your indirect engagement on policy, law, or regulation that may (positively or negatively) impact the environment through trade associations or other internorganizations or individuals in the reporting year.	-
(4.12) Have you published information about your organization's response to environmental issues for this reporting year in places other than your CDP response?	18

(4.12.1) Provide details on the information published about your organization's response to environmental issues for this reporting year in places other than your CDP response. Please	
the publication.	165
C5. Business strategy	187
(5.1) Does your organization use scenario analysis to identify environmental outcomes?	
(5.1.1) Provide details of the scenarios used in your organization's scenario analysis.	187
(5.1.2) Provide details of the outcomes of your organization's scenario analysis.	193
(5.2) Does your organization's strategy include a climate transition plan?	194
(5.3) Have environmental risks and opportunities affected your strategy and/or financial planning?	197
(5.3.1) Describe where and how environmental risks and opportunities have affected your strategy.	197
(5.3.2) Describe where and how environmental risks and opportunities have affected your financial planning.	198
(5.4) In your organization's financial accounting, do you identify spending/revenue that is aligned with your organization's climate transition?	200
(5.9) What is the trend in your organization's water-related capital expenditure (CAPEX) and operating expenditure (OPEX) for the reporting year, and the anticipated trend for the ne reporting year?	
(5.10) Does your organization use an internal price on environmental externalities?	201
(5.11) Do you engage with your value chain on environmental issues?	201
(5.11.1) Does your organization assess and classify suppliers according to their dependencies and/or impacts on the environment?	202
(5.11.2) Does your organization prioritize which suppliers to engage with on environmental issues?	205
(5.11.5) Do your suppliers have to meet environmental requirements as part of your organization's purchasing process?	207
(5.11.6) Provide details of the environmental requirements that suppliers have to meet as part of your organization's purchasing process, and the compliance measures in place	209
(5.11.7) Provide further details of your organization's supplier engagement on environmental issues.	212
(5.11.9) Provide details of any environmental engagement activity with other stakeholders in the value chain.	217
(5.12) Indicate any mutually beneficial environmental initiatives you could collaborate on with specific CDP Supply Chain members.	219
(5.13) Has your organization already implemented any mutually beneficial environmental initiatives due to CDP Supply Chain member engagement?	220
(5.13.1) Specify the CDP Supply Chain members that have prompted your implementation of mutually beneficial environmental initiatives and provide information on the initiatives.	221
C6. Environmental Performance - Consolidation Approach	
(6.1) Provide details on your chosen consolidation approach for the calculation of environmental performance data	223
C7. Environmental performance - Climate Change	224
(7.1) Is this your first year of reporting emissions data to CDP?	224
(7.1.1) Has your organization undergone any structural changes in the reporting year, or are any previous structural changes being accounted for in this disclosure of emissions data?	224

(7.1.2) Has your emissions accounting methodology, boundary, and/or reporting year definition changed in the reporting year?	224
(7.2) Select the name of the standard, protocol, or methodology you have used to collect activity data and calculate emissions.	225
(7.3) Describe your organization's approach to reporting Scope 2 emissions.	225
(7.4) Are there any sources (e.g. facilities, specific GHGs, activities, geographies, etc.) of Scope 1, Scope 2 or Scope 3 emissions that are within your selected reporting boundary which included in your disclosure?	
(7.5) Provide your base year and base year emissions.	225
(7.6) What were your organization's gross global Scope 1 emissions in metric tons CO2e?	233
(7.7) What were your organization's gross global Scope 2 emissions in metric tons CO2e?	234
(7.8) Account for your organization's gross global Scope 3 emissions, disclosing and explaining any exclusions.	234
(7.9) Indicate the verification/assurance status that applies to your reported emissions.	241
(7.9.1) Provide further details of the verification/assurance undertaken for your Scope 1 emissions, and attach the relevant statements.	242
(7.9.2) Provide further details of the verification/assurance undertaken for your Scope 2 emissions and attach the relevant statements.	243
(7.9.3) Provide further details of the verification/assurance undertaken for your Scope 3 emissions and attach the relevant statements.	244
(7.10) How do your gross global emissions (Scope 1 and 2 combined) for the reporting year compare to those of the previous reporting year?	246
(7.10.1) Identify the reasons for any change in your gross global emissions (Scope 1 and 2 combined), and for each of them specify how your emissions compare to the previous year.	246
(7.10.2) Are your emissions performance calculations in 7.10 and 7.10.1 based on a location-based Scope 2 emissions figure or a market-based Scope 2 emissions figure?	252
(7.12) Are carbon dioxide emissions from biogenic carbon relevant to your organization?	252
(7.15) Does your organization break down its Scope 1 emissions by greenhouse gas type?	252
(7.15.1) Break down your total gross global Scope 1 emissions by greenhouse gas type and provide the source of each used global warming potential (GWP)	252
(7.16) Break down your total gross global Scope 1 and 2 emissions by country/area.	253
(7.17) Indicate which gross global Scope 1 emissions breakdowns you are able to provide.	260
(7.17.2) Break down your total gross global Scope 1 emissions by business facility.	260
(7.20) Indicate which gross global Scope 2 emissions breakdowns you are able to provide.	293
(7.20.2) Break down your total gross global Scope 2 emissions by business facility.	293
(7.22) Break down your gross Scope 1 and Scope 2 emissions between your consolidated accounting group and other entities included in your response.	317
(7.23) Is your organization able to break down your emissions data for any of the subsidiaries included in your CDP response?	318
(7.26) Allocate your emissions to your customers listed below according to the goods or services you have sold them in this reporting period.	319
(7.27) What are the challenges in allocating emissions to different customers, and what would help you to overcome these challenges?	358
(7.28) Do you plan to develop your capabilities to allocate emissions to your customers in the future?	360
(7.29) What percentage of your total operational spend in the reporting year was on energy?	360

(7.30) Select which energy-related activities your organization has undertaken.	360
(7.30.1) Report your organization's energy consumption totals (excluding feedstocks) in MWh	361
(7.30.6) Select the applications of your organization's consumption of fuel.	363
(7.30.7) State how much fuel in MWh your organization has consumed (excluding feedstocks) by fuel type.	364
(7.30.9) Provide details on the electricity, heat, steam, and cooling your organization has generated and consumed in the reporting year.	370
(7.30.14) Provide details on the electricity, heat, steam, and/or cooling amounts that were accounted for at a zero or near-zero emission factor in the market-based Scope 2 figure 7.7.	
(7.30.16) Provide a breakdown by country/area of your electricity/heat/steam/cooling consumption in the reporting year.	373
(7.45) Describe your gross global combined Scope 1 and 2 emissions for the reporting year in metric tons CO2e per unit currency total revenue and provide any additional intensity are appropriate to your business operations.	
(7.52) Provide any additional climate-related metrics relevant to your business.	386
(7.53) Did you have an emissions target that was active in the reporting year?	388
(7.53.1) Provide details of your absolute emissions targets and progress made against those targets.	388
(7.54) Did you have any other climate-related targets that were active in the reporting year?	397
(7.54.1) Provide details of your targets to increase or maintain low-carbon energy consumption or production.	397
(7.54.2) Provide details of any other climate-related targets, including methane reduction targets.	400
(7.54.3) Provide details of your net-zero target(s).	402
(7.55) Did you have emissions reduction initiatives that were active within the reporting year? Note that this can include those in the planning and/or implementation phases	404
(7.55.1) Identify the total number of initiatives at each stage of development, and for those in the implementation stages, the estimated CO2e savings.	405
(7.55.2) Provide details on the initiatives implemented in the reporting year in the table below.	405
(7.55.3) What methods do you use to drive investment in emissions reduction activities?	411
(7.73) Are you providing product level data for your organization's goods or services?	414
(7.73.1) Give the overall percentage of total emissions, for all Scopes, that are covered by these products.	414
(7.73.2) Complete the following table for the goods/services for which you want to provide data	414
(7.73.3) Complete the following table with data for lifecycle stages of your goods and/or services.	429
(7.73.4) Please detail emissions reduction initiatives completed or planned for this product.	442
(7.73.5) Have any of the initiatives described in 7.73.4 been driven by requesting CDP Supply Chain members?	443
(7.73.6) Explain which initiatives have been driven by requesting members.	443
(7.74) Do you classify any of your existing goods and/or services as low-carbon products?	444
(7.74.1) Provide details of your products and/or services that you classify as low-carbon products.	444

(7.79) Has your organization retired any project-based carbon credits within the reporting year?	446
C9. Environmental performance - Water security	447
(9.1) Are there any exclusions from your disclosure of water-related data?	
(9.2) Across all your operations, what proportion of the following water aspects are regularly measured and monitored?	447
(9.2.2) What are the total volumes of water withdrawn, discharged, and consumed across all your operations, how do they compare to the previous reporting year, and how are the forecasted to change?	•
(9.2.4) Indicate whether water is withdrawn from areas with water stress, provide the volume, how it compares with the previous reporting year, and how it is forecasted to change	ţе 456
(9.2.7) Provide total water withdrawal data by source.	457
(9.2.8) Provide total water discharge data by destination.	461
(9.2.9) Within your direct operations, indicate the highest level(s) to which you treat your discharge.	463
(9.2.10) Provide details of your organization's emissions of nitrates, phosphates, pesticides, and other priority substances to water in the reporting year	469
(9.3) In your direct operations and upstream value chain, what is the number of facilities where you have identified substantive water-related dependencies, impacts, risks, and op	-
(9.3.1) For each facility referenced in 9.3, provide coordinates, water accounting data, and a comparison with the previous reporting year.	471
(9.3.2) For the facilities in your direct operations referenced in 9.3.1, what proportion of water accounting data has been third party verified?	498
(9.4) Could any of your facilities reported in 9.3.1 have an impact on a requesting CDP supply chain member?	500
(9.4.1) Indicate which of the facilities referenced in 9.3.1 could impact a requesting CDP supply chain member.	500
(9.5) Provide a figure for your organization's total water withdrawal efficiency.	510
(9.12) Provide any available water intensity values for your organization's products or services.	510
(9.13) Do any of your products contain substances classified as hazardous by a regulatory authority?	519
(9.14) Do you classify any of your current products and/or services as low water impact?	519
(9.15) Do you have any water-related targets?	520
(9.15.1) Indicate whether you have targets relating to water pollution, water withdrawals, WASH, or other water-related categories.	520
(9.15.2) Provide details of your water-related targets and the progress made.	521
C10. Environmental performance - Plastics	
(10.1) Do you have plastics-related targets, and if so what type?	
(10.2) Indicate whether your organization engages in the following activities.	
(10.5) Provide the total weight of plastic packaging sold and/or used and indicate the raw material content.	
(10.5.1) Indicate the circularity potential of the plastic packaging you sold and/or used	531

(10.6) Provide the total weight of waste generated by the plastic you produce, commercialize, use and/or process and indicate the end-of-life management pathways	532
C11. Environmental performance - Biodiversity	. 534
(11.2) What actions has your organization taken in the reporting year to progress your biodiversity-related commitments?	
(11.3) Does your organization use biodiversity indicators to monitor performance across its activities?	534
(11.4) Does your organization have activities located in or near to areas important for biodiversity in the reporting year?	535
(11.4.1) Provide details of your organization's activities in the reporting year located in or near to areas important for biodiversity.	537
C13. Further information & sign off	. 555
(13.1) Indicate if any environmental information included in your CDP response (not already reported in 7.9.1/2/3, 8.9.1/2/3/4, and 9.3.2) is verified and/or assured by a third party?	
(13.1.1) Which data points within your CDP response are verified and/or assured by a third party, and which standards were used?	555
(13.2) Use this field to provide any additional information or context that you feel is relevant to your organization's response. Please note that this field is optional and is not scored	556
(13.3) Provide the following information for the person that has signed off (approved) your CDP response.	557
(13.4) Please indicate your consent for CDP to share contact details with the Pacific Institute to support content for its Water Action Hub website.	557

C1. Introduction

(1.1) In which language are you submitting your response?

Select from:

✓ English

(1.2) Select the currency used for all financial information disclosed throughout your response.

Select from:

✓ USD

(1.3) Provide an overview and introduction to your organization.

(1.3.2) Organization type

Select from:

☑ Publicly traded organization

(1.3.3) Description of organization

Aptar is a global leader in the design and manufacturing of drug and consumer product dosing, dispensing and protection technologies. Aptar serves a number of attractive end markets including pharmaceutical, beauty, food, beverage, personal care, and home care. Using market expertise, proprietary design, engineering and science to create innovative solutions for many of the world's leading brands, Aptar in turn makes a meaningful difference in the lives, looks, health and homes of millions of patients and consumers around the world. Aptar is headquartered in Crystal Lake, Illinois and has approximately 13,500 dedicated employees in 20 different countries. For more information, visit www.aptar.com. We have manufacturing facilities located throughout the world including North America, Europe, Asia and Latin America. We have approximately 5,000 customers with no single customer or group of affiliated customers accounting for greater than 5% of our net sales. The main direct emissions sources are focused on processing raw materials, assembling, use of electricity and energy fuels, refrigerants and transportations. Consumers' preference for convenience and product differentiation through drug delivery and packaging design and function are important to our customers and they have converted many of their packages from non-dispensing formats to dispensing systems that offer enhanced shelf appeal, convenience, cleanliness and accuracy of dosage. We design our products with both people and the environment in mind. Many of our product solutions for the beauty, personal care, homecare, food and beverage markets are recyclable, reusable or made with recycled content. We partner with our customers by providing innovative delivery systems and a suite of comprehensive services to help them succeed. While we offer a wide variety of services and products, our primary products are dispensing pumps, closures, aerosol valves, elastomeric primary packaging components, active material science solutions and digital health solutions. D

small, fine mist pumps used with pharmaceutical products and perfume to lotion pumps for more viscous formulas. Closures are primarily dispensing closures but to a lesser degree can include non-dispensing closures. Dispensing closures are plastic caps that allow a product to be dispensed without removing the cap. Aerosol valves dispense product from pressurized containers. The majority of the aerosol valves that we sell are metered dose valves, with the balance being bag-on valve and continuous spray valves. We also manufacture and sell elastomeric primary packaging components. These components are used in the injectables market. Products include stoppers for infusion, antibiotic, lyophilization and diagnostic vials. Our elastomeric components also include pre-filled syringe components, such as plungers, needle shields, tip caps and cartridges. We provide active material science solutions using our platform technology to maintain container closure integrity. extend shelf-life, control moisture and protect drug products from overall environmental exposures and degradations. The digital health solutions aim to improve patients' treatment experience and outcomes. We leverage connected devices, diagnostic and digital therapeutics tools that support patients to manage their disease as well as enabling care teams to remotely monitor the health of the patients when needed. Available as standalone or as a fully integrated offering in our existing range of drug delivery solutions, we have digital health solutions covering a wide range of therapeutic areas including, but not limited to, pulmonary, oncology, diabetes, immunology, and neurology. During 2023 4and 20232, we acquired several companies to strengthen and broaden our portfolio, including the following business combinations: - October 2024 - We acquired 40% of the equity interests in Ningbo Jinyu Technology Industry Co., Ltd., doing business as Goldrain for approximately \$99 million: – March 2023 - We acquired 100% of the outstanding capital stock of iD SCENT, which offers more sustainable sampling solutions for perfume and cosmetics. – March 2023 - We acquired 80% of the equity interests in Gulf Closures W.L.L. ("Gulf Closures"). The acquisition of Gulf Closures allows us to transfer some production to the Middle East and free up capacity in Germany while helping us to establish a foothold in emerging markets. We seek to enhance our position as a leading global provider in drug and consumer dosing, dispensing and protection technologies to deliver increased value to our customers and stockholders through strategic focus, as facilitated by our core values. [Fixed row]

(1.4) State the end date of the year for which you are reporting data. For emissions data, indicate whether you will be providing emissions data for past reporting years.

End date of reporting year	Alignment of this reporting period with your financial reporting period	Indicate if you are providing emissions data for past reporting years
12/31/2024	Select from: ✓ Yes	Select from: ✓ No

[Fixed row]

(1.4.1) What is your organization's annual revenue for the reporting period?

3582890000

(1.5) Provide details on your reporting boundary	y.
	Is your reporting boundary for your CDP disclosure the same as that used in your financial statements?
	Select from:
	✓ Yes
[Fixed row]	
(1.6) Does your organization have an ISIN code	or another unique identifier (e.g., Ticker, CUSIP, etc.)?
ISIN code - bond	
(1.6.1) Does your organization use this unique id	lentifier?
Select from: ✓ No	
ISIN code - equity	
(1.6.1) Does your organization use this unique id	lentifier?
Select from: ✓ Yes	
(1.6.2) Provide your unique identifier	
US0383361039	
CUSIP number	

(1.6.1) Does your organization use this unique identifier?
Select from: ✓ Yes
(1.6.2) Provide your unique identifier
Common Stock: 038336103
Ticker symbol
(1.6.1) Does your organization use this unique identifier?
Select from: ✓ Yes
(1.6.2) Provide your unique identifier
NYSE: ATR
SEDOL code
(1.6.1) Does your organization use this unique identifier?
Select from: ✓ No
LEI number
(1.6.1) Does your organization use this unique identifier?
Select from: ✓ No
D-U-N-S number

(1.6.1) Does your organization use this unique identifier? Select from: ✓ Yes (1.6.2) Provide your unique identifier 805619681 Other unique identifier (1.6.1) Does your organization use this unique identifier? Select from: ✓ No [Add row] (1.7) Select the countries/areas in which you operate. Select all that apply ✓ France ✓ China **✓** India ✓ Mexico ✓ Bahrain **✓** Italy ✓ Spain Czechia ✓ Brazil ✓ Germany ✓ Colombia ✓ Russian Federation ☑ Thailand ✓ United States of America ✓ Argentina ☑ United Kingdom of Great Britain and Northern Ireland ✓ Indonesia ✓ Switzerland (1.8) Are you able to provide geolocation data for your facilities?

Are you able to provide geolocation data for your facilities?	Comment
Select from: ✓ Yes, for all facilities	Data based on Google Maps system

[Fixed row]

(1.8.1) Please provide all available geolocation data for your facilities.

Row 1

(1.8.1.1) Identifier

Bahrain

(1.8.1.2) Latitude

26.174

(1.8.1.3) **Longitude**

50.599

(1.8.1.4) Comment

Data based on Google Maps system

Row 2

(1.8.1.1) Identifier

Guangzhou

23.393

(1.8.1.3) **Longitude**

113.494

(1.8.1.4) Comment

Data based on Google Maps system

Row 3

(1.8.1.1) Identifier

CSP Atlanta

(1.8.1.2) Latitude

30.125

(1.8.1.3) **Longitude**

-87.256

(1.8.1.4) Comment

Data based on Google Maps system

Row 4

(1.8.1.1) Identifier

Gateway Analytical

(1.8.1.2) Latitude		
40.617		
(1.8.1.3) Longitude		
-79.947		
(1.8.1.4) Comment		
Data based on Google Maps system		
Row 5		
(1.8.1.1) Identifier		
Mumbai		
(1.8.1.2) Latitude		
19.114		
(1.8.1.3) Longitude		
73.009		
(1.8.1.4) Comment		
Data based on Google Maps system		
Row 6		

(1.8.1.1) Identifier

Midland

43.618

(1.8.1.3) **Longitude**

-84.184

(1.8.1.4) Comment

Data based on Google Maps system

Row 7

(1.8.1.1) Identifier

Maringa

(1.8.1.2) Latitude

-23.451

(1.8.1.3) **Longitude**

-51.991

(1.8.1.4) Comment

Data based on Google Maps system

Row 9

(1.8.1.1) Identifier

Fusion Dallas

32.822

(1.8.1.3) **Longitude**

-96.834

(1.8.1.4) Comment

Data based on Google Maps system

Row 10

(1.8.1.1) Identifier

Fusion Los Angeles

(1.8.1.2) **Latitude**

32.822

(1.8.1.3) **Longitude**

-96.834

(1.8.1.4) Comment

Data based on Google Maps system

Row 11

(1.8.1.1) Identifier

Cajamar

(1.8.1.2) Latitude		
-23.346		
(1.8.1.3) Longitude		
-46.854		
(1.8.1.4) Comment		
Data based on Google Maps system		
Row 12		
(1.8.1.1) Identifier		
Chieti		
(1.8.1.2) Latitude		
42.304		
(1.8.1.3) Longitude		
14.052		
(1.8.1.4) Comment		

Data based on Google Maps system

Row 13

(1.8.1.1) **Identifier**

Eigeltingen

(1.8.1.2) Latitude		
47.854		
(1.8.1.3) Longitude		
8.902		
(1.8.1.4) Comment		
Data based on Google Maps system		
Row 14		
(1.8.1.1) Identifier		
Fusion Paramus		
(1.8.1.2) Latitude		
32.822		
(1.8.1.3) Longitude		
-96.834		
(1.8.1.4) Comment		
Data based on Google Maps system		
Dow 16		

Row 16

(1.8.1.1) Identifier

Eatontown

(1.8.1.2) Latitude	
40.272	
(1.8.1.3) Longitude	
-74.07	
(1.8.1.4) Comment	
Data based on Google Maps system	
Row 17	
(1.8.1.1) Identifier	
Chonburi	
(1.8.1.2) Latitude	
13.443	
(1.8.1.3) Longitude	

101.019

(1.8.1.4) Comment

Data based on Google Maps system

Row 18

(1.8.1.1) Identifier

Mezzovico

(1.8.1.2) Latitude	
46.094	
(1.8.1.3) Longitude	
8.924	
(1.8.1.4) Comment	
Data based on Google Maps system	
Row 19	
(1.8.1.1) Identifier	
Vladimir	
(1.8.1.2) Latitude	
56.097	
(1.8.1.3) Longitude	
40.353	
(1.8.1.4) Comment	
Data based on Google Maps system	

Row 20

(1.8.1.1) **Identifier**

Cary Campus (North, South, McHenry)

(1.8.1.2) Latitude 42.226 (1.8.1.3) Longitude -88.249 (1.8.1.4) Comment Data based on Google Maps system Row 21 (1.8.1.1) Identifier Cyonnax (1.8.1.2) Latitude

46.247

(1.8.1.3) **Longitude**

5.645

(1.8.1.4) Comment

Data based on Google Maps system

Row 22

(1.8.1.1) Identifier

Mukwonago

42.869

(1.8.1.3) **Longitude**

-88.32

(1.8.1.4) Comment

Data based on Google Maps system

Row 23

(1.8.1.1) Identifier

Ckyne

(1.8.1.2) Latitude

49.113

(1.8.1.3) **Longitude**

13.837

(1.8.1.4) Comment

Data based on Google Maps system

Row 24

(1.8.1.1) Identifier

Menden

51.451

(1.8.1.3) **Longitude**

7.786

(1.8.1.4) Comment

Data based on Google Maps system

Row 25

(1.8.1.1) Identifier

Crystal Lake 265

(1.8.1.2) **Latitude**

42.234

(1.8.1.3) **Longitude**

-88.3

(1.8.1.4) Comment

Data based on Google Maps system

Row 26

(1.8.1.1) Identifier

Jundiai

-23.221

(1.8.1.3) **Longitude**

-46.877

(1.8.1.4) Comment

Data based on Google Maps system

Row 27

(1.8.1.1) Identifier

Verneuil

(1.8.1.2) Latitude

48.746

(1.8.1.3) **Longitude**

0.927

(1.8.1.4) Comment

Data based on Google Maps system

Row 28

(1.8.1.1) Identifier

Suzhou

42.046

(1.8.1.3) **Longitude**

2.275

(1.8.1.4) Comment

Data based on Google Maps system

Row 30

(1.8.1.1) Identifier

CSP Tech Niederbronn

(1.8.1.2) **Latitude**

48.929916

(1.8.1.3) **Longitude**

7.646492

(1.8.1.4) Comment

Data based on Google Maps system

Row 31

(1.8.1.1) Identifier

Camacari

-12.733

(1.8.1.3) **Longitude**

-38.311

(1.8.1.4) Comment

Data based on Google Maps system

Row 32

(1.8.1.1) Identifier

Elgin Distribution Center

(1.8.1.2) **Latitude**

42.234

(1.8.1.3) **Longitude**

-88.3

(1.8.1.4) Comment

Data based on Google Maps system

Row 33

(1.8.1.1) Identifier

Queretaro

(1.8.1.2) Latitude		
20.564		
(1.8.1.3) Longitude		
-100.259		
(1.8.1.4) Comment		
Data based on Google Maps system		

Row 34

(1.8.1.1) Identifier

Granville

(1.8.1.2) Latitude

48.838

(1.8.1.3) **Longitude**

-1.562

(1.8.1.4) Comment

Data based on Google Maps system

Row 35

(1.8.1.1) Identifier

Brecey

48.727

(1.8.1.3) **Longitude**

-1.163

(1.8.1.4) Comment

Data based on Google Maps system

Row 36

(1.8.1.1) Identifier

Freyung

(1.8.1.2) **Latitude**

48.822

(1.8.1.3) **Longitude**

13.57

(1.8.1.4) Comment

Data based on Google Maps system

Row 37

(1.8.1.1) Identifier

Hyderabad

17.623

(1.8.1.3) **Longitude**

78.511

(1.8.1.4) Comment

Data based on Google Maps system

Row 38

(1.8.1.1) Identifier

Chavanod/Reboul

(1.8.1.2) **Latitude**

45.893

(1.8.1.3) **Longitude**

6.077

(1.8.1.4) Comment

Data based on Google Maps system

Row 39

(1.8.1.1) Identifier

Villingen

(1.8.1.2) Latitude
48.083
(1.8.1.3) Longitude
8.505
(1.8.1.4) Comment
Data based on Google Maps system
Row 40
(1.8.1.1) Identifier
Pescara
(1.8.1.2) Latitude
42.304
(1.8.1.3) Longitude
14.052
(1.8.1.4) Comment
Data based on Google Maps system
Row 41

31

(1.8.1.1) **Identifier**

Congers

41.165

(1.8.1.3) **Longitude**

-73.936

(1.8.1.4) Comment

Data based on Google Maps system

Row 42

(1.8.1.1) Identifier

Radolfzell

(1.8.1.2) Latitude

47.75

(1.8.1.3) **Longitude**

8.944

(1.8.1.4) Comment

Data based on Google Maps system

Row 43

(1.8.1.1) Identifier

Rueil Malmaison

48.888

(1.8.1.3) **Longitude**

2.166

(1.8.1.4) Comment

Data based on Google Maps system

Row 44

(1.8.1.1) Identifier

Charleval

(1.8.1.2) Latitude

49.374

(1.8.1.3) **Longitude**

1.371

(1.8.1.4) Comment

Data based on Google Maps system

Row 45

(1.8.1.1) Identifier

Le Neubourg

(1.8.1.2) Latitude
49.158
(1.8.1.3) Longitude
0.907
(1.8.1.4) Comment
Data based on Google Maps system
Row 46
(1.8.1.1) Identifier
Milano
(1.8.1.2) Latitude
47.256
(1.8.1.3) Longitude
1.266
(1.8.1.4) Comment
Data based on Google Maps system
Row 47

(1.8.1.1) Identifier

Poincy

(1.8.1.2) Latitude 48.967 (1.8.1.3) Longitude 2.921 (1.8.1.4) Comment Data based on Google Maps system

Row 48

(1.8.1.1) Identifier

Lincolnton

(1.8.1.2) Latitude

35.546

(1.8.1.3) **Longitude**

-81.219

(1.8.1.4) Comment

Data based on Google Maps system

Row 49

(1.8.1.1) Identifier

Torello

(1.8.1.2) Latitude		
42.046		
(1.8.1.3) Longitude		
2.275		
(1.8.1.4) Comment		
Data based on Google Maps system		
Row 50		
(1.8.1.1) Identifier		
Dortmund		
(1.8.1.2) Latitude		
51.529		
(1.8.1.3) Longitude		
7.628		
(1.8.1.4) Comment		
Data based on Google Maps system		
Row 51		

(1.8.1.1) Identifier

Berazategui

(1.8.1.2) Latitude

-34.811

(1.8.1.3) **Longitude**

-58.242

(1.8.1.4) Comment

Data based on Google Maps system

Row 52

(1.8.1.1) Identifier

Cali

(1.8.1.2) Latitude

3.562

(1.8.1.3) **Longitude**

-76.45

(1.8.1.4) Comment

Data based on Google Maps system

Row 53

(1.8.1.1) Identifier

Le Vaudreuil

(1.8.1.2) Latitude

49.26

(1.8.1.3) **Longitude**

1.198

(1.8.1.4) Comment

Data based on Google Maps system

Row 54

(1.8.1.1) Identifier

CSP Techn Auburn

(1.8.1.2) **Latitude**

32.558021

(1.8.1.3) **Longitude**

-85.521392

(1.8.1.4) Comment

Data based on Google Maps system

Row 55

(1.8.1.1) Identifier

Leeds

(1.8.1.2) Latitude

53.745

(1.8.1.3) **Longitude**

-1.598

(1.8.1.4) Comment

Data based on Google Maps system

Row 56

(1.8.1.1) Identifier

Annecy

(1.8.1.2) Latitude

45.886

(1.8.1.3) **Longitude**

6.112

(1.8.1.4) Comment

Data based on Google Maps system

Row 57

(1.8.1.1) Identifier

Harbin

(1.8.1.2) Latitude
45.674
(1.8.1.3) Longitude
126.82
(1.8.1.4) Comment
Data based on Google Maps system
Row 58
(1.8.1.1) Identifier
Daqing
(1.8.1.2) Latitude
46.345
(1.8.1.3) Longitude
125
(1.8.1.4) Comment
Data based on Google Maps system [Add row]
(1.24) Has your organization mapped its value chain?

Select from:

(1.24.1) Value chain mapped

✓ Yes, we have mapped or are currently in the process of mapping our value chain

(1.24.2) Value chain stages covered in mapping

Select all that apply

✓ Upstream value chain

(1.24.3) Highest supplier tier mapped

Select from:

☑ Tier 1 suppliers

(1.24.4) Highest supplier tier known but not mapped

Select from:

✓ Tier 2 suppliers

(1.24.7) Description of mapping process and coverage

The scope of the plastic mapping is based on the upstream value chain that are producing plastic resin, our suppliers that are producing plastic sub-assembly and our operations that are molding thermopolymers for the finished products. Aptar product is made 80% of different plastic polymers fossil fuel based (please note that we are using also recycled content and bioplastic). Our mapping is based on the New Plastic Economy Global Commitment defined by Ellen MacArthur Foundation regarding the recyclability in practice and at scale and recycled content ratio.

[Fixed row]

(1.24.1) Have you mapped where in your direct operations or elsewhere in your value chain plastics are produced, commercialized, used, and/or disposed of?

(1.24.1.1) Plastics mapping

Select from:

✓ Yes, we have mapped or are currently in the process of mapping plastics in our value chain

(1.24.1.2) Value chain stages covered in mapping

Select all that apply

- **☑** Upstream value chain
- ✓ Downstream value chain
- **☑** End-of-life management

(1.24.1.4) End-of-life management pathways mapped

Select all that apply

- **✓** Preparation for reuse
- ✓ Recycling
- ✓ Waste to Energy
- **✓** Incineration
- ✓ Landfill

[Fixed row]

- C2. Identification, assessment, and management of dependencies, impacts, risks, and opportunities
- (2.1) How does your organization define short-, medium-, and long-term time horizons in relation to the identification, assessment, and management of your environmental dependencies, impacts, risks, and opportunities?

Short-term

(2.1.1) From (years)

1

(2.1.3) To (years)

5

(2.1.4) How this time horizon is linked to strategic and/or financial planning

Aptar defines its short-term planning horizon as up to five years, focusing on operational and financial decisions that typically have a limited impact on environmental sustainability topics such as climate, water, and nature. This timeframe supports tactical planning and is closely aligned with annual budgeting and near-term operational goals. It encompasses decisions related to existing assets and infrastructure, including energy efficiency upgrades and routine maintenance programs.

Medium-term

(2.1.1) From (years)

6

(2.1.3) To (years)

10

(2.1.4) How this time horizon is linked to strategic and/or financial planning

The medium-term horizon supports operational and financial planning for initiatives that have a moderate impact on environmental sustainability topics such as climate, water, and nature. This timeframe reflects the lifecycle of most operational assets, which are acquired, utilized, and retired within this period. Assets managed within this horizon generally have shorter lifecycles and are part of Aptar's energy efficiency initiatives. Examples include HVAC systems, compressors, refrigerants, and air conditioning units, which typically have lifespans ranging from 6 to 10 years. These assets are strategically maintained and upgraded to optimize performance and reduce environmental impact in the short term. Planning within this horizon allows Aptar to align asset replacement cycles with sustainability goals, ensuring that environmental considerations are embedded in capital investment decisions.

Long-term

(2.1.1) From (years)

11

(2.1.2) Is your long-term time horizon open ended?

Select from:

✓ No

(2.1.3) To (years)

20

(2.1.4) How this time horizon is linked to strategic and/or financial planning

Aptar's long-term planning horizon addresses strategic decisions with significant and lasting environmental implications. While many assets are managed within the medium-term horizon, certain investments—such as new manufacturing facilities, large-scale infrastructure, and advanced automation systems—have lifecycles exceeding 10 years. For instance, [insert long-term asset example, e.g., a new plant or specialized production equipment] may remain in operation for decades. Additionally, some properties have been in continuous use for over 100 years, underscoring the importance of long-term planning. This horizon enables Aptar to anticipate future regulatory changes, climate risks, and resource availability, ensuring resilience and alignment with long-term sustainability objectives. [Fixed row]

(2.2) Does your organization have a process for identifying, assessing, and managing environmental dependencies and/or impacts?

Process in place	Dependencies and/or impacts evaluated in this process
Select from: ✓ Yes	Select from: ☑ Both dependencies and impacts

[Fixed row]

(2.2.1) Does your organization have a process for identifying, assessing, and managing environmental risks and/or opportunities?

Process in place	Risks and/or opportunities evaluated in this process	Is this process informed by the dependencies and/or impacts process?
Select from: ✓ Yes	Select from: ☑ Both risks and opportunities	Select from: ✓ Yes

[Fixed row]

(2.2.2) Provide details of your organization's process for identifying, assessing, and managing environmental dependencies, impacts, risks, and/or opportunities.

Row 1

(2.2.2.1) Environmental issue

Select all that apply

✓ Water

(2.2.2.2) Indicate which of dependencies, impacts, risks, and opportunities are covered by the process for this environmental issue

Select all that apply

- Dependencies
- ✓ Impacts
- **✓** Risks
- Opportunities

(2.2.2.3) Value chain stages covered

Select all that apply

- ✓ Direct operations
- ✓ Upstream value chain
- **☑** Downstream value chain

(2.2.2.4) Coverage

Select from:

✓ Full

(2.2.2.5) Supplier tiers covered

Select all that apply

✓ Tier 1 suppliers

(2.2.2.7) Type of assessment

Select from:

✓ Qualitative and quantitative

(2.2.2.8) Frequency of assessment

Select from:

Annually

(2.2.2.9) Time horizons covered

Select all that apply

- ✓ Short-term
- ✓ Medium-term
- **✓** Long-term

(2.2.2.10) Integration of risk management process

Select from:

☑ Integrated into multi-disciplinary organization-wide risk management process

(2.2.2.11) Location-specificity used

Select all that apply

✓ Site-specific

(2.2.2.12) Tools and methods used

Commercially/publicly available tools

- ☑ LEAP (Locate, Evaluate, Assess and Prepare) approach, TNFD
- ☑ TNFD Taskforce on Nature-related Financial Disclosures
- ✓ WWF Water Risk Filter

Other

✓ Scenario analysis

(2.2.2.13) Risk types and criteria considered

Acute physical

✓ Drought

Chronic physical

- ☑ Water availability at a basin/catchment level
- **✓** Water stress
- ☑ Water quality at a basin/catchment level

Policy

- **✓** Changes to national legislation
- ☑ Increased difficulty in obtaining operations permits

Market

✓ Changing customer behavior

Reputation

☑ Negative press coverage related to support of projects or activities with negative impacts on the environment (e.g. GHG emissions, deforestation & conversion, water stress)

Technology

☑ Data access/availability or monitoring systems

Liability

✓ Non-compliance with regulations

(2.2.2.14) Partners and stakeholders considered

Select all that apply

✓ NGOs

✓ Customers

✓ Employees ✓ Water utilities at a local level

✓ Investors

✓ Suppliers

(2.2.2.15) Has this process changed since the previous reporting year?

Regulators

✓ Local communities

Select from:

✓ No

(2.2.2.16) Further details of process

Aptar identifies and assesses water-related risks and opportunities at a company and upstream level considering the main risk and opportunity drivers that could affect our business, markets and customer's expectations. Internally we classified water related risks into the three internal categories as macroeconomic, strategic and operational. Regarding the identification and assessment of risks and opportunities at company level, we measure and track each facility along a progression path, each facility is responsible to determine aspects and impacts of the business and then to prioritize these aspects and impacts, risks and opportunities, and dependencies. The process for the evaluation of risks is defined by the VP of Group Treasury. The potential size and scope of identified risks are based on the screening process considering the severity of the impact to cash flow and earnings and to strategic business objectives. We currently have integrated water related risks in our risk model to define when risks have strategic impact and they are evaluated more than once a year through active management plans. The organization's dependencies and impacts are the starting point of the risk assessment, for example assuming info from the main impacts of operations and main dependencies like water uses. In addition, the main data sources for the assessment are based on the internal primary data, but, where it is not possible, we can have support from databases scientific approved (for example Encore database). Once a water-related risk and opportunity is identified to have a substantive financial or strategic impact on Aptar's business, Aptar ensures to develop KPIs and a governance process in line with the respective time horizon(s) to address the risk/opportunity and drive initiatives to manage the respective risk/opportunities. These initiatives are specified depending on if the risk/opportunity occurs/affects upstream (supply chain engagement), direct operations (site-specific initiatives) or downstream (product/market/sales). The methodology used to assess the nature, likelihood and magnitude of the effects of dependencies, impacts, risks and opportunities, takes into consideration qualitative factors about the ability to meet strategic business objectives and stakeholders involvement, and quantitative thresholds based on the loss of profits in a range between \$2-\$10 million (rating scale from 1 to 9). During the assessment, Aptar explored a variety of water-related scenarios consisting of transition scenarios focusing on policy and technology influencing pathways for GHG emissions. We applied WWF Water Risk Filter Tool and CDP recommendation to use this tool to identify water stressed areas. According to CDP, 'water stressed' areas are the basins where their risk score for "Water Scarcity" risk category is equal to/greater than 3 (the risk scores range from 1 to 5). The risk category "Water Scarcity" refers to the physical abundance or lack of freshwater resources. It is a comprehensive and robust metric as it integrates a total of 7 best available and peerreviewed datasets covering different aspects of water scarcity as well as different modelling approaches: aridity index, water depletion, baseline water stress, blue water scarcity, available water remaining, drought frequency probability, and projected change in drought occurrence.

Row 2

(2.2.2.1) Environmental issue

Select all that apply

✓ Climate change

(2.2.2.2) Indicate which of dependencies, impacts, risks, and opportunities are covered by the process for this environmental issue

Select all that apply

- Dependencies
- **✓** Impacts
- **✓** Risks
- Opportunities

(2.2.2.3) Value chain stages covered

Select all that apply

- ✓ Direct operations
- **☑** Upstream value chain
- **✓** Downstream value chain

(2.2.2.4) Coverage

Select from:

▼ Full

(2.2.2.5) Supplier tiers covered

Select all that apply

✓ Tier 1 suppliers

(2.2.2.7) Type of assessment

Select from:

✓ Qualitative and quantitative

(2.2.2.8) Frequency of assessment

Select from:

✓ Annually

(2.2.2.9) Time horizons covered

Select all that apply

- ✓ Short-term
- ✓ Medium-term
- ✓ Long-term

(2.2.2.10) Integration of risk management process

Select from:

☑ Integrated into multi-disciplinary organization-wide risk management process

(2.2.2.11) Location-specificity used

Select all that apply

- ✓ Site-specific
- **✓** Local
- **✓** Sub-national
- **✓** National

(2.2.2.12) Tools and methods used

Commercially/publicly available tools

☑ Other commercially/publicly available tools, please specify :TCFD

Enterprise Risk Management

☑ Enterprise Risk Management

International methodologies and standards

✓ Life Cycle Assessment

Other

- ✓ Materiality assessment
- ✓ Partner and stakeholder consultation/analysis
- ✓ Scenario analysis

(2.2.2.13) Risk types and criteria considered

Acute physical

- ☑ Storm (including blizzards, dust, and sandstorms)
- **✓** Tornado

Chronic physical

▼ Temperature variability

Policy

- ✓ Carbon pricing mechanisms
- ☑ Changes to national legislation

Market

- ☑ Availability and/or increased cost of certified sustainable material
- ✓ Availability and/or increased cost of raw materials
- ✓ Changing customer behavior

Reputation

- ☑ Increased partner and stakeholder concern and partner and stakeholder negative feedback
- ☑ Negative press coverage related to support of projects or activities with negative impacts on the environment (e.g. GHG emissions, deforestation & conversion, water stress)

Technology

☑ Transition to lower emissions technology and products

Liability

- **✓** Exposure to litigation
- ✓ Non-compliance with regulations

(2.2.2.14) Partners and stakeholders considered

Select all that apply

Customers	✓ Local communities

- Employees
- **✓** Investors
- Suppliers
- ✓ Regulators

(2.2.2.15) Has this process changed since the previous reporting year?

Select from:

✓ No

(2.2.2.16) Further details of process

Aptar identifies and assesses climate-related risks and opportunities at a company level considering the main risk and opportunity drivers that could affect our business, markets and customer's expectations. Internally we classified climate related risks into the three internal categories as macroeconomic, strategic and operational. Regarding the identification and assessment of risks and opportunities at company level, as part of the Aptar Production System, we measure and track each facility along a progression path, each facility is responsible to determine aspects and impacts of the business and then to prioritize these aspects and impacts, risks and opportunities, and dependencies. The process for the evaluation of risks is defined by the VP of Treasury and Risk Management. The potential size and scope of identified risks are based on the screening process considering the severity of the impact to cash flow and earnings and to strategic business objectives. We currently have integrated climate related risks in our risk model to define when risks have strategic impact and they are evaluated more than once a year through active management plans. The organization's dependencies and impacts are the starting point of the risk assessment, for example assuming info from the main impacts of operations and main dependencies like energy and raw materials uses. In addition, the main data sources for the assessment are based on the internal primary data, but, where it is not possible, we can have support from databases scientific approved. Once a climate-related risk and opportunity is identified to have a substantive financial or strategic impact on Aptar's business, Aptar ensures to develop KPIs and a governance process in line with the respective time horizon(s) to address the risk/opportunity and drive initiatives to manage the respective risk/opportunities. These initiatives are specified depending on if the risk/opportunity occurs/affects upstream (supply chain engagement), direct operations (site-specific initiatives) or downstream (product/market/sales). The methodology used to assess the nature, likelihood and magnitude of the effects of dependencies, impacts, risks and opportunities, takes into consideration qualitative factors about the ability to meet strategic business objectives and stakeholders involvement, and quantitative thresholds based on the loss of profits in a range between \$2-\$10 million (rating scale from 1 to 9). During the assessment, Aptar explored a variety of climate-related scenarios consisting of transition scenarios focusing on policy and technology influencing pathways for GHG emissions. Aptar used the new IEA WEO NZE2050 scenario as an ambitious scenario in line with the Paris Agreement and in line with APTAR 's ambition to update and align their Science-based Target to 1.5°C. The value chain involved into the risk assessment is focused on the upstream and core processes where Aptar can have influence about the reduction of risks and increase of opportunities thanks to the reassessment process that every year our internal team complete. In addition, we have completed a re-assessment of related risks (e.g. TCFD climate-related transition risks) and the results are based on the latest assessment.

Row 3

(2.2.2.1) Environmental issue

Select all that apply

✓ Plastics

(2.2.2.2) Indicate which of dependencies, impacts, risks, and opportunities are covered by the process for this environmental issue

Select all that apply

- Dependencies
- ✓ Impacts
- **✓** Risks

(2.2.2.3) Value chain stages covered

Select all that apply

- ✓ Direct operations
- **☑** Upstream value chain
- ✓ Downstream value chain

(2.2.2.4) Coverage

Select from:

✓ Full

(2.2.2.5) Supplier tiers covered

Select all that apply

✓ Tier 1 suppliers

(2.2.2.7) Type of assessment

Select from:

✓ Qualitative and quantitative

(2.2.2.8) Frequency of assessment

Select from:

Annually

(2.2.2.9) Time horizons covered

Select all that apply

- ✓ Short-term
- ✓ Medium-term

(2.2.2.10) Integration of risk management process

Select from:

☑ Integrated into multi-disciplinary organization-wide risk management process

(2.2.2.11) Location-specificity used

Select all that apply

✓ National

(2.2.2.12) Tools and methods used

Commercially/publicly available tools

☑ Ellen MacArthur Foundation Recyclability Assessment Tool

Other

✓ Scenario analysis

(2.2.2.13) Risk types and criteria considered

Acute physical

✓ Pollution incident

Chronic physical

✓ Leaching of hazardous substances from plastics

Policy

✓ Changes to national legislation

Market

✓ Changing customer behavior

Reputation

✓ Impact on human health

Technology

- **✓** Transition to reusable products
- ✓ Transition to recyclable plastic products
- ✓ Transition to increasing recycled content

Liability

- **✓** Exposure to litigation
- ✓ Non-compliance with regulations

(2.2.2.14) Partners and stakeholders considered

Select all that apply

- Customers
- **✓** Regulators

(2.2.2.15) Has this process changed since the previous reporting year?

Select from:

✓ No

(2.2.2.16) Further details of process

Aptar identifies and assesses plastic recyclability-related risks and opportunity at a company level considering the main risk and opportunity drivers that could affect our business, markets and customer's expectations. Internally we classified the recyclability of plastics products portfolio in compliance with the Ellen MacArthur Foundation methodology. Regarding the identification and assessment of plastic recyclability risks and opportunities at company level, as part of the Product Sustainability Team task, we measure and track each plastic material use along a recyclability path, considering end of life scenarios and technology compatibility about the recyclability in practice and at scale. The process for the evaluation of plastic recyclability risks is defined by the Product Sustainability Team and Risk Management. The potential size and scope of identified risks are based on the screening process considering the severity of the impact to cash flow and earnings and to strategic business objectives assuming regulatory scenarios on which Aptar can be subject to tax (for example EPR scheme). We currently have integrated plastic recyclability-related risks in our risk model to define when risks have strategic impact and they are evaluated more than once a year through active management plans. The organization's dependencies and impacts are the starting point of the risk assessment, for example assuming info from the main impacts of non-recyclable plastic products and main dependencies like conventional materials uses. In addition, the main data sources for the assessment are based on the internal primary data, but, where it is not possible, we can have support from scientific databases approved. Once a plastic recyclability-related risk and opportunity is identified to have a substantive financial or strategic impact on Aptar's business, Aptar ensures to develop KPIs and a governance process in line with the respective time horizon(s) to address the risk/opportunity and drive initiatives to manage the respective risk/opportunities. These initiatives are specified depending on if the risk/opportunity occurs/affects upstream (supply chain engagement), direct operations (site-specific initiatives) or downstream end of life (product/market/sales). The methodology used to assess the plastic recyclability, likelihood and magnitude of the effects of dependencies, impacts, risks and opportunities, takes into consideration qualitative factors about the ability to meet strategic business objectives and stakeholders involvement, and quantitative thresholds based on the loss of profits due to regulatory tax in a range between \$2-\$10 million (rating scale from 1 to 9). During the assessment, Aptar explored a variety of nature-related scenarios consisting of transition scenarios focusing on policy and technology influencing pathways for the GHG emissions related to plastic recyclability. APTAR used the latest IEA WEO NZE2050 scenario as an ambitious scenario in line with the Paris Agreement and in line with APTAR 's ambition to update and align their Sciencebased Target to 1.5°C. The value chain involved into the risk assessment is focused on the upstream and core processes where Aptar can have influence about the reduction of risks and increase of opportunities. In addition, we have completed a re-assessment of related risks (e.g. TCFD climate-related transition risks) and the results are based on the latest assessment.

Row 4

(2.2.2.1) Environmental issue

Select all that apply

☑ Biodiversity

(2.2.2.2) Indicate which of dependencies, impacts, risks, and opportunities are covered by the process for this environmental issue

Select all that apply

- Dependencies
- **✓** Impacts
- **✓** Risks

Opportunities

(2.2.2.3) Value chain stages covered

Select all that apply

- ✓ Direct operations
- **☑** Upstream value chain
- **☑** Downstream value chain

(2.2.2.4) Coverage

Select from:

✓ Full

(2.2.2.5) Supplier tiers covered

Select all that apply

✓ Tier 1 suppliers

(2.2.2.7) Type of assessment

Select from:

✓ Qualitative and quantitative

(2.2.2.8) Frequency of assessment

Select from:

Annually

(2.2.2.9) Time horizons covered

Select all that apply

- ✓ Short-term
- ✓ Medium-term

✓ Long-term

(2.2.2.10) Integration of risk management process

Select from:

☑ Integrated into multi-disciplinary organization-wide risk management process

(2.2.2.11) Location-specificity used

Select all that apply

✓ Site-specific

(2.2.2.12) Tools and methods used

Commercially/publicly available tools

- ✓ Encore tool
- ☑ LEAP (Locate, Evaluate, Assess and Prepare) approach, TNFD
- ✓ TNFD Taskforce on Nature-related Financial Disclosures
- **✓** WWF Biodiversity Risk Filter

Other

✓ Scenario analysis

(2.2.2.13) Risk types and criteria considered

Acute physical

- ☑ Cyclones, hurricanes, typhoons
- ✓ Flood (coastal, fluvial, pluvial, ground water)

Chronic physical

- ☑ Increased severity of extreme weather events
- ☑ Water availability at a basin/catchment level

✓ Changes to national legislation

Market

- ✓ Availability and/or increased cost of raw materials
- ✓ Changing customer behavior

Reputation

✓ Negative press coverage related to support of projects or activities with negative impacts on the environment (e.g. GHG emissions, deforestation & conversion, water stress)

Technology

✓ Unsuccessful investment in new technologies

Liability

✓ Non-compliance with regulations

(2.2.2.14) Partners and stakeholders considered

Select all that apply

- Customers
- Regulators
- Suppliers

(2.2.2.15) Has this process changed since the previous reporting year?

Select from:

✓ No

(2.2.2.16) Further details of process

Aptar identifies and assesses nature-related risks and opportunities at a company level considering the main risk and opportunity drivers that could affect our business, markets and customer's expectations. Internally we classified nature-related risks into the three internal categories as macroeconomic, strategic and operational. Regarding the identification and assessment of risks and opportunities at company level, as part of the Aptar Production System, we measure and track

each facility along a progression path, each facility is responsible to determine aspects and impacts of the business and then to prioritize these aspects and impacts, risks and opportunities, and dependencies. The process for the evaluation of risks is defined by the VP of Treasury and Risk Management. The potential size and scope of identified risks are based on the screening process considering the severity of the impact to cash flow and earnings and to strategic business objectives. We currently have integrated nature-related risks in our risk model to define when risks have strategic impact and they are evaluated more than once a year through active management plans. The organization's dependencies and impacts are the starting point of the risk assessment, for example assuming info from the main impacts of operations and main dependencies like energy and raw materials uses. In addition, the main data sources for the assessment are based on the internal primary data, but, where it is not possible, we can have support from scientific databases approved. Once a nature-related risk and opportunity is identified to have a substantive financial or strategic impact on Aptar's business, Aptar ensures to develop KPIs and a governance process in line with the respective time horizon(s) to address the risk/opportunity and drive initiatives to manage the respective risk/opportunities. These initiatives are specified depending on if the risk/opportunity occurs/affects upstream (supply chain engagement), direct operations (site-specific initiatives) or downstream (product/market/sales). The methodology used to assess the nature, likelihood and magnitude of the effects of dependencies, impacts, risks and opportunities, takes into consideration qualitative factors about the ability to meet strategic business objectives and stakeholders involvement, and quantitative thresholds based on the loss of profits in a range between \$2-\$10 million (rating scale from 1 to 9). During the assessment, Aptar explored a variety of nature-related scenarios consisting of transition scenarios focusing on policy and technology influencing pathways for GHG emissions. APTAR used the new IEA WEO NZE2050 scenario as an ambitious scenario in line with the Paris Agreement and in line with APTAR 's ambition to update and align their Science-based Target to 1.5°C. The value chain involved into the risk assessment is focused on the upstream and core processes where Aptar can have influence about the reduction of risks and increase of opportunities. In addition, we have completed a reassessment of related risks (e.g. TNFD climate-related transition risks) and the results are based on the latest assessment. [Add row]

(2.2.7) Are the interconnections between environmental dependencies, impacts, risks and/or opportunities assessed?

(2.2.7.1) Interconnections between environmental dependencies, impacts, risks and/or opportunities assessed

Select from:

✓ Yes

(2.2.7.2) Description of how interconnections are assessed

Aptar assesses different dependencies, impacts, risks and opportunities from climate, water, plastic and nature point of view using TCFD and TNFD methods, and Double-Materiality Assessment, that are all integrated internally into our enterprise risk management system. For example, when we consider the evaluation of climate change risks, we take into consideration also the indirect effect of this risk to the biodiversity and nature, and vice versa, so, the interconnections are evaluated from different points of view. We also involve various functional leaders including purchasing, risk, strategy, operations and finance in our assessments. [Fixed row]

(2.3) Have you identified priority locations across your value chain?

(2.3.1) Identification of priority locations

Select from:

✓ Yes, we have identified priority locations

(2.3.2) Value chain stages where priority locations have been identified

Select all that apply

✓ Direct operations

(2.3.3) Types of priority locations identified

Sensitive locations

- ✓ Areas important for biodiversity
- ☑ Areas of limited water availability, flooding, and/or poor quality of water

Locations with substantive dependencies, impacts, risks, and/or opportunities

- ☑ Locations with substantive dependencies, impacts, risks, and/or opportunities relating to water
- ☑ Locations with substantive dependencies, impacts, risks, and/or opportunities relating to biodiversity

(2.3.4) Description of process to identify priority locations

From nature-related risk assessment in compliance with TNFD methodology and using WWF Biodiversity Risk Filter, we have identified operations located in legally protected areas. In addition, we applied WWF Water Risk Filter Tool and CDP recommendation to use this tool to identify water stressed areas. According to CDP, 'water stressed' areas are the basins where their risk score for "Water Scarcity" risk category is equal to/greater than 3 (the risk scores range from 1 to 5). The risk category "Water Scarcity" refers to the physical abundance or lack of freshwater resources. It is a comprehensive and robust metric as it integrates a total of seven best available and peer-reviewed datasets covering different aspects of water scarcity as well as different modelling approaches: aridity index, water depletion, baseline water stress, blue water scarcity, available water remaining, drought frequency probability, and projected change in drought occurrence.

(2.3.5) Will you be disclosing a list/spatial map of priority locations?

Select from:

✓ Yes, we will be disclosing the list/geospatial map of priority locations

(2.3.6) Provide a list and/or spatial map of priority locations

Protected area	a list sites.pdf
[Fixed row]	

(2.4) How does your organization define substantive effects on your organization?

Risks

(2.4.1) Type of definition

Select all that apply

- **☑** Qualitative
- Quantitative

(2.4.2) Indicator used to define substantive effect

Select from:

✓ Revenue

(2.4.3) Change to indicator

Select from:

✓ Absolute decrease

(2.4.5) Absolute increase/ decrease figure

10000000

(2.4.6) Metrics considered in definition

Select all that apply

✓ Other, please specify: revenue

(2.4.7) Application of definition

Aptar identifies the risk as substantive financial or strategic impact when it is related to the loss of profits and the proportion of business units affected potential decrease of market share in case of we are not able to meet the customers'/market requests or regulations and when the risk can directly impact Aptar's ability to meet strategic business objectives. Aptar defines a substantive financial or strategic impact with the internal terminology High Level of Severity which describes that the potential impact on cash flow and earnings is material and will directly impact Aptar's ability to meet strategic business objectives. A high level of severity means for Aptar that at least one of our three market segments Beauty, Closures and Pharma is affected. Furthermore high level of severity is quantified with a financial impact effect on revenue of 10 million or more but our internal risk management system identified also different scale of magnitude that are worthy of attention during the screening process. In terms of frequency of effect occurring, our enterprise risk management system defined medium-high level of probability when event occur at least every 5-10 years' time horizon (probability likely - very likely, and short-medium term). Our TCFD and TNFD assessments align to and are integrated into our overall Enterprise Risk Management process. The process for the identification and definition of metrics and thresholds is reviewed at least every three years or when we have important changes to the business.

Opportunities

(2.4.1) Type of definition

Select all that apply

Qualitative

Quantitative

(2.4.2) Indicator used to define substantive effect

Select from:

✓ Revenue

(2.4.3) Change to indicator

Select from:

✓ Absolute increase

(2.4.5) Absolute increase/ decrease figure

1000000

(2.4.6) Metrics considered in definition

Select all that apply

☑ Other, please specify :revenue

(2.4.7) Application of definition

Aptar identifies the opportunity as substantive financial or strategic impact when it is related to the increase of profits and potential increase of market share when we can meet the customers' requests or regulations compliance and when the opportunity can directly impact Aptar's ability to meet strategic business objectives Aptar defines a substantive financial or strategic impact with the internal terminology High Level of Opportunity which describes that the potential impact on cash flow and earnings is material and will directly impact Aptar's ability to meet strategic customers business objectives. A high level of opportunity means for Aptar that our top customers in one of our three market segments Beauty, Closures and Pharma is affected Furthermore high level of opportunity is quantified with a financial impact effect on revenue from 1 million or more. In terms of frequency of occurrence, our enterprise risk management system defined medium-high level of probability when event occur at least every 5-10 years' time horizon (probability likely - very likely, and short-medium term). Our TCFD and TNFD assessments are aligned to and integrate with our overall Enterprise Risk Management process. The process for the identification and definition of metrics and thresholds is reviewed at least every three years or when we have important changes to the business.

[Add row]

(2.5) Does your organization identify and classify potential water pollutants associated with its activities that could have a detrimental impact on water ecosystems or human health?

(2.5.1) Identification and classification of potential water pollutants

Select from:

✓ Yes, we identify and classify our potential water pollutants

(2.5.2) How potential water pollutants are identified and classified

Aptar generates water pollutants in discharged wastewater from direct processes related to the washing of molds, in the maintenance areas through the use of chemicals, in rainwater and industrial water from cooling towers and compressors. Each operation is monitoring pollutants in compliance with local regulatory standard and the classification is based on the local regulatory requirements. The frequency of monitoring is defined by operational permits, licenses and authorization for wastewater defined by regulatory framework and the sample methods are in alignment with national and international standard eg ISO 15705.2002 for the chemical oxygen request. The pollutants threshold is defined in each regulatory framework on which Aptar site is based. In addition, the internal EHS management system defined appropriate procedure for which each site needs to complete regulatory screening in compliance with local laws about the wastewater aspects, so, in terms of standard, ISO 14001 is voluntarily adopted and used for the mapping of water pollutants into the environmental analysis (about 40% of sites has ISO 14001 certified). In terms of pollutants identified, the screening starts with production processes mapping for the core processes, on which we identified the following main KPI pollutants such as chemical oxygen demand (COD), biological oxygen demand (BOD), and total suspended solids (TSS)

(2.5.1) Describe how your organization minimizes the adverse impacts of potential water pollutants on water ecosystems or human health associated with your activities.

Row 1

(2.5.1.1) Water pollutant category

Select from:

✓ Inorganic pollutants

(2.5.1.2) Description of water pollutant and potential impacts

Wastewater discharged is produced by the molding cooling system and internal wastewater plant used for the washing molds activities. The water pollutant is based on the Total Suspended Solid (TSS). Total suspended solids (TSS for short) are particles larger than 2 microns that are found in water. Most suspended solids consist of inorganic materials, but bacteria and algae can also contribute to water quality. Water can contain sediment, silt and sand up to plankton and algae. Organic particles from decomposing materials can also contribute to SPT concentrations. When algae, plants and animals decompose, small organic particles are released in the decomposition process and enter the water column as suspended solids. The more solids in the water, the more cloudy the water. Some suspended matter may settle as sediment on the bottom of a body of water. This makes the water clear. High levels of suspended solids in drinking water or wastewater can have an impact on both the environment and human health: - Gastrointestinal problems or even death. - SPT can reduce the natural oxygen content dissolved in the water and increase the water temperature, making it impossible for small fish to survive. - SPT can also block sunlight, which affects plant survival. Please note that these pollutants are not candidate list of REACH regulation

(2.5.1.3) Value chain stage

Select all that apply

- **☑** Direct operations
- ✓ Upstream value chain

(2.5.1.4) Actions and procedures to minimize adverse impacts

Select all that apply

- ☑ Reduction or phase out of hazardous substances
- ☑ Requirement for suppliers to comply with regulatory requirements

- ☑ Discharge treatment using sector-specific processes to ensure compliance with regulatory requirements
- ✓ Upgrading of process equipment/methods
- ✓ Procedure(s) under development/ R&D

(2.5.1.5) Please explain

Aptar operations implemented internal EHS procedures for the monitoring of water pollutants parameters in compliance with regulatory framework and regular wastewater analysis are planned with external laboratory. Dedicated maintenance activities are planned for the operations that are using wastewater treatment plant ensuring the proper functioning. In addition, thanks to the ISO 14001 internal audit, the local EHS team can measure and track the water pollutants parameters and report the status regularly, in compliance with local regulatory requirements. In terms of upstream value chain, our purchasing department, thanks to the vendors engagement on the water management, requires evidences about regulatory compliance with wastewater topic to local suppliers operations.

Row 2

(2.5.1.1) Water pollutant category

Select from:

☑ Other nutrients and oxygen demanding pollutants

(2.5.1.2) Description of water pollutant and potential impacts

Wastewater discharged is produced by the molding cooling system and internal wastewater plant used for the washing molds activities. The water pollutant is based on the Biochemical Oxygen Demand (BOD) and Chemical Oxygen Demand (COD), both estimates the total quantity of organic material non-biodegradable in a certain amount of wastewater. When the concentration of pollutants becomes too high and prevents water-air exchanges, the oxygen demand is excessive and the amount of this gas decreases until it disappears. There is a progressive destruction of aquatic fauna and flora, and self-purification is no longer possible. Aerobic bacteria are replaced by anaerobic bacteria, which do not need oxygen, but produce harmful substances such as methane, ammonia and hydrogen sulfide, which give water very unpleasant odors. Pollution can occur in surface water (streams, rivers, lakes, lagoons, the sea, etc.) or in groundwater (surface and deep aquifers). Please note that these pollutants are not candidate list of REACH regulation

(2.5.1.3) Value chain stage

Select all that apply

- ✓ Direct operations
- ✓ Upstream value chain

(2.5.1.4) Actions and procedures to minimize adverse impacts

Select all that apply

- ☑ Reduction or phase out of hazardous substances
- ☑ Requirement for suppliers to comply with regulatory requirements
- ☑ Discharge treatment using sector-specific processes to ensure compliance with regulatory requirements
- ✓ Upgrading of process equipment/methods
- ✓ Procedure(s) under development/ R&D

(2.5.1.5) Please explain

Aptar operations implemented internal EHS procedures for the monitoring of water pollutants parameters in compliance with regulatory framework and regular wastewater analysis are planned with external laboratory. Dedicated maintenance activities are planned for the operations that are using wastewater treatment plant ensuring the proper functioning. In addition, thanks to the ISO 14001 internal audit, the local EHS team can measure and track the water pollutants parameters and report the status regularly, in compliance with local regulatory requirements. In terms of upstream value chain, our purchasing department, thanks to the vendors engagement on the water management, requires evidences about regulatory compliance with wastewater topic to local suppliers operations.

Row 3

(2.5.1.1) Water pollutant category

Select from:

✓ Inorganic pollutants

(2.5.1.2) Description of water pollutant and potential impacts

Wastewater discharged is produced by the molding cooling system and internal wastewater plant used for the washing molds activities. The water pollutant is based on the Total Suspended Solid (TSS). Total suspended solids (TSS for short) are particles larger than 2 microns that are found in water. Most suspended solids consist of inorganic materials, but bacteria and algae can also contribute to water quality. Water can contain sediment, silt and sand up to plankton and algae. Organic particles from decomposing materials can also contribute to SPT concentrations. When algae, plants and animals decompose, small organic particles are released in the decomposition process and enter the water column as suspended solids. The more solids in the water, the more cloudy the water. Some suspended matter may settle as sediment on the bottom of a body of water. This makes the water clear. High levels of suspended solids in drinking water or wastewater can have an impact on both the environment and human health:- Gastrointestinal problems or even death.- SPT can reduce the natural oxygen content dissolved in the water and increase the water temperature, making it impossible for small fish to survive.- SPT can also block sunlight, which affects plant survival. Please note that these pollutants are not candidate list of REACH regulation

(2.5.1.3) Value chain stage

Select all that apply

- ✓ Direct operations
- **☑** Upstream value chain

(2.5.1.4) Actions and procedures to minimize adverse impacts

Select all that apply

- ☑ Reduction or phase out of hazardous substances
- ☑ Requirement for suppliers to comply with regulatory requirements
- ☑ Discharge treatment using sector-specific processes to ensure compliance with regulatory requirements
- ✓ Upgrading of process equipment/methods
- ✓ Procedure(s) under development/ R&D

(2.5.1.5) Please explain

Aptar operations implemented internal EHS procedures for the monitoring of water pollutants parameters in compliance with regulatory framework and regular wastewater analysis are planned with external laboratory. Dedicated maintenance activities are planned for the operations that are using wastewater treatment plant ensuring the proper functioning. In addition, thanks to the ISO 14001 internal audit, the local EHS team can measure and track the water pollutants parameters and report the status regularly, in compliance with local regulatory requirements. In terms of upstream value chain, our purchasing department, thanks to the vendors engagement on the water management, requires evidences about regulatory compliance with wastewater topic to local suppliers operations.

[Add row]

C3. Disclosure of risks and opportunities

(3.1) Have you identified any environmental risks which have had a substantive effect on your organization in the reporting year, or are anticipated to have a substantive effect on your organization in the future?

Environmental risks identified
Select from:
✓ Yes, both in direct operations and upstream/downstream value chain
Select from:
✓ Yes, both in direct operations and upstream/downstream value chain
Select from:
✓ Yes, both in direct operations and upstream/downstream value chain

[Fixed row]

(3.1.1) Provide details of the environmental risks identified which have had a substantive effect on your organization in the reporting year, or are anticipated to have a substantive effect on your organization in the future.

Climate change

(3.1.1.1) Risk identifier

Select from:

✓ Risk1

(3.1.1.3) Risk types and primary environmental risk driver

Policy

✓ Changes to national legislation

(3.1.1.4) Value chain stage where the risk occurs

Select from:

✓ Downstream value chain

(3.1.1.6) Country/area where the risk occurs

Select all that apply

✓ Italy

✓ Spain

✓ France

✓ Greece

✓ Norway
✓ Hungary

✓ Portugal

✓ Netherlands

✓ Sweden

✓ Belgium

Czechia

Denmark

✓ Germany

(3.1.1.9) Organization-specific description of risk

Government regulations may require Extended Producer Responsibility EPR to increase recycling rate (i.e. funding to cover net costs for collection, sorting and recycling of packaging products not recycled) at the end of life for packaging products. Although the regulation proposal is not entirely defined and clear at this time, it is possible Aptar will be considered a producer in this scenario in the future.

(3.1.1.11) Primary financial effect of the risk

Select from:

☑ Fines, penalties or enforcement orders

(3.1.1.12) Time horizon over which the risk is anticipated to have a substantive effect on the organization

Select all that apply

- **✓** Short-term
- ✓ Medium-term
- **✓** Long-term

(3.1.1.13) Likelihood of the risk having an effect within the anticipated time horizon

Select from:

✓ Very unlikely

(3.1.1.14) Magnitude

Select from:

✓ High

(3.1.1.16) Anticipated effect of the risk on the financial position, financial performance and cash flows of the organization in the selected future time horizons

In 2024 Aptar calculated that 33,160 tons of total plastic packaging cannot be recycled (excluding Pharma products which are not currently in our recyclability disclosure). Recycling information is based on our 2024 disclosure to the New Plastic Economy Global Commitment report (Ellen MacArthur Foundation) and it is not considering any future acquisitions. The average cost for collection and sorting is \$421 USD/ton (source: EPR document - page 9). Therefore, we estimate that the EPR scheme can impact Aptar with indirect cost of: \$421 x 33,160 tons = \$13M The scope of this calculation is considering EMEA and NAM (PPWR for EMEA and California SB54 for NAM). Please note that currently Pharma products are excluded from these regulations.

(3.1.1.17) Are you able to quantify the financial effect of the risk?

Select from:

✓ Yes

(3.1.1.19) Anticipated financial effect figure in the short-term – minimum (currency)

13000000

(3.1.1.20) Anticipated financial effect figure in the short-term – maximum (currency)

13000000

(3.1.1.21) Anticipated financial effect figure in the medium-term – minimum (currency)

13000000

(3.1.1.22) Anticipated financial effect figure in the medium-term – maximum (currency)

13000000

(3.1.1.23) Anticipated financial effect figure in the long-term – minimum (currency)

13000000

(3.1.1.24) Anticipated financial effect figure in the long-term – maximum (currency)

13000000

(3.1.1.25) Explanation of financial effect figure

In 2024 Aptar calculated that 33,160 tons of total plastic packaging cannot be recycled (excluding Pharma products which are not currently in our recyclability disclosure). Recycling information is based on our 2024 disclosure to the New Plastic Economy Global Commitment report (Ellen MacArthur Foundation) and it is not considering any future acquisitions. The average cost for collection and sorting is \$421 USD/ton (source: EPR document - page 9). Therefore, we estimate that the EPR scheme can impact Aptar with indirect cost of: \$421 x 33,160 tons = \$13M The scope of this calculation is considering EMEA and NAM (PPWR for EMEA and California SB54 for NAM). Please note that currently Pharma products are excluded from these regulations.

(3.1.1.26) Primary response to risk

Infrastructure, technology and spending

☑ Take action to switch to plastic which is recyclable in practice and at scale

(3.1.1.27) Cost of response to risk

1000000

(3.1.1.28) Explanation of cost calculation

We are assuming a need for \$0.6M - \$1.0M to upgrade eco-design software and external recyclability analysis to support our products recyclability.

(3.1.1.29) Description of response

While we believe it is likely that there will be mandates on and regulations of existing products with EPR, the probability of this risk has been evaluated "unlikely" because where the customers are not willing to buy from us more sustainable options (not single use), we will pass through the cost of mandates and regulation of options they choose.

Water

(3.1.1.1) Risk identifier

Select from:

✓ Risk12

(3.1.1.3) Risk types and primary environmental risk driver

Acute physical

✓ Drought

(3.1.1.4) Value chain stage where the risk occurs

Select from:

☑ Direct operations

(3.1.1.6) Country/area where the risk occurs

Select all that apply

✓ China

✓ Bahrain

✓ India

✓ Thailand

- **✓** Italy
- ✓ Spain
- ✓ Mexico

(3.1.1.7) River basin where the risk occurs

Select all that apply

☑ Other, please specify: Mediterranean Sea, Arabian Peninsula, Zhu Jiang, Adriatic Sea, North Pacific, Yellow Sea, Gulf of Thailand

(3.1.1.9) Organization-specific description of risk

We have identified eight Aptar sites in different river basins that are impacted by water risks in our direct operations with the potential to have a substantive impact on our business. These sites manufacture products with plastics sourced from our suppliers and are important for us because their continued functioning is key to ensuring business continuity at many of our B2B customers. Aptar conducted water risk assessment with WWF Risk Filter tool and its database highlighted high physical risk quantity especially related to water stress (water stress measures the ratio of total water withdrawals to available renewable surface and groundwater supplies). We evaluated potential financial impact on areas where risk is in a range between medium-high and extremely high. We identified Aptar sites that are located in water stress areas (1 site in Spain, 1 site in Thailand, 2 in China, 1 site in India, 1 site in Bahrain, 2 sites in Italy, and 1 site in Mexico). Drought risk could lead to a temporary suspension (estimation max 4 weeks) of operations due to water scarcity because injection molding cooling processes requires water for cooling molds and periodic clean out of molds into the maintenance department. Furthermore, it is very unlikely that all sites identified would have a water stress related issue at the same time, especially considering that they all have water contingency plans to ensure business continuity.

(3.1.1.11) Primary financial effect of the risk

Select from:

☑ Decreased revenues due to reduced production capacity

(3.1.1.12) Time horizon over which the risk is anticipated to have a substantive effect on the organization

Select all that apply

- ✓ Short-term
- ✓ Medium-term
- **✓** Long-term

(3.1.1.13) Likelihood of the risk having an effect within the anticipated time horizon

Select from:

✓ Very unlikely

(3.1.1.14) Magnitude

Select from:

✓ High

(3.1.1.16) Anticipated effect of the risk on the financial position, financial performance and cash flows of the organization in the selected future time horizons

The percentage of our global revenue that could be affected is estimated and depends on a range of factors such as the impact type, magnitude and duration, as well as the unique nature of the knock-on impacts on our B2B customers from partial or full site closure. The main risk driver is linked to the water scarcity (drought) with medium-high severity. Considering the nature of the risk, the main problem is related to the stop of injection molding cooling process that can have an impact on the overall business. Potential financial impact has been estimated taking into consideration the average gross business interruption value for 4 weeks in sites located in water stressed areas. Total business interruption value for 8 operations is: \$0.6M x 30 days = \$18M. While we believe it is likely that the increase of water scarcity can be present, the probability of this risk has been evaluated "Very Unlikely" because we have implemented procedures to maximize the water efficiency and water reuse/recycling practices reducing the risk. We are assuming a need for \$0.6M - \$1.0M to manage the implementation of water conservation measures and water efficiency technology for recycling / reuse of water.

(3.1.1.17) Are you able to quantify the financial effect of the risk?

Select from:

✓ Yes

(3.1.1.19) Anticipated financial effect figure in the short-term – minimum (currency)

18000000

(3.1.1.20) Anticipated financial effect figure in the short-term – maximum (currency)

18000000

(3.1.1.21) Anticipated financial effect figure in the medium-term – minimum (currency)

18000000

(3.1.1.22) Anticipated financial effect figure in the medium-term – maximum (currency)

18000000

(3.1.1.23) Anticipated financial effect figure in the long-term – minimum (currency)

18000000

(3.1.1.24) Anticipated financial effect figure in the long-term – maximum (currency)

18000000

(3.1.1.25) Explanation of financial effect figure

The percentage of our global revenue that could be affected is estimated and depends on a range of factors such as the impact type, magnitude and duration, as well as the unique nature of the knock-on impacts on our B2B customers from partial or full site closure. The main risk driver is linked to the water scarcity (drought) with medium-high severity. Considering the nature of the risk, the main problem is related to the stop of injection molding cooling process that can have an impact on the overall business. Potential financial impact has been estimated taking into consideration the average gross business interruption value for 4 weeks in sites located in water stressed areas. Total business interruption value for 8 operations is: \$0.6M x 30 days = \$18M. While we believe it is likely that the increase of water scarcity can be present, the probability of this risk has been evaluated "Very Unlikely" because we have implemented procedures to maximize the water efficiency and water reuse/recycling practices reducing the risk. We are assuming a need for \$0.6M - \$1.0M to manage the implementation of water conservation measures and water efficiency technology for recycling / reuse of water.

(3.1.1.26) Primary response to risk

Infrastructure, technology and spending

☑ Adopt water efficiency, water reuse, recycling and conservation practices

(3.1.1.27) Cost of response to risk

1000000

(3.1.1.28) Explanation of cost calculation

We are assuming a need for \$0.6M - \$1.0M to manage the implementation of water conservation measures and water efficiency technology for recycling / reuse of water.

(3.1.1.29) Description of response

As mitigation process, we have identified the optimization of water reuse system, recycling and conservation practices in our operations that conduct injection molding process. In addition we have planned regular maintenance of closed loop water system and review of water contingency plan (to manage residual risks). The timeframe of this mitigation action is short term (in progress). The primary response to risk has been evaluated very effective in order to prevent the risk identified, improving organization's resilience about water management. Water security level can be considered increased thanks to the adoption of systematic check of water conservation practices and water reuse system. In addition, our primary response to risk is supporting SDG goal number 6 substantially based on increase water-use

efficiency across all sectors and ensure sustainable withdrawals and supply of freshwater to address water scarcity and substantially reduce the number of people suffering from water scarcity. The water risk identified influenced our local financial planning at site level in terms of Capex allocation for water reuse and recycling system. Finally, our operations leader received training focused on water stress topic, in fact this training was a focus activity into the past 2 reporting years.

Plastics

(3.1.1.1) Risk identifier

Select from:

✓ Risk2

(3.1.1.3) Risk types and primary environmental risk driver

Policy

✓ Changes to national legislation

(3.1.1.4) Value chain stage where the risk occurs

Select from:

✓ Downstream value chain

(3.1.1.6) Country/area where the risk occurs

Select all that apply

✓ Italy

✓ Spain

☑ United Kingdom of Great Britain and Northern Ireland

(3.1.1.9) Organization-specific description of risk

In January 2021, European Commission authorities introduced a directive Plastic Levi named "Plastic Own Resources" for a mandatory contribution to single use plastic packaging. The tax base is calculated on the amount of virgin contained in single-use packaging containing plastic, semi-finished plastic products intended for the manufacture of packaging. At the moment Italy and Spain approved this directive with a mandatory tax of 450\$ per tons of single use plastic packaging product. We can assume that also other EU countries will follow the same approach, so, considering Closure and Beauty EMEA products as single use packaging and/or not recycled content minimum, emerged that about 58k tons of Aptar products (41k tons for Beauty EMEA and 17k tons for Closure EMEA) could fall in this tax scenario.

(3.1.1.11) Primary financial effect of the risk

Select from:

✓ Fines, penalties or enforcement orders

(3.1.1.12) Time horizon over which the risk is anticipated to have a substantive effect on the organization

Select all that apply

- **✓** Short-term
- ✓ Medium-term
- ✓ Long-term

(3.1.1.13) Likelihood of the risk having an effect within the anticipated time horizon

Select from:

✓ Very unlikely

(3.1.1.14) Magnitude

Select from:

✓ High

(3.1.1.16) Anticipated effect of the risk on the financial position, financial performance and cash flows of the organization in the selected future time horizons

At the moment Italy and Spain approved this directive with a mandatory tax of 450\$ per tons of single use plastic packaging product. We can assume that also other EU countries will follow the same approach, so, considering Closure and Beauty EMEA products as single use packaging and/or not recycled content minimum, emerged that about 58k tons of Aptar products (41k tons for Beauty EMEA and 17k tons for Closure EMEA) could fall in this tax scenario. Total cost for plastic tax in EMEA: (\$450 * 58k tons) = \$26M While we believe it is very likely that the mandates on and regulations will be confirmed by countries, the probability of this risk has been evaluated "Unlikely" because we either pass through the mandatory contribution to customers or not produce single use plastic.

(3.1.1.26) Primary response to risk

Infrastructure, technology and spending

✓ Take action to remove single-use plastic products/packaging

(3.1.1.29) Description of response

As mitigation process, we are assuming a need for \$0.6M - \$1.0M to upgrade eco-design tool and external regulatory support and certificates promoting the no use of single use plastic.

Climate change

(3.1.1.1) Risk identifier

Select from:

✓ Risk4

(3.1.1.3) Risk types and primary environmental risk driver

Liability

✓ Non-compliance with legislation

(3.1.1.4) Value chain stage where the risk occurs

Select from:

☑ Direct operations

(3.1.1.6) Country/area where the risk occurs

Select all that apply

- ✓ Czechia
- ✓ France
- ✓ Germany
- **✓** Italy
- ✓ Spain

(3.1.1.9) Organization-specific description of risk

The EU Taxonomy aims to help scale up investments in projects and activities that are necessary to reach the objectives of the European Green Deal. The EU Taxonomy helps investors identify environmentally sustainable economic activities, promote a transition to a zero-carbon future and guide funding towards solutions to tackle the climate crisis and prevent further environmental degradation: - It creates a frame of reference for investors and companies; - It supports companies in their efforts to plan and finance their transition; - It protects against greenwashing practices; - It helps accelerate financing of those projects that are already sustainable and those needed in the transition. We are evaluating whether or not Aptar is subject to these reporting requirements, and, if so, there is a risk that Aptar will not able to satisfy investors request regarding classification and report on the specific sector on which Aptar is operating (manufacturing of plastic packaging). There is risk as to whether we will be able to demonstrate our commitment to decrease the impact on the circular economy environmental objectives, environmental objectives for the DNSH.

(3.1.1.11) Primary financial effect of the risk

Select from:

✓ Fines, penalties or enforcement orders

(3.1.1.12) Time horizon over which the risk is anticipated to have a substantive effect on the organization

Select all that apply

- **✓** Short-term
- ✓ Medium-term
- ✓ Long-term

(3.1.1.13) Likelihood of the risk having an effect within the anticipated time horizon

Select from:

✓ Very unlikely

(3.1.1.14) Magnitude

Select from:

✓ High

(3.1.1.16) Anticipated effect of the risk on the financial position, financial performance and cash flows of the organization in the selected future time horizons

Aptar risk is based on the fact that we are not able to satisfy investors request about the EU Taxonomy classification and report on the specific sector on which Aptar is operating (manufacturing of plastic packaging). In addition, we cannot be able to demonstrate our commitment to decrease the impact on the circular economy

environmental objectives, environmental objectives for the DNSH, and to be comply with minimum safeguards. At the moment the financial impact of this risk can be linked to the CSRD non compliance penalty, assuming the worst scenario with the highest penalty up to \$10 M.

(3.1.1.17) Are you able to quantify the financial effect of the risk?

Select from:

✓ Yes

(3.1.1.19) Anticipated financial effect figure in the short-term – minimum (currency)

10000000

(3.1.1.20) Anticipated financial effect figure in the short-term – maximum (currency)

10000000

(3.1.1.21) Anticipated financial effect figure in the medium-term – minimum (currency)

10000000

(3.1.1.22) Anticipated financial effect figure in the medium-term – maximum (currency)

10000000

(3.1.1.23) Anticipated financial effect figure in the long-term – minimum (currency)

10000000

(3.1.1.24) Anticipated financial effect figure in the long-term – maximum (currency)

10000000

(3.1.1.25) Explanation of financial effect figure

Aptar risk is based on the fact that we are not able to satisfy investors request about the EU Taxonomy classification and report on the specific sector on which Aptar is operating (manufacturing of plastic packaging). In addition, we cannot be able to demonstrate our commitment to decrease the impact on the circular economy

environmental objectives, environmental objectives for the DNSH, and to be comply with minimum safeguards. At the moment the financial impact of this risk can be linked to the CSRD non compliance penalty, assuming the worst scenario with the highest penalty up to \$10 mln.

(3.1.1.26) Primary response to risk

Compliance, monitoring and targets

☑ Greater compliance with regulatory requirements

(3.1.1.27) Cost of response to risk

1000000

(3.1.1.28) Explanation of cost calculation

We are assuming a need for \$0.6M - \$1.0M in short term period to upgrade internal management system with regulatory support and compliance from external consultants and tools for the EU Taxonomy regulation.

(3.1.1.29) Description of response

As mitigation process, we have identified the management of internal regulatory system that can ensure regulatory compliance. The primary response to risk has been evaluated very effective in order to prevent the risk identified, improving organization's resilience about new law and regulatory requirements for the sustainability aspects. We are assuming a need for \$0.6M - \$1.0M in short term period to upgrade internal management system with regulatory support and compliance from external consultants and tools for the EU Taxonomy regulation.

Climate change

(3.1.1.1) Risk identifier

Select from:

✓ Risk5

(3.1.1.3) Risk types and primary environmental risk driver

Liability

✓ Non-compliance with legislation

(3.1.1.4) Value chain stage where the risk occurs

Select from:

☑ Direct operations

(3.1.1.6) Country/area where the risk occurs

Select all that apply

- ✓ Czechia
- **✓** France
- ✓ Germany
- **✓** Italy
- **✓** Spain

(3.1.1.9) Organization-specific description of risk

The CSDD directive introduces a corporate due diligence duty to identify, prevent, bring to an end, mitigate and account for adverse human rights and environmental impacts in the company's own operations, its subsidiaries and their value chains. In order to do so, companies have to conduct mandatory and continuous human rights and environmental due diligence aligned with the OECD due diligence guidelines. Companies that the CSDDD targets will be required to integrate human rights and environmental due diligence into policies, develop a process to identify and assess actual or potential adverse human rights and environmental impacts — both in own operations and in the supply chain, prevent or mitigate potential impacts, bring to an end or minimize actual impacts, track the implementation and results to evaluate the effectiveness of due diligence procedures (at least once every 12 months), publish an annual statement on the company website to communicate the relevant due diligence measures taken during the previous calendar year, and establish and maintain a complaints procedure.

(3.1.1.11) Primary financial effect of the risk

Select from:

✓ Fines, penalties or enforcement orders

(3.1.1.12) Time horizon over which the risk is anticipated to have a substantive effect on the organization

Select all that apply

- ✓ Short-term
- ✓ Medium-term
- ✓ Long-term

(3.1.1.23) Anticipated financial effect figure in the long-term – minimum (currency)

19000000

(3.1.1.24) Anticipated financial effect figure in the long-term – maximum (currency)

19000000

(3.1.1.25) Explanation of financial effect figure

Aptar risk is based on the fact that we are not ready to satisfy CSDDD requirements for our upstream value chain, so, in that worst case the CSDDD defined penalties that include fine of up to 5% of companies net worldwide turnover. Aptar Worldwide turnover $2024 \rightarrow $374 \text{ mln } 5\%$ fines $\rightarrow 19 mln

(3.1.1.26) Primary response to risk

Compliance, monitoring and targets

☑ Greater compliance with regulatory requirements

(3.1.1.27) Cost of response to risk

1000000

(3.1.1.28) Explanation of cost calculation

As mitigation process, we have identified the management of internal regulatory system that can ensure regulatory compliance. The primary response to risk has been evaluated very effective in order to prevent the risk identified, improving organization's resilience about new law and regulatory requirements for the sustainability aspects. We are assuming a need for \$0.6M - \$1.0M in short term period to upgrade internal management system with regulatory support and compliance from external consultants and tools for the CSDDD regulation.

(3.1.1.29) Description of response

As mitigation process, we have identified the management of internal regulatory system that can ensure regulatory compliance. The primary response to risk has been evaluated very effective in order to prevent the risk identified, improving organization's resilience about new law and regulatory requirements for the sustainability aspects.

Climate change

(3.1.1.1) Risk identifier

Select from:

✓ Risk6

(3.1.1.3) Risk types and primary environmental risk driver

Liability

✓ Non-compliance with legislation

(3.1.1.4) Value chain stage where the risk occurs

Select from:

✓ Direct operations

(3.1.1.6) Country/area where the risk occurs

Select all that apply

Czechia

✓ France

✓ Germany

✓ Italy

✓ Spain

(3.1.1.9) Organization-specific description of risk

The aim of CBAM is to align the carbon prices of goods imported into the EU with goods produced in the EU. Since under the EU ETS, only EU producers have to purchase certificates, thus raising their prices in comparison to imports, the CBAM aims to level the playing field. CBAM is the first regime of its kind in any emission trading system, though the EU Commission maintains that it is a WTO-compatible measure that boosts global sustainability. CBAM applies directly to all persons or entities who import goods to the EU (importers). Importers will request the relevant information from the manufacturers of CBAM goods that are imported into the EU (so called Operators). So while Operators don't have any immediate obligations under CBAM, they may be affected indirectly. CBAM applies to goods or certain processed products made from aluminum. Exemptions currently exist for goods originating in Liechtenstein, Norway, Iceland, as those countries participate in the EU ETS, as well as for goods originating in Switzerland, as the Swiss emission trading system is linked to EU ETS. The exemption rule is expected to be extended to other countries depending on their CO2.

(3.1.1.11) Primary financial effect of the risk

Select from:

✓ Fines, penalties or enforcement orders

(3.1.1.12) Time horizon over which the risk is anticipated to have a substantive effect on the organization

Select all that apply

- **✓** Short-term
- ✓ Medium-term
- ✓ Long-term

(3.1.1.13) Likelihood of the risk having an effect within the anticipated time horizon

Select from:

✓ Very unlikely

(3.1.1.14) Magnitude

Select from:

✓ Medium

(3.1.1.16) Anticipated effect of the risk on the financial position, financial performance and cash flows of the organization in the selected future time horizons

Aptar risk is based on the aluminum components imported from non EU countries to EU Aptar plant, so, failure to comply with CBAM reporting requirements or inaccuracies in CBAM reports can result in penalties set by each EU member state, ranging from €10 to €50 per ton of unreported or incorrectly reported embedded emissions. Authorized CBAM declarants, which fail to surrender the necessary number of CBAM certificates by May 31 of each year starting in 2027, will be held liable for the payment of fines equal to those under the EU ETS, meaning €100 for each ton of CO2. Following the reporting obligations, ultimately, when certain goods are imported into the customs territory of the Union, they are subject to the same carbon price as they would have been if they had been produced in countries that are subject to the European Emissions Trading System (EU ETS. This obligation will start in 2027 for the year 2026. The CBAM certificates will be sold via a platform operated by the EU Commission. The obligation to purchase and surrender CBAM allowances will gradually increase corresponding with the reduction of free allocation of EU ETS to EU producers. Importers will initially have to pay for only 2.5% of embedded emissions for 2026, and this rate will gradually increase to 100% of grey emissions by 2034. Companies already affected by other reporting obligations (such as EU Taxonomy, CSRD, national supply chain acts) should carefully assess where data that's already being collected can be reused for CBAM and where there are significant differences. Following the reporting obligations,

we can have a scenario on which 50% of aluminum purchased by Aptar can be subject to CBAM, so, in terms of CO2 emissions means about 34,084 tons CO2e subject to fines in case of inaccuracies or unreporting in CBAM regulation. Worst case scenario: 34,084 tons CO2e x 100 \$ = \$3M

(3.1.1.17) Are you able to quantify the financial effect of the risk?

Select from:

✓ Yes

(3.1.1.19) Anticipated financial effect figure in the short-term – minimum (currency)

3000000

(3.1.1.20) Anticipated financial effect figure in the short-term – maximum (currency)

3000000

(3.1.1.21) Anticipated financial effect figure in the medium-term – minimum (currency)

3000000

(3.1.1.22) Anticipated financial effect figure in the medium-term – maximum (currency)

3000000

(3.1.1.23) Anticipated financial effect figure in the long-term – minimum (currency)

3000000

(3.1.1.24) Anticipated financial effect figure in the long-term – maximum (currency)

3000000

(3.1.1.25) Explanation of financial effect figure

Aptar risk is based on the aluminum components imported from non EU countries to EU Aptar plant, so, failure to comply with CBAM reporting requirements or inaccuracies in CBAM reports can result in penalties set by each EU member state, ranging from 10 to 50 per ton of unreported or incorrectly reported embedded emissions. Authorized CBAM declarants, which fail to surrender the necessary number of CBAM certificates by May 31 of each year starting in 2027, will be held

liable for the payment of fines equal to those under the EU ETS, meaning 100 for each ton of CO2. Following the reporting obligations, ultimately, when certain goods are imported into the customs territory of the Union, they are subject to the same carbon price as they would have been if they had been produced in countries that are subject to the European Emissions Trading System (EU ETS. This obligation will start in 2027 for the year 2026. The CBAM certificates will be sold via a platform operated by the EU Commission. The obligation to purchase and surrender CBAM allowances will gradually increase corresponding with the reduction of free allocation of EU ETS to EU producers. Importers will initially have to pay for only 2.5% of embedded emissions for 2026, and this rate will gradually increase to 100% of grey emissions by 2034. Companies already affected by other reporting obligations (such as EU Taxonomy, CSRD, national supply chain acts) should carefully assess where data that's already being collected can be reused for CBAM and where there are significant differences. Following the reporting obligations, we can have a scenario on which 50% of aluminum purchased by Aptar can be subject to CBAM, so, in terms of CO2 emissions means about 34,084 tons CO2e subject to fines in case of inaccuracies or unreporting in CBAM regulation. Worst case scenario: 34,084 tons CO2e x 100 \$ = \$3M

(3.1.1.26) Primary response to risk

Compliance, monitoring and targets

☑ Greater compliance with regulatory requirements

(3.1.1.27) Cost of response to risk

1000000

(3.1.1.28) Explanation of cost calculation

As mitigation process, we have identified the management of internal regulatory system that can ensure regulatory compliance. The primary response to risk has been evaluated very effective in order to prevent the risk identified, improving organization's resilience about new law and regulatory requirements for the sustainability aspects. We are assuming a need for \$0.6M - \$1.0M in short term period to upgrade internal management system with regulatory support and compliance from external consultants and tools for the CBAM regulation.

(3.1.1.29) Description of response

As mitigation process, we have identified the management of internal regulatory system that can ensure regulatory compliance. The primary response to risk has been evaluated very effective in order to prevent the risk identified, improving organization's resilience about new law and regulatory requirements for the sustainability aspects.

Climate change

(3.1.1.1) Risk identifier

O -		r
V-0	ΔCT	trom'
೦೮	てしし	from:

✓ Risk3

(3.1.1.3) Risk types and primary environmental risk driver

Policy

✓ Carbon pricing mechanisms

(3.1.1.4) Value chain stage where the risk occurs

Select from:

☑ Direct operations

(3.1.1.6) Country/area where the risk occurs

Select all that apply

✓ Czechia

✓ France

✓ Germany

✓ Italy

✓ Spain

(3.1.1.9) Organization-specific description of risk

The Paris Agreement defined a global GHG emissions target in order to avoid Climate Change potential risk. Aptar may be subject to a severe change in the regulation landscape globally and expected to pay a price on carbon emissions. Considering the current and emerging regulation, the EU confirmed the carbon tax mechanism defined by Emission Trading Scheme (tax on CO2 emitted from energy-intensive industry sectors, e.g. oil refineries, metals production) and introduced by 2028 a new carbon tax "Emission Trading Scheme 2" for fuels used in buildings, road transport and process heat in industry (Scope 1 emissions). A CO2 price range to 2030 is defined within the latest IEA WEO 2022 Scenarios: minimum \$83/ton CO2e (Stated Policies Scenario) and maximum \$140/ton CO2e (Net Zero Emissions by 2050 scenario). Current CO2 price defined by regulatory Emission Trading Scheme in Europe is \$96/ton CO2e.

(3.1.1.11) Primary financial effect of the risk

Select from:

✓ Fines, penalties or enforcement orders

(3.1.1.12) Time horizon over which the risk is anticipated to have a substantive effect on the organization

Select all that apply

- **✓** Short-term
- **✓** Medium-term
- ✓ Long-term

(3.1.1.13) Likelihood of the risk having an effect within the anticipated time horizon

Select from:

✓ Unlikely

(3.1.1.14) Magnitude

Select from:

✓ High

(3.1.1.16) Anticipated effect of the risk on the financial position, financial performance and cash flows of the organization in the selected future time horizons

Aptar formalized updating of science-based targets by setting an emissions reduction goal consistent with science requirements to keep global warming 1.5°Celsius by year 2030. As reported on our data assurance certificates, Aptar's 2023 direct and indirect Scope 1 + 2 emissions totals are 31,287 tons CO2e, indirect Scope 3 emissions totals are 421,206 tons CO2e. The risk is related to the direct and indirect effect that these current/emerging regulation on carbon tax could have on Aptar performance for Scope 1 and Scope 3 emissions. Please note that the indirect carbon tax risk estimated for the Scope 3 emissions is potentially passed to customers. The worst case scenario is assumed to be that Aptar does not reduce Scope 1, Scope 2 and Scope 3 - raw materials emissions any further beyond our current performance totals and increase emissions in all scopes +20% respect year 2023 to target year 2030 (from 2019 to current year the average increase of emissions was +10%, so, in the next 8 years it is likely that we can have +20% increase). Direct effect due to emerging ETS 2 regulation: Direct effect EMEA min. \rightarrow Scope 1 emissions \rightarrow (20,106 tons CO2e x \$83/ton) = \$1.6M Direct effect EMEA max. \rightarrow Scope 1 emissions \rightarrow (20,106 tons CO2e x \$140/ton) = \$2.8M Direct effect NAM, LATAM, ASIA min. \rightarrow Scope 1 emissions \rightarrow (4,554 tons CO2e x \$140/ton) = \$0.6M Indirect effect due to current ETS regulation: Indirect effect NAL REGIONS min. \rightarrow Scope 3 plastic and metals raw materials emissions \rightarrow (421,206 tons CO2e x \$140/ton) = \$34M Indirect effect ALL REGIONS max. \rightarrow Scope 3 plastic and metals raw materials emissions \rightarrow (421,206 tons CO2e x \$140/ton) = \$58M \rightarrow Total direct and indirect potential financial impact min. \rightarrow \$61M

(3.1.1.17) Are you able to quantify the financial effect of the risk?

Select from:

✓ Yes

(3.1.1.19) Anticipated financial effect figure in the short-term – minimum (currency)

25000000

(3.1.1.20) Anticipated financial effect figure in the short-term – maximum (currency)

61000000

(3.1.1.21) Anticipated financial effect figure in the medium-term – minimum (currency)

25000000

(3.1.1.22) Anticipated financial effect figure in the medium-term – maximum (currency)

61000000

(3.1.1.23) Anticipated financial effect figure in the long-term – minimum (currency)

25000000

(3.1.1.24) Anticipated financial effect figure in the long-term – maximum (currency)

61000000

(3.1.1.25) Explanation of financial effect figure

Aptar formalized updating of science-based targets by setting an emissions reduction goal consistent with science requirements to keep global warming 1.5°Celsius by year 2030. As reported on our data assurance certificates, Aptar's 2023 direct and indirect Scope 1 + 2 emissions totals are 31,287 tons CO2e, indirect Scope 3 emissions totals are 421,206 tons CO2e. The risk is related to the direct and indirect effect that these current/emerging regulation on carbon tax could have on Aptar performance for Scope 1 and Scope 3 emissions. Please note that the indirect carbon tax risk estimated for the Scope 3 emissions is potentially passed to customers. The worst case scenario is assumed to be that Aptar does not reduce Scope 1, Scope 2 and Scope 3 - raw materials emissions any further beyond our current performance totals and increase emissions in all scopes +20% respect year 2023 to target year 2030 (from 2019 to current year the average increase of emissions was +10%, so, in the next 8 years it is likely that we can have +20% increase). Direct effect due to emerging ETS 2 regulation: Direct effect EMEA min. \rightarrow Scope 1 emissions \rightarrow (20,106 tons CO2e x \$83/ton) = \$1.6M Direct effect EMEA max. \rightarrow Scope 1 emissions \rightarrow (20,106 tons CO2e x \$140/ton) = \$2.8M Direct effect NAM,

LATAM, ASIA min. \rightarrow Scope 1 emissions \rightarrow (4,554 tons CO2e x \$83/ton) = \$0.3M Direct effect NAM, LATAM, ASIA max. \rightarrow Scope 1 emissions \rightarrow (4,554 tons CO2e x \$140/ton) = \$0.6M Indirect effect due to current ETS regulation: Indirect effect ALL REGIONS min. \rightarrow Scope 3 plastic and metals raw materials emissions \rightarrow (421,206 tons CO2e x \$83/ton) = \$34M Indirect effect ALL REGIONS max. \rightarrow Scope 3 plastic and metals raw materials emissions \rightarrow (421,206 tons CO2e x \$140/ton) = \$58M \rightarrow Total direct and indirect potential financial impact min. \rightarrow \$36M \rightarrow Total direct potential financial impact max. \rightarrow \$61M

(3.1.1.26) Primary response to risk

Policies and plans

✓ Develop a climate transition plan

(3.1.1.27) Cost of response to risk

1000000

(3.1.1.28) Explanation of cost calculation

While we believe it is likely that there will be indirect financial impact based on carbon pricing mechanism and specific regulations (e.g. ETS), the probability of this risk has been evaluated "unlikely" because where the customers are not willing to buy product solutions with more sustainable materials (not directly produced by energy-intensive industry sectors), we will pass through the cost of CO2 and regulation of options they choose. Cost estimation due to ETS 2 regulation: Assumes Aptar decides to engage the top 10 operations mostly contributor of Scope 1 emissions moving to the implementation of clean technology reducing fuels used in buildings and process heat. The cost is based on the case study of one of our Aptar Pharma site in France, it invested \$0.15M in heat recovery process reducing fuels used for heating building and process. Return on investment is 3 year (\$ 0.05M per year). Similar energy conservation measure is expected to be implemented in 10 Aptar sites reducin

(3.1.1.29) Description of response

As mitigation process, we have identified the management of internal regulatory system that can ensure regulatory compliance. The primary response to risk has been evaluated very effective in order to prevent the risk identified, improving organization's resilience about new law and regulatory requirements for the sustainability aspects.

Climate change

(3.1.1.1) Risk identifier

Select from:

✓ Risk8

(3.1.1.3) Risk types and primary environmental risk driver

Market

☑ Changing customer behavior

(3.1.1.4) Value chain stage where the risk occurs

Select from:

☑ Downstream value chain

(3.1.1.6) Country/area where the risk occurs

Select all that apply

☑ Italy

✓ Spain

✓ France✓ Belgium✓ Norway✓ Czechia

✓ Poland✓ Denmark✓ Finland✓ Slovenia

✓ Germany
✓ Netherlands

✓ Romania ✓ Switzerland

✓ Portugal
✓ United States of America

✓ Slovakia

(3.1.1.9) Organization-specific description of risk

Environmental sustainability for packaging sector is a crucial aspect, so, it is very likely that our customers and end-users will be more orientated to choose responsible products for planet and people in the next 10 years (as identified in European Plastic Pact). In case Aptar is not able to satisfy this new market need, it is possible lower demand will effect revenue.

(3.1.1.11) Primary financial effect of the risk

Select from:

✓ Disruption to sales

(3.1.1.12) Time horizon over which the risk is anticipated to have a substantive effect on the organization

Select all that apply

- **✓** Short-term
- ✓ Medium-term
- **✓** Long-term

(3.1.1.13) Likelihood of the risk having an effect within the anticipated time horizon

Select from:

✓ Exceptionally unlikely

(3.1.1.14) Magnitude

Select from:

✓ High

(3.1.1.16) Anticipated effect of the risk on the financial position, financial performance and cash flows of the organization in the selected future time horizons

The risk is related to the assumption that Beauty and Closure customers are affected due to switch to packaging product with lower emission options (for example sustainable materials and/or no single-use packaging) as will be requested by laws and markets. Assuming that Beauty and Closure customers are affected due to switch to packaging product with lower emissions as will be requested by laws and markets: Global Aptar Beauty sales revenue $\rightarrow \$1,227M$ Global Aptar Closure sales revenue $\rightarrow \$1,838M$ The worst case is that global regulatory aspects on sustainable packaging will drive markets and will change customers behaviours to request lower emissions products, so, if we will not satisfy this request in terms of lower emission options, the worst case risk is to loose 70% of total Beauty and Closure sales revenues. Total Aptar sales revenue loss $\rightarrow \$1,838M*70\%=\$1,287M$

(3.1.1.17) Are you able to quantify the financial effect of the risk?

Select from:

Yes

(3.1.1.19) Anticipated financial effect figure in the short-term – minimum (currency)

(3.1.1.20) Anticipated financial effect figure in the short-term – maximum (currency)

1287000000

(3.1.1.21) Anticipated financial effect figure in the medium-term – minimum (currency)

1287000000

(3.1.1.22) Anticipated financial effect figure in the medium-term – maximum (currency)

1287000000

(3.1.1.23) Anticipated financial effect figure in the long-term – minimum (currency)

1287000000

(3.1.1.24) Anticipated financial effect figure in the long-term – maximum (currency)

1287000000

(3.1.1.25) Explanation of financial effect figure

The risk is related to the assumption that Beauty and Closure customers are affected due to switch to packaging product with lower emission options (for example sustainable materials and/or no single-use packaging) as will be requested by laws and markets. Assuming that Beauty and Closure customers are affected due to switch to packaging product with lower emissions as will be requested by laws and markets: Global Aptar Beauty sales revenue \rightarrow \$1,227M Global Aptar Closure sales revenue \rightarrow \$1,838M The worst case is that global regulatory aspects on sustainable packaging will drive markets and will change customers behaviours to request lower emissions products, so, if we will not satisfy this request in terms of lower emission options, the worst case risk is to loose 70% of total Beauty and Closure sales revenues. Total Aptar sales revenue loss \rightarrow \$1,838M*70%= \$1,287M

(3.1.1.26) Primary response to risk

Policies and plans

☑ Increased use of sustainably sourced materials

(3.1.1.27) Cost of response to risk

16000000

(3.1.1.28) Explanation of cost calculation

We are assuming a need for \$16M to pay the extracost of sustainable materials because customers are not ready to pay extracost for sustainable materials. While we believe it is very likely that consumers will request more recyclable products, the probability of this risk has been evaluated "Exceptionally Unlikely" because our Expert Centers and Product Sustainability Team are costantly looking for recyclable and /or circular product solutions to meet customers and markets expectations.

(3.1.1.29) Description of response

We are assuming a need for \$16M to pay the extra cost of sustainable materials because customers are not ready to pay extra cost for sustainable materials. While we believe it is very likely that consumers will request more recyclable products, the probability of this risk has been evaluated "Exceptionally Unlikely" because our Expert Centers and Product Sustainability Team are costantly looking for recyclable and /or circular product solutions to meet customers and markets expectations.

Climate change

(3.1.1.1) Risk identifier

Select from:

✓ Risk9

(3.1.1.3) Risk types and primary environmental risk driver

Market

☑ Lack of availability and/or increased cost of certified sustainable material

(3.1.1.4) Value chain stage where the risk occurs

Select from:

✓ Upstream value chain

(3.1.1.6) Country/area where the risk occurs

✓ United States of America

(3.1.1.9) Organization-specific description of risk

Aptar since year 2019 defined recycled content target with conversion plan based on post consumer recycled resin (4ktons) by 2030. PCR price in 2025 is \$2,200/tons (non food PCR). Incremental cost due to conversion plan in 2030 would be \$2.5M assuming premium price VS conventional 2025. It is likely that by 2030 PCR price premium could increase for additional 20-30% respect baseline premium 2025. PCR premium increase is losely dependent from conventional resin price behaviour. Consequently, Aptar customers could reach their recycled content target converting primary container material, thus slowing down Aptar conversion plan through the economic lever.

(3.1.1.11) Primary financial effect of the risk

Select from:

✓ Increased production costs

(3.1.1.12) Time horizon over which the risk is anticipated to have a substantive effect on the organization

Select all that apply

- **✓** Short-term
- ✓ Medium-term
- ✓ Long-term

(3.1.1.13) Likelihood of the risk having an effect within the anticipated time horizon

Select from:

✓ Unlikely

(3.1.1.14) Magnitude

Select from:

✓ Medium

(3.1.1.16) Anticipated effect of the risk on the financial position, financial performance and cash flows of the organization in the selected future time horizons

Aptar since year 2019 defined recycled content target with conversion plan based on post consumer recycled resin (4ktons) by 2030. PCR price in 2025 is \$2,200/tons (non food PCR). Incremental cost due to conversion plan in 2030 would be \$2.5M assuming premium price VS conventional 2025. It is likely that by 2030 PCR price premium could increase for additional 20-30% respect baseline premium 2025. PCR premium increase is losely dependent from conventional resin price behaviour. Consequently, Aptar customers could reach their recycled content target converting primary container material, thus slowing down Aptar conversion plan through the economic lever. Min $(4,000 \text{ tons } x \$2.2\text{k/tons}) + 20\% = \$10\text{M} - \$6\text{M} = \$4\text{M} \rightarrow \text{inflaction cost Max} (4,000 \text{ tons } x \$2.2\text{k/tons}) + 30\% = \$11\text{M} - \$6\text{M} = \$5\text{M} \rightarrow \text{inflaction cost}$

(3.1.1.17) Are you able to quantify the financial effect of the risk?

Select from:

✓ Yes

(3.1.1.19) Anticipated financial effect figure in the short-term – minimum (currency)

4000000

(3.1.1.20) Anticipated financial effect figure in the short-term – maximum (currency)

5000000

(3.1.1.21) Anticipated financial effect figure in the medium-term – minimum (currency)

4000000

(3.1.1.22) Anticipated financial effect figure in the medium-term – maximum (currency)

5000000

(3.1.1.23) Anticipated financial effect figure in the long-term – minimum (currency)

4000000

(3.1.1.24) Anticipated financial effect figure in the long-term – maximum (currency)

5000000

(3.1.1.25) Explanation of financial effect figure

Aptar since year 2019 defined recycled content target with conversion plan based on post consumer recycled resin (4ktons) by 2030. PCR price in 2025 is \$2,200/tons (non food PCR). Incremental cost due to conversion plan in 2030 would be \$2.5M assuming premium price VS conventional 2025. It is likely that by 2030 PCR price premium could increase for additional 20-30% respect baseline premium 2025. PCR premium increase is losely dependent from conventional resin price behaviour. Consequently, Aptar customers could reach their recycled content target converting primary container material, thus slowing down Aptar conversion plan through the economic lever. Min $(4,000 \text{ tons } x \$2.2\text{k/tons}) + 20\% = \$10\text{M} - \$6\text{M} = \$4\text{M} \rightarrow \text{inflaction cost Max} (4,000 \text{ tons } x \$2.2\text{k/tons}) + 30\% = \$11\text{M} - \$6\text{M} = \$5\text{M} \rightarrow \text{inflaction cost}$

(3.1.1.26) Primary response to risk

Diversification

✓ Increase supplier diversification

(3.1.1.27) Cost of response to risk

1000000

(3.1.1.28) Explanation of cost calculation

As part of our sustainability business strategy, Access to production tools and material testing \$0.6M - \$1.0M. As part of our sustainability business strategy, Aptar's response to this risk consists of suppliers/materials diversification and secure volume in advance reducing the risk of price volatility. More in accuracy we are also investigating the use of biofeedstock raw materials that could be subject to less price volatility respect post consumer recycled content. While we believe it is virtually certain that the cost of PCR will increase, the probability of this risk has been evaluated "Unlikely" because we either pass through the increase cost materials to customers or not convert products to PCR materials.

(3.1.1.29) Description of response

As part of our sustainability business strategy, Access to production tools and material testing \$0.6M - \$1.0M. As part of our sustainability business strategy, Aptar's response to this risk consists of suppliers/materials diversification and secure volume in advance reducing the risk of price volatility. More in accuracy we are also investigating the use of biofeedstock raw materials that could be subject to less price volatility respect post consumer recycled content. While we believe it is virtually certain that the cost of PCR will increase, the probability of this risk has been evaluated "Unlikely" because we either pass through the increase cost materials to customers or not convert products to PCR materials.

Climate change

(3.1.1.1) Risk identifier

Select from:

✓ Risk10

(3.1.1.3) Risk types and primary environmental risk driver

Liability

✓ Non-compliance with legislation

(3.1.1.4) Value chain stage where the risk occurs

Select from:

✓ Direct operations

(3.1.1.6) Country/area where the risk occurs

Select all that apply

✓ Czechia

✓ France

✓ Germany

✓ Italy

✓ Spain

(3.1.1.9) Organization-specific description of risk

Government regulations may require restrictions for the use of commodities from forest use (for example wood). Although the regulation proposal is not entirely defined and clear at this time, it is possible Aptar will need to consider an increase in compliance costs due to the dependency on forest risk commodities exposed to jurisdictions with regulatory restrictions. Specific regulatory case is based on the EUDR, it will require many economic operators to carry out a rigorous analysis of their supply chains to guarantee that the products they introduce into the market, or export, do not contribute to deforestation or forest degradation and that they are obtained and produced with full respect for the regulations of the countries of origin. In terms of financial impact, the worst case is based on the sanctioning regime with fines amounting to 4% of the company's turnover in the EU.

(3.1.1.11) Primary financial effect of the risk

Select from:

✓ Fines, penalties or enforcement orders

(3.1.1.12) Time horizon over which the risk is anticipated to have a substantive effect on the organization

Select all that apply

- **✓** Short-term
- ✓ Medium-term
- **✓** Long-term

(3.1.1.13) Likelihood of the risk having an effect within the anticipated time horizon

Select from:

✓ Very unlikely

(3.1.1.14) Magnitude

Select from:

✓ High

(3.1.1.16) Anticipated effect of the risk on the financial position, financial performance and cash flows of the organization in the selected future time horizons

Government regulations may require restrictions for the use of commodities from forest use (for example wood). Although the regulation proposal is not entirely defined and clear at this time, it is possible Aptar will need to consider an increase in compliance costs due to the dependency on forest risk commodities exposed to jurisdictions with regulatory restrictions. Specific regulatory case is based on the EUDR, it will require many economic operators to carry out a rigorous analysis of their supply chains to guarantee that the products they introduce into the market, or export, do not contribute to deforestation or forest degradation and that they are obtained and produced with full respect for the regulations of the countries of origin. In terms of financial impact, the worst case is based on the sanctioning regime with fines amounting to 4% of the company's turnover in the EU.

(3.1.1.17) Are you able to quantify the financial effect of the risk?

Select from:

Yes

(3.1.1.19) Anticipated financial effect figure in the short-term – minimum (currency)

(3.1.1.20) Anticipated financial effect figure in the short-term – maximum (currency)

15000000

(3.1.1.21) Anticipated financial effect figure in the medium-term – minimum (currency)

15000000

(3.1.1.22) Anticipated financial effect figure in the medium-term – maximum (currency)

15000000

(3.1.1.23) Anticipated financial effect figure in the long-term – minimum (currency)

15000000

(3.1.1.24) Anticipated financial effect figure in the long-term – maximum (currency)

15000000

(3.1.1.25) Explanation of financial effect figure

Government regulations may require restrictions for the use of commodities from forest use (for example wood). Although the regulation proposal is not entirely defined and clear at this time, it is possible Aptar will need to consider an increase in compliance costs due to the dependency on forest risk commodities exposed to jurisdictions with regulatory restrictions. Specific regulatory case is based on the EUDR, it will require many economic operators to carry out a rigorous analysis of their supply chains to guarantee that the products they introduce into the market, or export, do not contribute to deforestation or forest degradation and that they are obtained and produced with full respect for the regulations of the countries of origin. In terms of financial impact, the worst case is based on the sanctioning regime with fines amounting to 4% of the company's turnover in the EU. Aptar EU turnover 2024 \rightarrow \$374M 4% fines \rightarrow \$15M While we believe it is very likely that the mandates on and regulations will be confirmed by EU commission, the probability of this risk has been evaluated "Unlikely" because we either pass through the upstream value chain the use of sustainable commodities in compliance with EUDR requirements (for example appropriate third party certification about forest management certification for wooden products) or not produce packaging with forest risk commodities exposure.

(3.1.1.26) Primary response to risk

Policies and plans

☑ Increased use of sustainably sourced materials

(3.1.1.27) Cost of response to risk

1000000

(3.1.1.28) Explanation of cost calculation

We are assuming a need for \$0.6M - \$1.0M to upgrade eco-design software to support our packaging products with wood

(3.1.1.29) Description of response

As mitigation process, we have identified the management of internal regulatory system that can ensure regulatory compliance. The primary response to risk has been evaluated very effective in order to prevent the risk identified, improving organization's resilience about new law and regulatory requirements for the sustainability aspects. We are assuming a need for \$0.6M - \$1.0M to upgrade eco-design software to support our packaging products with wood

Climate change

(3.1.1.1) Risk identifier

Select from:

☑ Risk11

(3.1.1.3) Risk types and primary environmental risk driver

Acute physical

✓ Cyclone, hurricane, typhoon

(3.1.1.4) Value chain stage where the risk occurs

Select from:

✓ Direct operations

(3.1.1.6) Country/area where the risk occurs

Select all that apply

✓ China

✓ Indonesia

✓ India

✓ United States of America

✓ Italy

✓ France

✓ Mexico

(3.1.1.9) Organization-specific description of risk

In the latest years we are more and more challenging with an increas of severity levels related to the extreme weather events, many countries and regions are involved. The main risk is related to the delay in production and operations from supply chain disruptions, for example the delivery of raw materials and/or finished products due to the disruption of transportation routes. This risk, from Aptar point of view, has been quantified with a business interruptions calculation starting from WWF Biodiversity Risk Filter tool on which has been analyzed high-risk sites for tropical cyclones, fire hazard, and landslides. The average business interruption has been assumed for maximum 4 weeks.

(3.1.1.11) Primary financial effect of the risk

Select from:

☑ Disruption in production capacity

(3.1.1.12) Time horizon over which the risk is anticipated to have a substantive effect on the organization

Select all that apply

✓ Short-term

✓ Medium-term

✓ Long-term

(3.1.1.13) Likelihood of the risk having an effect within the anticipated time horizon

Select from:

✓ Very unlikely

(3.1.1.14) Magnitude

Select from:

✓ High

(3.1.1.16) Anticipated effect of the risk on the financial position, financial performance and cash flows of the organization in the selected future time horizons

In the latest years we are more and more challenging with an increas of severity levels related to the extreme weather events, many countries and regions are involved. The main risk is related to the delay in production and operations from supply chain disruptions, for example the delivery of raw materials and/or finished products due to the disruption of transportation routes. This risk, from Aptar point of view, has been quantified with a business interruptions calculation starting from WWF Biodiversity Risk Filter tool on which has been analyzed high-risk sites for tropical cyclones, fire hazard, and landslides. The average business interruption has been assumed for maximum 4 weeks. Total business interruption value for 29 operations located in very high risk areas is: \$2.6M x 30 days = \$78M While we believe it is likely that the increase of severity of extreme weather events can be present, the probability of this risk has been evaluated "Very Unlikely" because we have implemented procedures to reduce the risk thanks to the dual sourcing and buffer stock strategy.

(3.1.1.17) Are you able to quantify the financial effect of the risk?

Select from:

✓ Yes

(3.1.1.19) Anticipated financial effect figure in the short-term – minimum (currency)

78000000

(3.1.1.20) Anticipated financial effect figure in the short-term – maximum (currency)

78000000

(3.1.1.21) Anticipated financial effect figure in the medium-term – minimum (currency)

78000000

(3.1.1.22) Anticipated financial effect figure in the medium-term – maximum (currency)

78000000

(3.1.1.23) Anticipated financial effect figure in the long-term – minimum (currency)

(3.1.1.24) Anticipated financial effect figure in the long-term – maximum (currency)

78000000

(3.1.1.25) Explanation of financial effect figure

In the latest years we are more and more challenging with an increase of severity levels related to the extreme weather events, many countries and regions are involved. The main risk is related to the delay in production and operations from supply chain disruptions, for example the delivery of raw materials and/or finished products due to the disruption of transportation routes. This risk, from Aptar point of view, has been quantified with a business interruptions calculation starting from WWF Biodiversity Risk Filter tool on which has been analyzed 35 high-risk sites for tropical cyclones, fire hazard, and landslides. The average business interruption has been assumed for maximum 4 weeks. Total business interruption value for 29 operations located in very high risk areas is: \$2.6M x 30 days = \$78M While we believe it is likely that the increase of severity of extreme weather events can be present, the probability of this risk has been evaluated "Very Unlikely" because we have implemented procedures to reduce the risk thanks to the dual sourcing and buffer stock strategy.

(3.1.1.26) Primary response to risk

Infrastructure, technology and spending

✓ Improve maintenance of infrastructure

(3.1.1.27) Cost of response to risk

1000000

(3.1.1.28) Explanation of cost calculation

We are assuming a need for \$0.6M - \$1.0M to manage the dual sourcing monitoring with internal tool and team work.

(3.1.1.29) Description of response

As mitigation process, we have identified the improvement of maintenance for the infrastructure in our operations.management. We are assuming a need for \$0.6M - \$1.0M to manage the dual sourcing monitoring with internal tool and team work.

Climate change

(3.1.1.1) Risk identifier

Select from:

✓ Risk7

(3.1.1.3) Risk types and primary environmental risk driver

Market

✓ Changing customer behavior

(3.1.1.4) Value chain stage where the risk occurs

Select from:

✓ Downstream value chain

(3.1.1.6) Country/area where the risk occurs

Select all that apply

✓ China

✓ Indonesia

- ✓ India
- ✓ Mexico
- ✓ Colombia
- ✓ Thailand

(3.1.1.9) Organization-specific description of risk

This risk is specific referring to Changing customer behaviors (consumers begin opting for more recyclable products). Environmental sustainability for packaging sector is a crucial aspect, so, it is very likely that our customers and end-users will be more orientated to choose responsible products for planet and people in the next 10 years. In case Aptar is not able to satisfy this new market need, will be very likely to have a decrease sales revenue due to low demand.

(3.1.1.11) Primary financial effect of the risk

Select from:

✓ Disruption to sales

(3.1.1.12) Time horizon over which the risk is anticipated to have a substantive effect on the organization

Select all that apply

- **✓** Short-term
- ✓ Medium-term
- **✓** Long-term

(3.1.1.13) Likelihood of the risk having an effect within the anticipated time horizon

Select from:

✓ Exceptionally unlikely

(3.1.1.14) Magnitude

Select from:

✓ High

(3.1.1.16) Anticipated effect of the risk on the financial position, financial performance and cash flows of the organization in the selected future time horizons

Assuming that Beauty and Closure customers are affected due to switch to packaging product with higher recyclability as will be requested by laws and markets: Global Aptar Beauty sales revenue in LATAM, NEA, SEA \rightarrow \$99.9M Global Aptar Closure sales revenue in LATAM, NEA, SEA \rightarrow \$50M Total Aptar Beauty and Closure sales revenue \rightarrow \$149M The worst case is that global regulatory aspects on sustainable packaging will drive markets and will change customers behaviours to more recyclable solutions, so, if we will not satisfy this request in terms of packaging recyclability, the worst case risk is to loose 70% of total Beauty and Closure sales revenues in LATAM, SEA and NEA Total Aptar sales revenue loss \rightarrow \$149M*70%=\$104M

(3.1.1.17) Are you able to quantify the financial effect of the risk?

Select from:

✓ Yes

(3.1.1.19) Anticipated financial effect figure in the short-term – minimum (currency)

104000000

(3.1.1.20) Anticipated financial effect figure in the short-term – maximum (currency)

104000000

(3.1.1.21) Anticipated financial effect figure in the medium-term – minimum (currency)

104000000

(3.1.1.22) Anticipated financial effect figure in the medium-term – maximum (currency)

104000000

(3.1.1.23) Anticipated financial effect figure in the long-term – minimum (currency)

104000000

(3.1.1.24) Anticipated financial effect figure in the long-term – maximum (currency)

104000000

(3.1.1.25) Explanation of financial effect figure

Assuming that Beauty and Closure customers are affected due to switch to packaging product with higher recyclability as will be requested by laws and markets: Global Aptar Beauty sales revenue in LATAM, NEA, SEA \rightarrow \$99.9M Global Aptar Closure sales revenue in LATAM, NEA, SEA \rightarrow \$50M Total Aptar Beauty and Closure sales revenue \rightarrow \$149M The worst case is that global regulatory aspects on sustainable packaging will drive markets and will change customers behaviours to more recyclable solutions, so, if we will not satisfy this request in terms of packaging recyclability, the worst case risk is to loose 70% of total Beauty and Closure sales revenues in LATAM. SEA and NEA Total Aptar sales revenue loss \rightarrow \$149M*70%=\$104M

(3.1.1.26) Primary response to risk

Policies and plans

✓ Develop a circular economy plan

(3.1.1.27) Cost of response to risk

1000000

(3.1.1.28) Explanation of cost calculation

We are assuming a need for \$0.6M - \$1.0M to upgrade software for eco design, external support and reyclability testing on the product. While we believe it is very likely that consumers will request more recyclable products, the probability of this risk has been evaluated "Exceptionally Unlikely" because our Expert Centers and Product Sustainability Team are costantly looking for recyclable and /or circular product solutions to meet customers and markets expectations.

(3.1.1.29) Description of response

We are assuming a need for \$0.6M - \$1.0M to upgrade software for eco design, external support and reyclability testing on the product. While we believe it is very likely that consumers will request more recyclable products, the probability of this risk has been evaluated "Exceptionally Unlikely" because our Expert Centers and Product Sustainability Team are costantly looking for recyclable and /or circular product solutions to meet customers and markets expectations.

[Add row]

(3.1.2) Provide the amount and proportion of your financial metrics from the reporting year that are vulnerable to the substantive effects of environmental risks.

Climate change

(3.1.2.1) Financial metric

Select from:

✓ Revenue

(3.1.2.2) Amount of financial metric vulnerable to transition risks for this environmental issue (unit currency as selected in 1.2)

1391000000

(3.1.2.3)~% of total financial metric vulnerable to transition risks for this environmental issue

Select from:

✓ 31-40%

(3.1.2.4) Amount of financial metric vulnerable to physical risks for this environmental issue (unit currency as selected in 1.2)

(3.1.2.5) % of total financial metric vulnerable to physical risks for this environmental issue

Select from:

✓ Less than 1%

(3.1.2.7) Explanation of financial figures

Environmental sustainability for packaging sector is a crucial aspect, so, it is very likely that our customers and end-users will be more orientated to choose responsible products for planet and people in the next 10 years. In case Aptar is not able to satisfy this new market need, will be very likely to have a decrease sales revenue due to low demand. Aptar has two business scenarios which could impacts the revenue. Scenario 1 when consumers begin opting for more recyclable products. Assuming that Beauty and Closure customers are affected due to switch to packaging product with higher recyclability as will be requested by laws and markets: Global Aptar Beauty sales revenue in LATAM, NEA, SEA → \$99.9M Global Aptar Closure sales revenue in LATAM, NEA, SEA → \$50M Total Aptar Beauty and Closure sales revenue → \$149M The worst case is that global regulatory aspects on sustainable packaging will drive markets and will change customers behaviours to more recyclable solutions, so, if we will not satisfy this request in terms of packaging recyclability, the worst case risk is to loose 70% of total Beauty and Closure sales revenues in LATAM, SEA and NEA Total Aptar sales revenue loss → \$149M*70%=\$104M Scenario 2 when consumers begin opting for lower emission products options. Assuming that Beauty and Closure customers are affected due to switch to packaging product with lower emissions as will be requested by laws and markets: Global Aptar Beauty sales revenue → \$1,227M Global Aptar Closure sales revenue → \$611M Total Aptar Beauty and Closure sales revenue → \$1,838M The worst case is that global regulatory aspects on sustainable packaging will drive markets and will change customers behaviours to request lower emissions products, so, if we will not satisfy this request in terms of lower emission options, the worst case risk is to loose 70% of total Beauty and Closure sales revenues. Total Aptar sales revenue loss → \$1,838M*70%= \$1,287M Therefore, the two business scenarios could have an estimated impact of approximatel

Water

(3.1.2.1) Financial metric

Select from:

Revenue

(3.1.2.2) Amount of financial metric vulnerable to transition risks for this environmental issue (unit currency as selected in 1.2)

0

(3.1.2.3)~% of total financial metric vulnerable to transition risks for this environmental issue

Select from:

✓ Less than 1%

(3.1.2.4) Amount of financial metric vulnerable to physical risks for this environmental issue (unit currency as selected in 1.2)

18000000

(3.1.2.5) % of total financial metric vulnerable to physical risks for this environmental issue

Select from:

✓ Less than 1%

(3.1.2.7) Explanation of financial figures

The total estimated financial impact from the following scenario is 18M representing less than 1% of our total revenue (Aptar's 2024 revenue was \$3,582,890,000). In the latest years we are more and more challenging with water scarcity events, many countries and regions are involved. The main risk is related to the delay in production and operations from the stop of production processes, for example the water scarcity for cooling molds. This risk, from Aptar point of view, has been quantified with a business interruptions calculation starting from WWF Biodiversity Risk Filter tool on which has been analyzed 8 high-risk sites for water scarcity and drought. The average business interruption has been assumed for maximum 4 weeks. Total business interruption value for 8 operations is: \$0.6M x 30 days = \$18M While we believe it is likely that the increase of water scarcity can be present, the probability of this risk has been evaluated "Very Unlikely" because we have implemented procedures to maximize the water efficiency and water reuse/recycling practices reducing the risk.

Climate change

(3.1.2.1) Financial metric

Select from:

✓ Liabilities

(3.1.2.2) Amount of financial metric vulnerable to transition risks for this environmental issue (unit currency as selected in 1.2)

132000000

(3.1.2.3)~% of total financial metric vulnerable to transition risks for this environmental issue

Select from:

✓ 1-10%

(3.1.2.4) Amount of financial metric vulnerable to physical risks for this environmental issue (unit currency as selected in 1.2)

(3.1.2.5) % of total financial metric vulnerable to physical risks for this environmental issue

Select from:

✓ Less than 1%

(3.1.2.7) Explanation of financial figures

The total estimated financial impact from the following scenarios is 132M representing around 4% of our total revenue (Aptar's 2024 revenue was \$3,582,890,000) Scenario 1 on Packaging and Packaging Waste Directive. In 2024 Aptar calculated that 33,160 tons of total plastic packaging cannot be recycled (excluding Pharma products which are not currently in our recyclability disclosure). The average cost for collection and sorting is \$421 USD/ton (source: EPR document - page 9). Therefore, we estimate that the EPR scheme can impact Aptar with indirect cost of: \$421 x 33,160 tons = \$13M. Scenario 2 on Tax on conventional plastics use and single use plastic packaging At the moment Italy and Spain approved this directive with a mandatory tax of 450\$ per tons of single use plastic packaging product. We can assume that also other EU countries will follow the same approach, so, considering Closure and Beauty EMEA products as single use packaging and/or not recycled content minimum, emerged that about 58k tons of Aptar products (41k tons for Beauty EMEA and 17k tons for Closure EMEA) could fall in this tax scenario. Total cost for plastic tax in EMEA: (\$450 * 58k tons) = \$26M Scenario 3 on Carbon Pricing Mechanism In the next 8 years it is likely that we can have +20% increase). Direct effect due to emerging ETS 2 regulation: Direct effect EMEA max. \rightarrow Scope 1 emissions \rightarrow (20,106 tons CO2e x \$140/ton) = \$2.8M Direct effect NAM, LATAM, ASIA max. → Scope 1 emissions → (4.554 tons CO2e x \$140/ton) = \$0.6M Indirect effect due to current ETS regulation: Indirect effect ALL REGIONS max. → Scope 3 plastic and metals raw materials emissions → (421,206 tons CO2e x \$140/ton) = \$58M → Total direct and indirect potential financial impact max.→ \$61M Scenario 4 on EU Taxonomy At the moment the financial impact of this risk can be linked to the CSRD non compliance penalty, assuming the worst scenario with the highest penalty up to \$10 M. Scenario 5 on CSDDD In that worst case the CSDDD defined penalties that include fine of up to 5% of companies net worldwide turnover. Aptar Worldwide turnover 2024 → \$374 M 5% fines → \$19 M Scenario 6 on CABAM In terms of CO2 emissions means about 34,084 tons CO2e subject to fines in case of inaccuracies or unreporting in CBAM regulation. Worst case scenario: 34,084 tons CO2e x 100 \$ = \$3M Scenario 7 on EU DR Aptar EU turnover $2024 \rightarrow \$374M \ 4\% \ fines \rightarrow \$15M$

Climate change

(3.1.2.1) Financial metric

Select from:

✓ Revenue

(3.1.2.2) Amount of financial metric vulnerable to transition risks for this environmental issue (unit currency as selected in 1.2)

0

(3.1.2.3) % of total financial metric vulnerable to transition risks for this environmental issue

Select from:

✓ Less than 1%

(3.1.2.4) Amount of financial metric vulnerable to physical risks for this environmental issue (unit currency as selected in 1.2)

78000000

(3.1.2.5) % of total financial metric vulnerable to physical risks for this environmental issue

Select from:

✓ 1-10%

(3.1.2.7) Explanation of financial figures

The total estimated financial impact from the following scenarios is 78M representing around 2% of our total revenue (Aptar's 2024 revenue was \$3,582,890,000). In the latest years we are more and more challenging with an increase of severity levels related to the extreme weather events, many countries and regions are involved. The main risk is related to the delay in production and operations from supply chain disruptions, for example the delivery of raw materials and/or finished products due to the disruption of transportation routes. This risk, from Aptar point of view, has been quantified with a business interruptions calculation starting from WWF Biodiversity Risk Filter tool on which has been analyzed 35 high-risk sites for tropical cyclones, fire hazard, and landslides. The average business interruption has been assumed for maximum 4 weeks. Total business interruption value for 29 operations located in very high risk areas is: \$2.6M x 30 days = \$78M While we believe it is likely that the increase of severity of extreme weather events can be present, the probability of this risk has been evaluated "Very Unlikely" because we have implemented procedures to reduce the risk thanks to the dual sourcing and buffer stock strategy.

Climate change

(3.1.2.1) Financial metric

Select from:

✓ CAPEX

(3.1.2.2) Amount of financial metric vulnerable to transition risks for this environmental issue (unit currency as selected in 1.2)

0

(3.1.2.3)~% of total financial metric vulnerable to transition risks for this environmental issue

Select from:

✓ Less than 1%

(3.1.2.4) Amount of financial metric vulnerable to physical risks for this environmental issue (unit currency as selected in 1.2)

0

(3.1.2.5) % of total financial metric vulnerable to physical risks for this environmental issue

Select from:

✓ Less than 1%

(3.1.2.6) Amount of CAPEX in the reporting year deployed towards risks related to this environmental issue

5000000

(3.1.2.7) Explanation of financial figures

Aptar since year 2019 defined recycled content target with conversion plan based on post consumer recycled resin (4ktons) by 2030. PCR price in 2025 is \$2,200/tons (non food PCR). Incremental cost due to conversion plan in 2030 would be \$2.5M assuming premium price VS conventional 2025. It is likely that by 2030 PCR price premium could increase for additional 20-30% respect baseline premium 2025. PCR premium increase is losely dependent from conventional resin price behaviour. Consequently, Aptar customers could reach their recycled content target converting primary container material, thus slowing down Aptar conversion plan through the economic lever. Min $(4,000 \text{ tons } x \$2.2k/tons) + 20\% = \$10M - \$6M = \$4M \rightarrow \text{inflaction cost } Max (4,000 \text{ tons } x \$2.2k/tons) + 30\% = \$11M - \$6M = \$5M \rightarrow \text{inflaction cost}$ [Add row]

(3.2) Within each river basin, how many facilities are exposed to substantive effects of water-related risks, and what percentage of your total number of facilities does this represent?

Row 1

Spain

☑ Other, please specify :Mediterranean Sea

(3.2.2) Value chain stages where facilities at risk have been identified in this river basin

Select all that apply

☑ Direct operations

(3.2.3) Number of facilities within direct operations exposed to water-related risk in this river basin

1

(3.2.4) % of your organization's total facilities within direct operations exposed to water-related risk in this river basin

Select from:

✓ 1-25%

(3.2.10) % organization's total global revenue that could be affected

Select from:

✓ 1-10%

(3.2.11) Please explain

We have identified one Aptar site in the Mediterrean Sea river basin that is impacted by water risks in our direct operations with the potential to have a substantive impact on our business. This site manufacture closures with plastics sourced from our suppliers and are important for us because their continued functioning is key to ensuring business continuity at many of our B2B customers. The percentage of our global revenue that could be affected is estimated and depends on a range of factors such as the impact type, magnitude and duration, as well as the unique nature of the knock-on impacts on our B2B customers from partial or full site closure. The main risk driver is linked to the water scarcity (drought) with medium-high severity. Considering the nature of the risk, the main problem is related to the stop of injection molding cooling process that can have an impact on the overall business. Potential financial impact has been estimated taking into consideration the average gross business interruption value for 2 weeks in sites located in water stressed areas.

Row 2

✓ Amur

(3.2.2) Value chain stages where facilities at risk have been identified in this river basin

Select all that apply

☑ Direct operations

(3.2.3) Number of facilities within direct operations exposed to water-related risk in this river basin

1

(3.2.4) % of your organization's total facilities within direct operations exposed to water-related risk in this river basin

Select from:

✓ 1-25%

(3.2.10) % organization's total global revenue that could be affected

Select from:

✓ 1-10%

(3.2.11) Please explain

We have identified one Aptar site in the Amur river basin that are impacted by water risks in our direct operations with the potential to have a substantive impact on our business. These sites manufacture closures with plastics sourced from our suppliers and are important for us because their continued functioning is key to ensuring business continuity at many of our B2B customers. The percentage of our global revenue that could be affected is estimated and depends on a range of factors such as the impact type, magnitude and duration, as well as the unique nature of the knock-on impacts on our B2B customers from partial or full site closure. The main risk driver is linked to the water scarcity (drought) with medium-high severity. Considering the nature of the risk, the main problem is related to the stop of injection molding cooling process that can have an impact on the overall business. Potential financial impact has been estimated taking into consideration the average gross business interruption value for 2 weeks in sites located in water stressed areas.

Row 3

China

✓ Huang He (Yellow River)

(3.2.2) Value chain stages where facilities at risk have been identified in this river basin

Select all that apply

☑ Direct operations

(3.2.3) Number of facilities within direct operations exposed to water-related risk in this river basin

1

(3.2.4) % of your organization's total facilities within direct operations exposed to water-related risk in this river basin

Select from:

✓ 1-25%

(3.2.10) % organization's total global revenue that could be affected

Select from:

✓ 1-10%

(3.2.11) Please explain

We have identified one Aptar site in the Yellow Sea and East China Sea river basin that are impacted by water risks in our direct operations with the potential to have a substantive impact on our business. These sites manufacture closures with plastics sourced from our suppliers and are important for us because their continued functioning is key to ensuring business continuity at many of our B2B customers. The percentage of our global revenue that could be affected is estimated and depends on a range of factors such as the impact type, magnitude and duration, as well as the unique nature of the knock-on impacts on our B2B customers from partial or full site closure. The main risk driver is linked to the water scarcity (drought) with medium-high severity. Considering the nature of the risk, the main problem is related to the stop of injection molding cooling process that can have an impact on the overall business. Potential financial impact has been estimated taking into consideration the average gross business interruption value for 2 weeks in sites located in water stressed areas.

Row 4

Thailand

☑ Other, please specify :Gulf of Thailand

(3.2.2) Value chain stages where facilities at risk have been identified in this river basin

Select all that apply

☑ Direct operations

(3.2.3) Number of facilities within direct operations exposed to water-related risk in this river basin

1

(3.2.4) % of your organization's total facilities within direct operations exposed to water-related risk in this river basin

Select from:

✓ 1-25%

(3.2.10) % organization's total global revenue that could be affected

Select from:

✓ 1-10%

(3.2.11) Please explain

We have identified one Aptar site in the Gulf of Thailand river basin that are impacted by water risks in our direct operations with the potential to have a substantive impact on our business. These sites manufacture closures with plastics sourced from our suppliers and are important for us because their continued functioning is key to ensuring business continuity at many of our B2B customers. The percentage of our global revenue that could be affected is estimated and depends on a range of factors such as the impact type, magnitude and duration, as well as the unique nature of the knock-on impacts on our B2B customers from partial or full site closure. The main risk driver is linked to the water scarcity (drought) with medium-high severity. Considering the nature of the risk, the main problem is related to the stop of injection molding cooling process that can have an impact on the overall business. Potential financial impact has been estimated taking into consideration the average gross business interruption value for 2 weeks in sites located in water stressed areas.

Row 5

Italy

☑ Other, please specify :Adriatic Sea

(3.2.2) Value chain stages where facilities at risk have been identified in this river basin

Select all that apply

☑ Direct operations

(3.2.3) Number of facilities within direct operations exposed to water-related risk in this river basin

2

(3.2.4) % of your organization's total facilities within direct operations exposed to water-related risk in this river basin

Select from:

✓ 1-25%

(3.2.10) % organization's total global revenue that could be affected

Select from:

✓ 1-10%

(3.2.11) Please explain

We have identified two Aptar sites in the Adriatic Sea river basin that are impacted by water risks in our direct operations with the potential to have a substantive impact on our business. These sites manufacture closures with plastics sourced from our suppliers and are important for us because their continued functioning is key to ensuring business continuity at many of our B2B customers. The percentage of our global revenue that could be affected is estimated and depends on a range of factors such as the impact type, magnitude and duration, as well as the unique nature of the knock-on impacts on our B2B customers from partial or full site closure. The main risk driver is linked to the water scarcity (drought) with medium-high severity. Considering the nature of the risk, the main problem is related to the stop of injection molding cooling process that can have an impact on the overall business. Potential financial impact has been estimated taking into consideration the average gross business interruption value for 2 weeks in sites located in water stressed areas.

Row 6

India

☑ Other, please specify :Bay of Bengal

(3.2.2) Value chain stages where facilities at risk have been identified in this river basin

Select all that apply

☑ Direct operations

(3.2.3) Number of facilities within direct operations exposed to water-related risk in this river basin

1

(3.2.4) % of your organization's total facilities within direct operations exposed to water-related risk in this river basin

Select from:

✓ 1-25%

(3.2.10) % organization's total global revenue that could be affected

Select from:

✓ 1-10%

(3.2.11) Please explain

We have identified one Aptar site in the Bay of Bengal river basin that are impacted by water risks in our direct operations with the potential to have a substantive impact on our business. These sites manufacture closures with plastics sourced from our suppliers and are important for us because their continued functioning is key to ensuring business continuity at many of our B2B customers. The percentage of our global revenue that could be affected is estimated and depends on a range of factors such as the impact type, magnitude and duration, as well as the unique nature of the knock-on impacts on our B2B customers from partial or full site closure. The main risk driver is linked to the water scarcity (drought) with medium-high severity. Considering the nature of the risk, the main problem is related to the stop of injection molding cooling process that can have an impact on the overall business. Potential financial impact has been estimated taking into consideration the average gross business interruption value for 2 weeks in sites located in water stressed areas.

Row 7

Mexico

✓ Colorado River (Pacific Ocean)

(3.2.2) Value chain stages where facilities at risk have been identified in this river basin

Select all that apply

☑ Direct operations

(3.2.3) Number of facilities within direct operations exposed to water-related risk in this river basin

1

(3.2.4) % of your organization's total facilities within direct operations exposed to water-related risk in this river basin

Select from:

✓ 1-25%

(3.2.10) % organization's total global revenue that could be affected

Select from:

✓ 1-10%

(3.2.11) Please explain

We have identified one Aptar site in theNorth Pacific river basin that are impacted by water risks in our direct operations with the potential to have a substantive impact on our business. These sites manufacture closures with plastics sourced from our suppliers and are important for us because their continued functioning is key to ensuring business continuity at many of our B2B customers. The percentage of our global revenue that could be affected is estimated and depends on a range of factors such as the impact type, magnitude and duration, as well as the unique nature of the knock-on impacts on our B2B customers from partial or full site closure. The main risk driver is linked to the water scarcity (drought) with medium-high severity. Considering the nature of the risk, the main problem is related to the stop of injection molding cooling process that can have an impact on the overall business. Potential financial impact has been estimated taking into consideration the average gross business interruption value for 2 weeks in sites located in water stressed areas.

Row 8

Brazil

☑ Other, please specify: North Pacific

(3.2.2) Value chain stages where facilities at risk have been identified in this river basin

Select all that apply

☑ Direct operations

(3.2.3) Number of facilities within direct operations exposed to water-related risk in this river basin

1

(3.2.4) % of your organization's total facilities within direct operations exposed to water-related risk in this river basin

Select from:

✓ 1-25%

(3.2.10) % organization's total global revenue that could be affected

Select from:

✓ 1-10%

(3.2.11) Please explain

We have identified one Aptar site in the North Pacific river basin that are impacted by water risks in our direct operations with the potential to have a substantive impact on our business. These sites manufacture closures with plastics sourced from our suppliers and are important for us because their continued functioning is key to ensuring business continuity at many of our B2B customers. The percentage of our global revenue that could be affected is estimated and depends on a range of factors such as the impact type, magnitude and duration, as well as the unique nature of the knock-on impacts on our B2B customers from partial or full site closure. The main risk driver is linked to the water scarcity (drought) with medium-high severity. Considering the nature of the risk, the main problem is related to the stop of injection molding cooling process that can have an impact on the overall business. Potential financial impact has been estimated taking into consideration the average gross business interruption value for 2 weeks in sites located in water stressed areas.

[Add row]

(3.3) In the reporting year, was your organization subject to any fines, enforcement orders, and/or other penalties for water-related regulatory violations?

Water-related regulatory violations	Comment
Select from: ✓ No	no fines or enforcement during reporting year

[Fixed row]

(3.5) Are any of your operations or activities regulated by a carbon pricing system (i.e. ETS, Cap & Trade or Carbon Tax)?

Select from:

☑ No, but we anticipate being regulated in the next three years

(3.5.4) What is your strategy for complying with the systems you are regulated by or anticipate being regulated by?

Our internal team dedicated to the regulatory risk management strategy is investigating options for compliance to possible carbon pricing scenarios that could effect directly Aptar activities (for example the CBAM regulation, more probably, will define a carbon tax on the import of semi-finished components made in aluminum from non EU countries). The actions under investigation are mostly based on the emissions reductions strategies, efficiency upgrades along value chain, and the purchase of carbon credits. For example, in the latest years our team completed scenario analyses including focus on the carbon pricing. Scenario analysis is a process for identifying and assessing the potential implications of a range of plausible future states under conditions of uncertainty. The main goal of the scenario analysis is to disclose how resilient, qualitatively or directionally, Aptar 's strategy and financial plans consider a range of relevant climate change scenarios integrated into the overall Enterprise Risk Management process from carbon pricing point of view.

(3.6) Have you identified any environmental opportunities which have had a substantive effect on your organization in the reporting year, or are anticipated to have a substantive effect on your organization in the future?

Climate change

(3.6.1) Environmental opportunities identified

Select from:

✓ Yes, we have identified opportunities, and some/all are being realized

Water

(3.6.1) Environmental opportunities identified

Select from:

✓ No

(3.6.2) Primary reason why your organization does not consider itself to have environmental opportunities

Select from:

☑ Opportunities exist, but none anticipated to have a substantive effect on organization

(3.6.3) Please explain

We have realized an opportunity in our Brazilian site in the South Atlantic river basin. The opportunity is related to the implementation of a closed loop system to treat and reuse wastewater coming from the anodizing process for aluminum components. This solution can have strategic impact thanks to the increase of efficiency level in our Brazilian operation and can have financial impact related to the decrease of wastewater disposal and water withdrawn. The benefit can be applied to Brazilian site related to anodizing process for aluminum components. From opportunity point of view, the concept of substantive impact can be linked to the strategy and actions to limit the decrease of our profits with high efficiency of our processes in operations. For example the development of new technology to adopt closed loop system and reuse system for water can have benefit with less cost to manage wastewater disposal and can ensure water saving of approximately 4.3 megaliters per month. In the current year Aptar has investigated steps to realize the opportunity and is expected to realize the opportunity by 2026.

[Fixed row]

(3.6.1) Provide details of the environmental opportunities identified which have had a substantive effect on your organization in the reporting year, or are anticipated to have a substantive effect on your organization in the future.

Climate change

(3.6.1.1) Opportunity identifier

Select from:

☑ Opp1

(3.6.1.3) Opportunity type and primary environmental opportunity driver

Resource efficiency

✓ Move to more energy/resource efficient buildings

(3.6.1.4) Value chain stage where the opportunity occurs

Select from:

☑ Direct operations

(3.6.1.5) Country/area where the opportunity occurs

Select all that apply

- **✓** France
- ✓ Germany
- **Italy**
- ✓ Spain
- ✓ United States of America

(3.6.1.8) Organization specific description

Assumes Aptar decides to move to more efficient buildings (10 - 13 existing Aptar manufacturing replaced by new plant). Our estimation is based on a real example, Aptar site "Granville 2", for which we have built a new facility in alignment to LEED standard. This energy efficient building is expected to generate annual energy savings of 10% as compared to the former facility.

(3.6.1.9) Primary financial effect of the opportunity

Select from:

✓ Reduced direct costs

(3.6.1.10) Time horizon over which the opportunity is anticipated to have a substantive effect on the organization

Select all that apply

✓ Short-term

✓ Medium-term
✓ Long-term
(3.6.1.11) Likelihood of the opportunity having an effect within the anticipated time horizon
Select from:
✓ Likely (66–100%)
(3.6.1.12) Magnitude
(3.0.1.12) Wagiittude
Select from:
✓ Medium
(3.6.1.14) Anticipated effect of the opportunity on the financial position, financial performance and cash flows of the
organization in the selected future time horizons
The implementation of energy conservation measures and the design of new plant can ensure the reduction of direct and indirect costs related to the life cycle of the plant. In terms of cash flow we can estimate less energy cost and maintenance cost.
(3.6.1.15) Are you able to quantify the financial effects of the opportunity?
Select from:
✓ Yes
(3.6.1.17) Anticipated financial effect figure in the short-term - minimum (currency)
(3.0.1.17) Anticipated imancial effect figure in the short-term - minimum (currency)
4800000
(3.6.1.18) Anticipated financial effect figure in the short-term – maximum (currency)
600000

(3.6.1.19) Anticipated financial effect figure in the medium-term - minimum (currency)

(3.6.1.20) Anticipated financial effect figure in the medium-term - maximum (currency)

6000000

(3.6.1.21) Anticipated financial effect figure in the long-term - minimum (currency)

4800000

(3.6.1.22) Anticipated financial effect figure in the long-term – maximum (currency)

6000000

(3.6.1.23) Explanation of financial effect figures

Assumes Aptar decides to move to more efficient buildings (8 - 10 existing Aptar manufacturing plants replaced by new builds). Our estimates are solely based on Aptar's newly completed sites, "Granville 2" and "Queretaro 2". These new facilities align with the LEED standard. We expect the new energy-efficient buildings to save \sim \$0.6M, a 12% reduction in energy consumption compared to the old plant. Minimum of 8 and a maximum of 10 Aptar plants (assumes similar dimensions): \$0.3M x 8 plants = \$2.4M \$0.3M x 10 plants = \$3.0M In addition, Aptar investigated the possibility of retrofitting operations excluding new plant projects, so we estimated 28 sites that can implement energy conservation measures related to energy uses for auxiliary processes (e.g., HVAC, Compressed Air, Boiler, and Lighting Systems) within the next 1 - 7 years. Total energy saving estimated is 6% of total electricity consumption (43M kWh with respect to the baseline 2024), equal to \$2.4M of savings in 8 years (\$0.3M per year). The range below is based on the projected calculated opportunity: Min \rightarrow \$0.3M x 8 plants = \$2.4M + \$2.4M = \$4.8M Max \rightarrow \$0.3M x 10 plants = \$3.0M + \$3.0M = \$6.0M

(3.6.1.24) Cost to realize opportunity

5000000

(3.6.1.25) Explanation of cost calculation

The total cost to realize the opportunity for a new building (equipment + installation) is about \$0.5M Estimation of the cost to realize the opportunity is based on: \$0.5M x 8 plants = \$4M \$0.5M x 10 plants = \$5M We have estimated the return on investment for yearly retrofitting, which will be approximately 5 years

(3.6.1.26) Strategy to realize opportunity

Assumes Aptar decides to move to more efficient buildings (8 - 10 existing Aptar manufacturing plants replaced by new builds). Our estimates are solely based on Aptar's newly completed sites, "Granville 2" and "Queretaro 2". These new facilities align with the LEED standard. We expect the new energy-efficient buildings to save ~\$0.6M, a 12% reduction in energy consumption compared to the old plant. Minimum of 8 and a maximum of 10 Aptar plants (assumes similar dimensions):

\$0.3M x 8 plants = \$2.4M \$0.3M x 10 plants = \$3.0M In addition, Aptar investigated the possibility of retrofitting operations excluding new plant projects, so we estimated 28 sites that can implement energy conservation measures related to energy uses for auxiliary processes (e.g., HVAC, Compressed Air, Boiler, and Lighting Systems) within the next 1 - 7 years. Total energy saving estimated is 6% of total electricity consumption (43M kWh with respect to the baseline 2024), equal to \$2.4M of savings in 8 years (\$0.3M per year). The range below is based on the projected calculated opportunity: $Min \rightarrow $0.3M \times 8$ plants = \$2.4M + \$2.4M = \$4.8M $Max \rightarrow $0.3M \times 10$ plants = \$3.0M + \$3.0M = \$6.0M Cost to realize opportunity: The total cost to realize the opportunity for a new building (equipment + installation) is about \$0.5M Estimation of the cost to realize the opportunity is based on: \$0.5M x 8 plants = \$4M \$0.5M x 10 plants = \$5M We have estimated the return on investment for yearly retrofitting, which will be approximately 5 years

Climate change

(3.6.1.1) Opportunity identifier

Select from:

✓ Opp3

(3.6.1.3) Opportunity type and primary environmental opportunity driver

Products and services

✓ Shift in consumer preferences

(3.6.1.4) Value chain stage where the opportunity occurs

Select from:

☑ Downstream value chain

(3.6.1.5) Country/area where the opportunity occurs

Select all that apply

✓ United States of America

(3.6.1.8) Organization specific description

Our customers recognize us as a innovation partners that shape the drug delivery and consumer product dispensing industries, while also becoming a proactive leader in sustainability. We care for people and planet, we collaborate with many industry partners, and we prioritize circular and recycling solutions so that we can advance our collective progress toward building a safer, healthier, more sustainable future. Assuming that markets will drive a shift in consumer preferences on which

end-users are seeking for product solutions with reliable information on the environmental performance and sustainability rating linked to use of sustainable materials, renewable energy and low carbon content. Aptar can promote "a new service product-related" based on the product carbon footprint analyzed in compliance with Life Cycle Assessment methodology. This service assists Aptar customers and satisfies the market request on the eco-certifications of environmental performance of packaging (included recyclability assessment).

(3.6.1.9) Primary financial effect of the opportunity

Select from:

☑ Increased revenues resulting from increased demand for products and services

(3.6.1.10) Time horizon over which the opportunity is anticipated to have a substantive effect on the organization

Select all that apply

- ✓ Short-term
- ✓ Medium-term
- ✓ Long-term

(3.6.1.11) Likelihood of the opportunity having an effect within the anticipated time horizon

Select from:

✓ Unlikely (0–33%)

(3.6.1.12) Magnitude

Select from:

✓ Medium-low

(3.6.1.14) Anticipated effect of the opportunity on the financial position, financial performance and cash flows of the organization in the selected future time horizons

Our customers recognize us as a true innovation leader that has shaped the drug delivery and consumer product dispensing industries while becoming a proactive leader in sustainability. We care for each other and the planet, we collaborate with many industry partners, and we prioritize circular and recycling solutions so that we can advance our collective progress toward building a safer, healthier, more sustainable future. Assuming that regulatory laws will drive the use of recycled content in the markets and changing customer behaviours purchasing more sustainable solutions and low emission goods, Aptar can estimate an opportunity converting the entire product portfolio with minimum recycled content requested by markets and customers. New market share penetration (approximately +3%) respect

conventional products. 2024 global Aptar Beauty sales revenue is \$1,227M, current global Aptar Closure sales revenue is \$611M, so, the total Aptar Beauty and Closure sales revenue is \$1,838M. Opportunity range: \$1,838M x 3% = \$55M

(3.6.1.15) Are you able to quantify the financial effects of the opportunity?

Select from:

✓ Yes

(3.6.1.17) Anticipated financial effect figure in the short-term - minimum (currency)

55000000

(3.6.1.18) Anticipated financial effect figure in the short-term – maximum (currency)

55000000

(3.6.1.19) Anticipated financial effect figure in the medium-term - minimum (currency)

55000000

(3.6.1.20) Anticipated financial effect figure in the medium-term - maximum (currency)

55000000

(3.6.1.21) Anticipated financial effect figure in the long-term - minimum (currency)

55000000

(3.6.1.22) Anticipated financial effect figure in the long-term – maximum (currency)

55000000

(3.6.1.23) Explanation of financial effect figures

Our customers recognize us as a true innovation leader that has shaped the drug delivery and consumer product dispensing industries while becoming a proactive leader in sustainability. We care for each other and the planet, we collaborate with many industry partners, and we prioritize circular and recycling solutions so that we can advance our collective progress toward building a safer, healthier, more sustainable future. Assuming that regulatory laws will drive the use of recycled content in

the markets and changing customer behaviours purchasing more sustainable solutions and low emission goods, Aptar can estimate an opportunity converting the entire product portfolio with minimum recycled content requested by markets and customers. New market share penetration (approximately +3%) respect conventional products. 2024 global Aptar Beauty sales revenue is \$1,227M, current global Aptar Closure sales revenue is \$611M, so, the total Aptar Beauty and Closure sales revenue is \$1,838M. Opportunity range: \$1,838M x 3% = \$55M

(3.6.1.24) Cost to realize opportunity

16000000

(3.6.1.25) Explanation of cost calculation

We are assuming a need for \$16M to pay the extracost of sustainable materials because customers are not ready to pay extracost for sustainable materials. While we believe it is very likely that Aptar will need to promote the use of recycled materials and that the cost of recycled materials will not decrease respect conventional materials, it is likely that Aptar can have a new market share penetration to new customers that are looking for low emissions goods.

(3.6.1.26) Strategy to realize opportunity

Assuming that market will drive a shift in consumer preferences on which end-users are looking for product solutions with reliable information on the environmental performance and sustainability rating linked to use of sustainable materials, renewable energy and low carbon content. Aptar can promote "a new service product-related" based on the product carbon footprint analyzed in compliance with Life Cycle Assessment methodology. This service can increase the fidelization of Aptar customers and satisfy the market request on the eco-certifications of environmental performance of packaging (included recyclability assessment). We are assuming a need for \$16M to pay the extracost of sustainable materials because customers are not ready to pay extracost for sustainable materials. While we believe it is very likely that Aptar will need to promote the use of recycled materials and that the cost of recycled materials will not decrease respect conventional materials, it is likely that Aptar can have a new market share penetration to new customers that are looking for low emissions goods.

[Add row]

(3.6.2) Provide the amount and proportion of your financial metrics in the reporting year that are aligned with the substantive effects of environmental opportunities.

Climate change

(3.6.2.1) Financial metric

Select from:

✓ Revenue

(3.6.2.2) Amount of financial metric aligned with opportunities for this environmental issue (unit currency as selected in 1.2)

6000000

(3.6.2.3) % of total financial metric aligned with opportunities for this environmental issue

Select from:

✓ Less than 1%

(3.6.2.4) Explanation of financial figures

The total estimated financial impact from the following scenarios is 61M representing less than 1% of our total assets in 2024 (total assets in 2024 is 4,432,278,000) Assumes Aptar decides to move to more efficient buildings (8 - 10 existing Aptar manufacturing plants replaced by new builds). Our estimates are solely based on Aptar's newly completed sites, "Granville 2" and "Queretaro 2". These new facilities align with the LEED standard. We expect the new energy-efficient buildings to save \sim \$0.6M, a 12% reduction in energy consumption compared to the old plant. Minimum of 8 and a maximum of 10 Aptar plants (assumes similar dimensions): \$0.3M x 8 plants = \$2.4M \$0.3M x 10 plants = \$3.0M In addition, Aptar investigated the possibility of retrofitting operations excluding new plant projects, so we estimated 28 sites that can implement energy conservation measures related to energy uses for auxiliary processes (e.g., HVAC, Compressed Air, Boiler, and Lighting Systems) within the next 1 - 7 years. Total energy saving estimated is 6% of total electricity consumption (43M kWh with respect to the baseline 2024), equal to \$2.4M of savings in 8 years (\$0.3M per year). The range below is based on the projected calculated opportunity: Min \rightarrow \$0.3M x 8 plants = \$2.4M + \$2.4M = \$4.8M Max \rightarrow \$0.3M x 10 plants = \$3.0M + \$3.0M = \$6.0M

Climate change

(3.6.2.1) Financial metric

Select from:

Assets

(3.6.2.2) Amount of financial metric aligned with opportunities for this environmental issue (unit currency as selected in 1.2)

55000000

(3.6.2.3) % of total financial metric aligned with opportunities for this environmental issue

Select from:

✓ 1-10%

(3.6.2.4) Explanation of financial figures

The total estimated financial impact from the following scenarios is 55 M representing about 1.5% of our total revenue (Aptar's 2024 revenue was \$3,582,890,000) Our customers recognize us as a true innovation leader that has shaped the drug delivery and consumer product dispensing industries while becoming a proactive leader in sustainability. We care for each other and the planet, we collaborate with many industry partners, and we prioritize circular and recycling solutions so that we can advance our collective progress toward building a safer, healthier, more sustainable future. Assuming that regulatory laws will drive the use of recycled content in the markets and changing customer behaviours purchasing more sustainable solutions and low emission goods, Aptar can estimate an opportunity converting the entire product portfolio with minimum recycled content requested by markets and customers. New market share penetration (approximately +3%) respect conventional products. 2024 global Aptar Beauty sales revenue is \$1,227M, current global Aptar Closure sales revenue is \$611M, so, the total Aptar Beauty and Closure sales revenue is \$1,838M. Opportunity range: \$1,838M x 3% = \$55M [Add row]

C4. Governance

(4.1) Does your organization have a board of directors or an equivalent governing body?

(4.1.1) Board of directors or equivalent governing body

Select from:

✓ Yes

(4.1.2) Frequency with which the board or equivalent meets

Select from:

Quarterly

(4.1.3) Types of directors your board or equivalent is comprised of

Select all that apply

☑ Executive directors or equivalent

✓ Non-executive directors or equivalent

☑ Independent non-executive directors or equivalent

(4.1.4) Board diversity and inclusion policy

Select from:

✓ Yes, and it is publicly available

(4.1.5) Briefly describe what the policy covers

Aptar's diversity initiatives are focused on increasing the gender balance of leadership at all levels. Through this effort, our practices and policies on recruitment and selection, compensation and benefits, professional development and training, promotions, assignments, separations, and community outreach are valued and implemented throughout the organization. Aptar is committed to: Embedding inclusive policies, strategies, and behaviors that support equity and cultivate a culture where everyone belongs. • Valuing and leveraging diversity to enable full participation in our work and decision-making processes.• Eliminating barriers to fairness in recruitment, performance management, professional development, and beyond. • Taking proactive steps to address inequalities, including conducting periodic

assessments to measure and improve outcomes.• Ensuring that every individual is treated with dignity, respect, and fairness in all interactions. • Opportunities to participate in employee-led Employee Resource Groups. During the reporting year 50% of Aptar Board of Directors are women.

(4.1.6) Attach the policy (optional)

Aptar_Inclusion.Equity.Belonging.Policy_2025.pdf [Fixed row]

(4.1.1) Is there board-level oversight of environmental issues within your organization?

	Board-level oversight of this environmental issue
Climate change	Select from: ✓ Yes
Water	Select from: ✓ Yes
Biodiversity	Select from: ✓ Yes

[Fixed row]

(4.1.2) Identify the positions (do not include any names) of the individuals or committees on the board with accountability for environmental issues and provide details of the board's oversight of environmental issues.

Climate change

(4.1.2.1) Positions of individuals or committees with accountability for this environmental issue

Select all that apply

✓ Board chair

✓ Chief Executive Officer (CEO)

- ✓ General Counsel
- ✓ Other C-Suite Officer
- **☑** Board-level committee
- ✓ Chief Risk Officer (CRO)

- ✓ Chief Financial Officer (CFO)
- ✓ Chief Operating Officer (COO)
- ✓ Chief Procurement Officer (CPO)
- ✓ Chief Sustainability Officer (CSO)

(4.1.2.2) Positions' accountability for this environmental issue is outlined in policies applicable to the board

Select from:

✓ Yes

(4.1.2.3) Policies which outline the positions' accountability for this environmental issue

Select all that apply

- **☑** Board Terms of Reference
- **☑** Board mandate

(4.1.2.4) Frequency with which this environmental issue is a scheduled agenda item

Select from:

☑ Scheduled agenda item in every board meeting (standing agenda item)

(4.1.2.5) Governance mechanisms into which this environmental issue is integrated

Select all that apply

- ✓ Reviewing and guiding annual budgets
- ✓ Overseeing and guiding scenario analysis
- ☑ Overseeing the setting of corporate targets
- ✓ Monitoring progress towards corporate targets
- ✓ Approving corporate policies and/or commitments
- ✓ Monitoring the implementation of a climate transition plan
- ☑ Overseeing and guiding the development of a business strategy
- ✓ Overseeing and guiding acquisitions, mergers, and divestitures
- ☑ Monitoring supplier compliance with organizational requirements

- ✓ Reviewing and guiding innovation/R&D priorities
- ✓ Approving and/or overseeing employee incentives
- ✓ Overseeing and guiding major capital expenditures
- ✓ Monitoring the implementation of the business strategy
- ✓ Overseeing reporting, audit, and verification processes

- ☑ Monitoring compliance with corporate policies and/or commitments
- ☑ Overseeing and guiding the development of a climate transition plan
- ☑ Reviewing and guiding the assessment process for dependencies, impacts, risks, and opportunities

(4.1.2.7) Please explain

Aptar's governance mechanism is contributing to the board's overall oversight for the climate change issue thanks to the support of various Board figures that oversee processes to incorporate the sustainability initiatives within business standards, rules, and guidelines. The Board receives frequent updates and is engaged on the specific initiatives including progress on goals, corporate targets, emerging sustainability trends, policies and/or commitments, monitoring of climate transition plan implementation, development and monitoring of a business strategy, guiding acquisitions, mergers and divestitures, review of annual budgets, risks and opportunities surrounding material sustainability issues & climate change. For example: the CEO guides the Executive Committee in making strategic climate-related decisions, including our commitment to Science Based Targets, product-related recyclability and recycled content targets and support of the renewable energy purchasing strategy. The CFO oversees sustainability topics focusing on external reporting and assurance, operational control and risk management, confirmed the decision for Aptar to become a public signatory of the Task Force for Climate-/Nature- Related Financial Disclosures (TCFD and TNFD), and supported the integration of TCFD and TNFD into Aptar's Enterprise Risk Management process, which is managed within her organization, evaluates sustainability implications when contemplating capital expenditures and decides on actions necessary to accomplish our Climate-related commitments such as the Science Based targets (i.e. renewable energy purchases, refrigerant conversions, and other projects requiring CapEx). The CHRO oversees inclusion, equity and belonging, fair labor, human rights and employee engagement and development. Regarding our climate change commitment, understanding and support from the CHRO was necessary in order to "green" our fleet of cars that are provided as employee compensation benefits. The CHRO is instrumental in integrating sustainability into our Leadership for Growth employee survey. The members of the Executive Committee ("ExCom", C-Suite), each segment president oversees a unique excellence pillar working on sustainability: Operational Excellence, Innovation Excellence, Commercial Excellence, Global Purchasing, Global Sustainability, Direct line of reporting for the Global Sustainability Team is to the president responsible for the Beauty segment. Led by our Chief Sustainability Officer, the Global Sustainability Team is comprised of industry experts that develop and implement our programs. The Executive Committee members and SVP of Investor Relations hear from the CSO and the Product Sustainability Director during monthly ExCom meetings. The CSO provides information to the Board of Directors Audit and Governance Committees, with support from General Council.

Water

(4.1.2.1) Positions of individuals or committees with accountability for this environmental issue

Select all that apply

President

☑ Board chair

✓ General Counsel

✓ Director on board

✓ Other C-Suite Officer

✓ Chief Procurement Officer (CPO)

✓ Board-level committee

✓ Chief Risk Officer (CRO)

✓ Chief Executive Officer (CEO)

✓ Chief Financial Officer (CFO)

✓ Chief Operating Officer (COO)

☑ Chief Sustainability Officer (CSO)

(4.1.2.2) Positions' accountability for this environmental issue is outlined in policies applicable to the board

Select from:

✓ Yes

(4.1.2.3) Policies which outline the positions' accountability for this environmental issue

Select all that apply

- **☑** Board Terms of Reference
- **✓** Board mandate

(4.1.2.4) Frequency with which this environmental issue is a scheduled agenda item

Select from:

✓ Scheduled agenda item in every board meeting (standing agenda item)

(4.1.2.5) Governance mechanisms into which this environmental issue is integrated

Select all that apply

- ☑ Reviewing and guiding annual budgets
- ✓ Overseeing the setting of corporate targets
- ✓ Monitoring progress towards corporate targets
- ✓ Approving corporate policies and/or commitments
- ✓ Overseeing and guiding public policy engagement
- ✓ Monitoring the implementation of a climate transition plan
- ☑ Overseeing and guiding the development of a business strategy
- ✓ Overseeing and guiding acquisitions, mergers, and divestitures
- ☑ Monitoring supplier compliance with organizational requirements
- ☑ Monitoring compliance with corporate policies and/or commitments
- ☑ Overseeing and guiding the development of a climate transition plan
- ☑ Reviewing and guiding the assessment process for dependencies, impacts, risks, and opportunities

- ✓ Reviewing and guiding innovation/R&D priorities
- ✓ Approving and/or overseeing employee incentives
- ✓ Overseeing and guiding major capital expenditures
- ✓ Monitoring the implementation of the business strategy
- ☑ Overseeing reporting, audit, and verification processes

(4.1.2.7) Please explain

Aptar's governance mechanism is contributing to the Board's overall oversight for the water issue thanks to the support of different board figures that manage processes to incorporate the sustainability initiatives within business standards, rules, and guidelines. The board receives frequently updates and is engaged on the specific initiatives including progress on goals, corporate targets, emerging sustainability trends, policies and/or commitment, monitoring of water reduction plan implementation, development and monitoring of a business strategy, guiding acquisitions, mergers and divestitures, review of annual budgets, risks and opportunities surrounding material sustainability issues & water management. For example: the CEO guides the Executive Committee in making strategic water-related decisions, including our commitment to conservation measures such as site-specific water audits and evaluating departmental skill-set needs, particularly in staffing.. the CFO oversees sustainability topics focusing on external reporting and assurance, operational control and risk management, confirmed the decision for Aptar to become a public signatory of the Task Force for Climate Related Financial Disclosures (TCFD), and supported the integration of TCFD into Aptar's Enterprise Risk Management process, which is managed within his organization, evaluates sustainability implications when contemplating capital expenditures and decides on actions necessary to accomplish our water-related commitments (i.e. water audit in plant located in water stressed areas, water conservation measures and other projects requiring CapEx). the CHRO oversees inclusion, equity and belonging, fair labor, human rights and employee engagement and development. Regarding our water commitment, understanding and support from the CHRO was necessary in order to "increase water management awareness". The CHRO is instrumental in integrating sustainability into our Leadership for Growth employee survey, the members of the Executive Committee ("ExCom", C-Suite), each segment president oversees a unique excellence pillar which works on sustainability topics: Operational Excellence, Innovation Excellence, Commercial Excellence, Global Purchasing, Global Sustainability. Direct line of reporting for the Global Sustainability Team is to the president responsible for the Beauty segment. Led by our Chief Sustainability Officer, the Global Sustainability Team is comprised of industry experts that develop and implement our programs. The Executive Committee members and SVP of Investor Relations hear from the CSO and the Product Sustainability Director during monthly ExCom meetings. The CSO provides information to the Board of Directors Audit and Governance Committees, with support from General Council. The Board Chair oversees Aptar's sustainability strategy and assists the Executive Committee in the direction.

Biodiversity

(4.1.2.1) Positions of individuals or committees with accountability for this environmental issue

Select all that apply

President

☑ Board chair☑ General Counsel

✓ Director on board

✓ Other C-Suite Officer

☑ Chief Procurement Officer (CPO)

✓ Chief Sustainability Officer (CSO)

☑ Board-level committee

✓ Chief Risk Officer (CRO)

✓ Chief Executive Officer (CEO)

✓ Chief Financial Officer (CFO)

✓ Chief Operating Officer (COO)

(4.1.2.2) Positions' accountability for this environmental issue is outlined in policies applicable to the board

Select from:

✓ Yes

(4.1.2.3) Policies which outline the positions' accountability for this environmental issue

Select all that apply

- **☑** Board Terms of Reference
- **☑** Board mandate

(4.1.2.4) Frequency with which this environmental issue is a scheduled agenda item

Select from:

☑ Scheduled agenda item in every board meeting (standing agenda item)

(4.1.2.5) Governance mechanisms into which this environmental issue is integrated

Select all that apply

- ☑ Reviewing and guiding annual budgets
- ✓ Overseeing the setting of corporate targets
- ☑ Monitoring progress towards corporate targets
- ✓ Approving corporate policies and/or commitments
- ☑ Overseeing and guiding public policy engagement
- ☑ Monitoring the implementation of a climate transition plan
- ☑ Overseeing and guiding the development of a business strategy
- ✓ Overseeing and guiding acquisitions, mergers, and divestitures
- ☑ Monitoring supplier compliance with organizational requirements
- ☑ Monitoring compliance with corporate policies and/or commitments
- ☑ Overseeing and guiding the development of a climate transition plan
- ☑ Reviewing and guiding the assessment process for dependencies, impacts, risks, and opportunities

- ✓ Reviewing and guiding innovation/R&D priorities
- ✓ Approving and/or overseeing employee incentives
- ✓ Overseeing and guiding major capital expenditures
- ✓ Monitoring the implementation of the business strategy
- ✓ Overseeing reporting, audit, and verification processes

(4.1.2.7) Please explain

Aptar's governance mechanism is contributing to the Board's overall oversight for the biodiversity issue thanks to the support of different board figures that manages processes to incorporate the sustainability initiatives within business standards, rules, and guidelines. The Board receives frequently updates and is engaged on the specific initiatives including progress on goals, corporate targets, emerging sustainability trends, policies and/or commitment, monitoring of biodiversity road map implementation, development and monitoring of a business strategy, guiding acquisitions, mergers and divestitures, review of annual budgets, risks and opportunities surrounding material sustainability issues & biodiversity management. For example: the CEO guides the Executive Committee in making strategic biodiversity-related decisions, including our commitment to conservation measures such as site-specific water audits and evaluating departmental skill-set needs, particularly in staffing... the CFO oversees sustainability topics focusing on external reporting and assurance, operational control and risk management, confirmed the decision for Aptar to become a public signatory of the Task Force for Climate Related Financial Disclosures (TCFD), and supported the integration of TCFD into Aptar's Enterprise Risk Management process, which is managed within his organization, evaluates sustainability implications when contemplating capital expenditures and decides on actions necessary to accomplish our biodiversity-related commitments (i.e. water audit in plant located in water stressed areas, water conservation measures and other projects requiring CapEx). the members of the Executive Committee ("ExCom", C-Suite), each segment president oversees a unique excellence pillar which works on sustainability topics: Operational Excellence, Innovation Excellence, Commercial Excellence, Global Purchasing, Global Sustainability. Direct line of reporting for the Global Sustainability Team is to the president responsible for the Beauty segment. Led by our Chief Sustainability Officer, the Global Sustainability Team is comprised of industry experts that develop and implement our programs. The Executive Committee members and SVP of Investor Relations hear from the CSO and the Product Sustainability Director during monthly ExCom meetings. The CSO provides information to the Board of Directors Audit and Governance Committees, with support from General Council. The Board Chair oversees Aptar's sustainability strategy and assists the Executive Committee in the direction of the company's governance, programs, and policies, through the lens of biodiversity risks, and opportunities and their impact on company performance, decides on the sustainability strategy and, in particular, confirms decisions reflected in public disclosures like the Corporate Sustainability Report. [Fixed row]

(4.2) Does your organization's board have competency on environmental issues?

Climate change

(4.2.1) Board-level competency on this environmental issue

Select from:

Yes

(4.2.2) Mechanisms to maintain an environmentally competent board

Select all that apply

- ☑ Consulting regularly with an internal, permanent, subject-expert working group
- ☑ Engaging regularly with external stakeholders and experts on environmental issues
- ☑ Integrating knowledge of environmental issues into board nominating process
- ☑ Regular training for directors on environmental issues, industry best practice, and standards (e.g., TCFD, SBTi)

☑ Having at least one board member with expertise on this environmental issue

(4.2.3) Environmental expertise of the board member

Academic

☑ Undergraduate education (e.g., BSc/BA in environment and sustainability, climate science, environmental science, water resources management, environmental engineering, forestry, etc.), please specify :Engineering Degree in polymer science and plastic engineering

Experience

- ☑ Executive-level experience in a role focused on environmental issues
- ☑ Management-level experience in a role focused on environmental issues

Water

(4.2.1) Board-level competency on this environmental issue

Select from:

✓ Yes

(4.2.2) Mechanisms to maintain an environmentally competent board

Select all that apply

- ☑ Consulting regularly with an internal, permanent, subject-expert working group
- ☑ Engaging regularly with external stakeholders and experts on environmental issues
- ☑ Integrating knowledge of environmental issues into board nominating process
- ☑ Regular training for directors on environmental issues, industry best practice, and standards (e.g., TCFD, SBTi)
- ☑ Having at least one board member with expertise on this environmental issue

(4.2.3) Environmental expertise of the board member

Academic

✓ Undergraduate education (e.g., BSc/BA in environment and sustainability, climate science, environmental science, water resources management, environmental engineering, forestry, etc.), please specify :Engineering Degree in polymer science and plastic engineering

_	•
$H\mathbf{v}_1$	perience
L_{Λ}	perience

- ☑ Executive-level experience in a role focused on environmental issues
- ☑ Management-level experience in a role focused on environmental issues

[Fixed row]

(4.3) Is there management-level responsibility for environmental issues within your organization?

	Management-level responsibility for this environmental issue
Climate change	Select from: ✓ Yes
Water	Select from: ✓ Yes
Biodiversity	Select from: ✓ Yes

[Fixed row]

(4.3.1) Provide the highest senior management-level positions or committees with responsibility for environmental issues (do not include the names of individuals).

Climate change

(4.3.1.1) Position of individual or committee with responsibility

Executive level

✓ Chief Executive Officer (CEO)

(4.3.1.2) Environmental responsibilities of this position

Engagement

- ☑ Managing engagement in landscapes and/or jurisdictions
- ☑ Managing public policy engagement related to environmental issues

Policies, commitments, and targets

- ☑ Setting corporate environmental policies and/or commitments
- ✓ Setting corporate environmental targets

Strategy and financial planning

☑ Managing acquisitions, mergers, and divestitures related to environmental issues

(4.3.1.4) Reporting line

Select from:

☑ Reports to the board directly

(4.3.1.5) Frequency of reporting to the board on environmental issues

Select from:

✓ More frequently than quarterly

(4.3.1.6) Please explain

The President and CEO holds ultimate responsibility for managing economic, environmental, and social impacts. Sustainability is embedded into our business standards, rules, and guidelines under the CEO's leadership. As a board-level executive, the CEO receives monthly updates on sustainability initiatives, including progress on goals and targets, emerging trends, and risks related to climate, nature, energy, and water. The CEO has played a pivotal role in establishing Aptar's sustainability commitments, including validating Science-Based Targets, joining the UN Global Compact, publishing annual sustainability reports, and responding to CDP. Strategic decisions—such as investing in Power Purchasing Agreements, conducting site-specific water audits, and assessing staffing needs for biodiversity management—are guided by the CEO in collaboration with the Executive Committee. Oversight of climate- and nature-related disclosures, including those aligned with TCFD and TNFD, also falls under the CEO's purview. This responsibility reflects Aptar's belief that product stewardship and corporate citizenship are integral to our business strategy. The CEO stays informed through regular meetings with the Chief Sustainability Officer, functional leaders, and Board Committees. Additionally,

the CEO engages in external knowledge-sharing through organizations like the World Business Council for Sustainable Development (WBCSD), attending annual sessions on ESG disclosure requirements and sustainability megatrends. Monthly Executive Committee meetings provide updates on sustainability performance, KPIs, and strategic goals, ensuring that sustainability remains a core focus of Aptar's leadership and long-term planning.

Water

(4.3.1.1) Position of individual or committee with responsibility

Executive level

☑ Chief Executive Officer (CEO)

(4.3.1.2) Environmental responsibilities of this position

Engagement

✓ Managing engagement in landscapes and/or jurisdictions

☑ Managing public policy engagement related to environmental issues

Policies, commitments, and targets

☑ Setting corporate environmental policies and/or commitments

Strategy and financial planning

☑ Managing acquisitions, mergers, and divestitures related to environmental issues

(4.3.1.4) Reporting line

Select from:

☑ Reports to the board directly

(4.3.1.5) Frequency of reporting to the board on environmental issues

Select from:

✓ More frequently than quarterly

(4.3.1.6) **Please explain**

The President and CEO holds ultimate responsibility for managing economic, environmental, and social impacts. Sustainability is embedded into our business standards, rules, and guidelines under the CEO's leadership. As a board-level executive, the CEO receives monthly updates on sustainability initiatives, including progress on goals and targets, emerging trends, and risks related to climate, nature, energy, and water. The CEO has played a pivotal role in establishing Aptar's sustainability commitments, including validating Science-Based Targets, joining the UN Global Compact, publishing annual sustainability reports, and responding to CDP. Strategic decisions—such as investing in Power Purchasing Agreements, conducting site-specific water audits, and assessing staffing needs for biodiversity management—are guided by the CEO in collaboration with the Executive Committee. Oversight of climate- and nature-related disclosures, including those aligned with TCFD and TNFD, also falls under the CEO's purview. This responsibility reflects Aptar's belief that product stewardship and corporate citizenship are integral to our business strategy. The CEO stays informed through regular meetings with the Chief Sustainability Officer, functional leaders, and Board Committees. Additionally, the CEO engages in external knowledge-sharing through organizations like the World Business Council for Sustainable Development (WBCSD), attending annual sessions on ESG disclosure requirements and sustainability megatrends. Monthly Executive Committee meetings provide updates on sustainability performance, KPIs, and strategic goals, ensuring that sustainability remains a core focus of Aptar's leadership and long-term planning.

Biodiversity

(4.3.1.1) Position of individual or committee with responsibility

Executive level

☑ Chief Executive Officer (CEO)

(4.3.1.2) Environmental responsibilities of this position

Engagement

- ☑ Managing engagement in landscapes and/or jurisdictions
- ☑ Managing public policy engagement related to environmental issues

Strategy and financial planning

- ☑ Developing a business strategy which considers environmental issues
- ☑ Managing acquisitions, mergers, and divestitures related to environmental issues
- ☑ Managing annual budgets related to environmental issues
- ☑ Managing major capital and/or operational expenditures relating to environmental issues

Other

✓ Providing employee incentives related to environmental performance

(4.3.1.4) Reporting line

Select from:

✓ Reports to the board directly

(4.3.1.5) Frequency of reporting to the board on environmental issues

Select from:

✓ More frequently than quarterly

(4.3.1.6) Please explain

The President and CEO holds ultimate responsibility for managing economic, environmental, and social impacts. Sustainability is embedded into our business standards, rules, and guidelines under the CEO's leadership. As a board-level executive, the CEO receives monthly updates on sustainability initiatives, including progress on goals and targets, emerging trends, and risks related to climate, nature, energy, and water. The CEO has played a pivotal role in establishing Aptar's sustainability commitments, including validating Science-Based Targets, joining the UN Global Compact, publishing annual sustainability reports, and responding to CDP. Strategic decisions—such as investing in Power Purchasing Agreements, conducting site-specific water audits, and assessing staffing needs for biodiversity management—are guided by the CEO in collaboration with the Executive Committee. Oversight of climate- and nature-related disclosures, including those aligned with TCFD and TNFD, also falls under the CEO's purview. This responsibility reflects Aptar's belief that product stewardship and corporate citizenship are integral to our business strategy. The CEO stays informed through regular meetings with the Chief Sustainability Officer, functional leaders, and Board Committees. Additionally, the CEO engages in external knowledge-sharing through organizations like the World Business Council for Sustainable Development (WBCSD), attending annual sessions on ESG disclosure requirements and sustainability megatrends. Monthly Executive Committee meetings provide updates on sustainability performance, KPIs, and strategic goals, ensuring that sustainability remains a core focus of Aptar's leadership and long-term planning.

Climate change

(4.3.1.1) Position of individual or committee with responsibility

Executive level

✓ Chief Financial Officer (CFO)

(4.3.1.2) Environmental responsibilities of this position

Dependencies, impacts, risks and opportunities

☑ Managing environmental dependencies, impacts, risks, and opportunities

Strategy and financial planning

- ☑ Managing acquisitions, mergers, and divestitures related to environmental issues
- ☑ Managing annual budgets related to environmental issues
- ☑ Managing major capital and/or operational expenditures relating to environmental issues

Other

✓ Providing employee incentives related to environmental performance

(4.3.1.4) Reporting line

Select from:

☑ Reports to the Chief Executive Officer (CEO)

(4.3.1.5) Frequency of reporting to the board on environmental issues

Select from:

✓ More frequently than quarterly

(4.3.1.6) Please explain

Chief Financial Officer (CFO) plays a central role in overseeing sustainability topics, particularly in external reporting, assurance, operational control, and risk management. The CFO confirmed Aptar's public commitment to the Task Force on Climate- and Nature-Related Financial Disclosures (TCFD/TNFD) and supported the integration of these frameworks, along with the Double Materiality Assessment, into Aptar's Enterprise Risk Management (ERM) process. The VP of Group Treasury, reporting directly to the CFO, leads Enterprise Risk Management, ensuring climate- and nature-related risks are considered in capital and operational expenditures and strategic planning—such as renewable energy purchases, Power Purchasing Agreements, and refrigerant conversions. The CFO also oversees the Internal Audit Team, which conducts annual reviews of ESG/EHS control systems and reports findings directly to the CFO. Additionally, the Chief Accounting Officer, reporting to the CFO, leads an internal taskforce that meets monthly to address third-party assurance and regulatory ESG disclosure requirements. This taskforce regularly updates the CFO and the Board's Audit Committee. To stay informed, the CFO and her team hold regular meetings with the Chief Sustainability Officer and other functional leaders. They also participate in external financial networks and training webinars to stay current on ESG disclosure trends. Members of Aptar's Finance Team attend sessions hosted by major financial firms focused on evolving ESG reporting standards. The CFO receives monthly updates on sustainability performance, KPIs, and strategic goals during Executive Committee meetings, ensuring financial oversight is aligned with Aptar's broader sustainability strategy.

Climate change

(4.3.1.1) Position of individual or committee with responsibility

Executive level

✓ Chief Procurement Officer (CPO)

(4.3.1.2) Environmental responsibilities of this position

Engagement

- ✓ Managing supplier compliance with environmental requirements
- ☑ Managing value chain engagement related to environmental issues

Policies, commitments, and targets

- ✓ Measuring progress towards environmental corporate targets
- ☑ Measuring progress towards environmental science-based targets

Strategy and financial planning

☑ Implementing a climate transition plan

(4.3.1.4) Reporting line

Select from:

☑ Reports to the Chief Executive Officer (CEO)

(4.3.1.5) Frequency of reporting to the board on environmental issues

Select from:

✓ More frequently than quarterly

(4.3.1.6) Please explain

The Chief Purchasing Officer (CPO) has overall responsibility for the engagement and management of climate- and nature-related topics, particularly through collaboration with our suppliers and vendors. The CPO oversees the strategy for sourcing renewable energy, collaborates with the innovation teams to procure more sustainable materials for our products, and works with the operational excellence team to identify and implement more efficient technologies within our sites. As an

example, the CPO and his organization were key facilitators of Aptar's recent execution of Power Purchasing Agreements in Europe and North America. The CPO and his organization host a Supplier Summit during which suppliers are encouraged to pitch ideas that will support Aptar's sustainability journey. In advance of the Supplier Summit, suppliers are provided with Aptar's Supplier Playbook, which helps them navigate our sustainability targets and initiatives. During the event, suppliers receive training on disclosure processes and tools. The CPO has responsibility for climate- and nature-related topics as they affect suppliers and purchases because he possesses the knowledge and expertise for making strategic purchasing decisions, has experience with our carbon disclosure and supplier screening tools, and is considered a key member of the Global Sustainability Council. The CPO is informed of and monitors climate- and nature-related issues through regular meetings with the Chief Sustainability Officer, the Director of Global Sustainability, the Senior Director of Product Sustainability and topic-specific consultants. Because it is integrated into his strategy, the CPO delivers sustainability messaging through presentations to the Executive Committee and Board of Directors. The CPO is also a member of external networks that keep members informed about sustainability drivers and offer training webinars.

Climate change

(4.3.1.1) Position of individual or committee with responsibility

Executive level

☑ Chief Sustainability Officer (CSO)

(4.3.1.2) Environmental responsibilities of this position

Dependencies, impacts, risks and opportunities

- ✓ Assessing environmental dependencies, impacts, risks, and opportunities
- ☑ Assessing future trends in environmental dependencies, impacts, risks, and opportunities
- ☑ Managing environmental dependencies, impacts, risks, and opportunities

Policies, commitments, and targets

- ☑ Monitoring compliance with corporate environmental policies and/or commitments
- ✓ Measuring progress towards environmental corporate targets
- ☑ Measuring progress towards environmental science-based targets
- ☑ Setting corporate environmental policies and/or commitments
- ✓ Setting corporate environmental targets

Strategy and financial planning

- ☑ Developing a climate transition plan
- ✓ Implementing a climate transition plan

- ☑ Developing a business strategy which considers environmental issues
- ☑ Managing environmental reporting, audit, and verification processes

- ✓ Conducting environmental scenario analysis
- ☑ Managing annual budgets related to environmental issues
- ☑ Implementing the business strategy related to environmental issues

Other

✓ Providing employee incentives related to environmental performance

(4.3.1.4) Reporting line

Select from:

☑ Reports to the Chief Executive Officer (CEO)

(4.3.1.5) Frequency of reporting to the board on environmental issues

Select from:

✓ More frequently than quarterly

(4.3.1.6) Please explain

The Chief Sustainability Officer (CSO) integrates climate and nature topics into strategy, tracks progress on corporate targets, and manages related risks and opportunities (DMA, TCFD, TNFD). The CSO leads sustainability strategy and target-setting, oversees ESG disclosure policies, interprets new regulations, evaluates risks for Aptar, and stays current on megatrends through external groups. In 2024 the CSO participated in a 3-week, in-person immersive leadership-in-sustainability program delivered in partnership with leading business schools and the World Business Council for Sustainable Development (WBCSD). As Liaison Delegate, the CSO attends the annual WBCSD membership summit. The CSO and her team are responsible to keep other leaders, including the Executive Committee and Board of Directors informed of Aptar's sustainability progress through dedicated tools and dashboards focused on the sustainability performance, KPIs, targets and goals.

Climate change

(4.3.1.1) Position of individual or committee with responsibility

Other

☑ Other, please specify :Energy Manager

(4.3.1.2) Environmental responsibilities of this position

Policies, commitments, and targets

✓ Measuring progress towards environmental science-based targets

Strategy and financial planning

- ✓ Implementing a climate transition plan
- ☑ Managing annual budgets related to environmental issues
- ☑ Managing environmental reporting, audit, and verification processes
- ☑ Managing major capital and/or operational expenditures relating to environmental issues

(4.3.1.4) Reporting line

Select from:

☑ Other, please specify :Operations - COO reporting line

(4.3.1.5) Frequency of reporting to the board on environmental issues

Select from:

✓ More frequently than quarterly

(4.3.1.6) Please explain

Reporting through Operational Excellence, the Global Energy Manager identifies and implements energy conservation measures (ECMs) to support Aptar's Climate Transition Plan, managing a dedicated budget and monitoring climate-related corporate targets such as our validated Science Based Targets (SBT). With expertise in decarbonization, this role makes informed decisions through at least weekly meetings and reports with other functions and periodically to the Executive Committee. As an example, the Global Energy Manager provides a summary of priority energy conservation projects to the Executive Committee during the annual budgeting process so that the Executive Committee can make informed decisions on CapEx allocation. The Global Energy Manager participates in external working groups like WBCSD to stay updated on clean technologies and sustainability trends, attending annual sessions on energy management best practices. Internally, the Global Energy Manager uses dedicated tools and dashboards track sustainability performance, KPIs, targets, and goals, and hosts a quarterly webinar for all employees to learn about our progress on energy and emissions.

Climate change

(4.3.1.1) Position of individual or committee with responsibility

Other

☑ Other, please specify: Sustainability Director

(4.3.1.2) Environmental responsibilities of this position

Dependencies, impacts, risks and opportunities

- ☑ Assessing environmental dependencies, impacts, risks, and opportunities
- ✓ Assessing future trends in environmental dependencies, impacts, risks, and opportunities
- ☑ Managing environmental dependencies, impacts, risks, and opportunities

Policies, commitments, and targets

- ☑ Monitoring compliance with corporate environmental policies and/or commitments
- ☑ Measuring progress towards environmental corporate targets
- ✓ Measuring progress towards environmental science-based targets
- ☑ Setting corporate environmental policies and/or commitments
- ✓ Setting corporate environmental targets

Strategy and financial planning

- ✓ Developing a climate transition plan
- ☑ Implementing a climate transition plan

(4.3.1.4) Reporting line

Select from:

☑ Reports to the Chief Sustainability Officer (CSO)

(4.3.1.5) Frequency of reporting to the board on environmental issues

Select from:

✓ More frequently than quarterly

(4.3.1.6) Please explain

Reporting through the CSO, the Sustainability Director integrates climate and nature topics into strategy, tracks progress on corporate targets, and manages related risks and opportunities (DMA, TCFD, TNFD). The Sustainability Director assists with developing sustainability strategy and targets, interpreting new regulations, evaluates risks for Aptar. The Director oversees climate-and nature-related risks and opportunities by conducting scenario analyses, supporting the development and implementation of the Climate Transition Plan aligned with overall sustainability strategy. The Sustainability Director, chosen for his expertise, keeps up with megatrends through external networks and stays informed via meetings, departmental reports, and board updates. Engagement with groups like WBCSD offers ongoing education; for instance, the energy manager attends yearly WBCSD energy sessions. Internally, tools and dashboards monitor KPIs, targets, and sustainability performance.

Water

(4.3.1.1) Position of individual or committee with responsibility

Executive level

✓ Chief Procurement Officer (CPO)

(4.3.1.2) Environmental responsibilities of this position

Engagement

☑ Managing supplier compliance with environmental requirements

☑ Managing value chain engagement related to environmental issues

Policies, commitments, and targets

✓ Measuring progress towards environmental corporate targets

Strategy and financial planning

☑ Implementing a climate transition plan

(4.3.1.4) Reporting line

Select from:

☑ Reports to the Chief Executive Officer (CEO)

(4.3.1.5) Frequency of reporting to the board on environmental issues

Select from:

✓ More frequently than quarterly

(4.3.1.6) Please explain

The Chief Purchasing Officer (CPO) has overall responsibility for the engagement and management of climate- and nature-related topics, particularly through collaboration with our suppliers and vendors. The CPO oversees the strategy for sourcing renewable energy, collaborates with the innovation teams to procure more sustainable materials for our products, and works with the operational excellence team to identify and implement more efficient technologies within our sites. As an example, the CPO and his organization were key facilitators of Aptar's recent execution of Power Purchasing Agreements in Europe and North America. The CPO and his organization host a Supplier Summit during which suppliers are encouraged to pitch ideas that will support Aptar's sustainability journey. In advance of the Supplier Summit, suppliers are provided with Aptar's Supplier Playbook, which helps them navigate our sustainability targets and initiatives. During the event, suppliers receive training on disclosure processes and tools. The CPO has responsibility for climate- and nature-related topics as they affect suppliers and purchases because he possesses the knowledge and expertise for making strategic purchasing decisions, has experience with our carbon disclosure and supplier screening tools, and is considered a key member of the Global Sustainability Council. The CPO is informed of and monitors climate- and nature-related issues through regular meetings with the Chief Sustainability Officer, the Director of Global Sustainability, the Senior Director of Product Sustainability and topic-specific consultants. Because it is integrated into his strategy, the CPO delivers sustainability messaging through presentations to the Executive Committee and Board of Directors. The CPO is also a member of external networks that keep members informed about sustainability drivers and offer training webinars.

Water

(4.3.1.1) Position of individual or committee with responsibility

Executive level

✓ Chief Sustainability Officer (CSO)

(4.3.1.2) Environmental responsibilities of this position

Dependencies, impacts, risks and opportunities

- ✓ Assessing environmental dependencies, impacts, risks, and opportunities
- ☑ Assessing future trends in environmental dependencies, impacts, risks, and opportunities
- ☑ Managing environmental dependencies, impacts, risks, and opportunities

Policies, commitments, and targets

- ☑ Monitoring compliance with corporate environmental policies and/or commitments
- ✓ Measuring progress towards environmental corporate targets

- ☑ Measuring progress towards environmental science-based targets
- ✓ Setting corporate environmental policies and/or commitments
- ✓ Setting corporate environmental targets

Strategy and financial planning

- ✓ Developing a climate transition plan
- ✓ Implementing a climate transition plan
- ✓ Conducting environmental scenario analysis
- ☑ Managing annual budgets related to environmental issues
- ☑ Implementing the business strategy related to environmental issues

Other

✓ Providing employee incentives related to environmental performance

- ☑ Developing a business strategy which considers environmental issues
- ✓ Managing environmental reporting, audit, and verification processes

(4.3.1.4) Reporting line

Select from:

☑ Reports to the Chief Executive Officer (CEO)

(4.3.1.5) Frequency of reporting to the board on environmental issues

Select from:

✓ More frequently than quarterly

(4.3.1.6) Please explain

The Chief Sustainability Officer (CSO) integrates climate and nature topics into strategy, tracks progress on corporate targets, and manages related risks and opportunities (DMA, TCFD, TNFD). The CSO leads sustainability strategy and target-setting, oversees ESG disclosure policies, interprets new regulations, evaluates risks for Aptar, and stays current on megatrends through external groups. In 2024 the CSO participated in a 3-week, in-person immersive leadership-in-sustainability program delivered in partnership with leading business schools and the World Business Council for Sustainable Development (WBCSD). As Liaison Delegate, the CSO attends the annual WBCSD membership summit. The CSO and her team are responsible to keep other leaders, including the Executive Committee and Board of Directors informed of Aptar's sustainability progress through dedicated tools and dashboards focused on the sustainability performance, KPIs, targets and goals.

Water

(4.3.1.1) Position of individual or committee with responsibility

Other

✓ Other, please specify :Sustainability Director

(4.3.1.2) Environmental responsibilities of this position

Dependencies, impacts, risks and opportunities

- ☑ Assessing environmental dependencies, impacts, risks, and opportunities
- ☑ Assessing future trends in environmental dependencies, impacts, risks, and opportunities

Policies, commitments, and targets

- ☑ Measuring progress towards environmental corporate targets
- ☑ Measuring progress towards environmental science-based targets

Strategy and financial planning

- ✓ Conducting environmental scenario analysis
- ☑ Implementing a climate transition plan
- ☑ Managing environmental reporting, audit, and verification processes

(4.3.1.4) Reporting line

Select from:

☑ Reports to the Chief Sustainability Officer (CSO)

(4.3.1.5) Frequency of reporting to the board on environmental issues

Select from:

✓ More frequently than quarterly

(4.3.1.6) **Please explain**

Reporting through the CSO, the Sustainability Director integrates climate and nature topics into strategy, tracks progress on corporate targets, and manages related risks and opportunities (DMA, TCFD, TNFD). The Sustainability Director assists with developing sustainability strategy and targets, interpreting new regulations, evaluates risks for Aptar. The Director oversees climate-and nature-related risks and opportunities by conducting scenario analyses, supporting the development and implementation of the Climate Transition Plan aligned with overall sustainability strategy. The Sustainability Director, chosen for his expertise, keeps up with megatrends through external networks and stays informed via meetings, departmental reports, and board updates. Engagement with groups like WBCSD offers ongoing education; for instance, the energy manager attends yearly WBCSD energy sessions. Internally, tools and dashboards monitor KPIs, targets, and sustainability performance.

Biodiversity

(4.3.1.1) Position of individual or committee with responsibility

Executive level

✓ Chief Financial Officer (CFO)

(4.3.1.2) Environmental responsibilities of this position

Dependencies, impacts, risks and opportunities

☑ Managing environmental dependencies, impacts, risks, and opportunities

Strategy and financial planning

- ✓ Implementing a climate transition plan
- ☑ Implementing the business strategy related to environmental issues
- ✓ Managing acquisitions, mergers, and divestitures related to environmental issues
- ☑ Managing annual budgets related to environmental issues
- ☑ Managing major capital and/or operational expenditures relating to environmental issues

Other

✓ Providing employee incentives related to environmental performance

(4.3.1.4) Reporting line

Select from:

☑ Reports to the Chief Executive Officer (CEO)

(4.3.1.5) Frequency of reporting to the board on environmental issues

Select from:

✓ More frequently than quarterly

(4.3.1.6) Please explain

Chief Financial Officer (CFO) plays a central role in overseeing sustainability topics, particularly in external reporting, assurance, operational control, and risk management. The CFO confirmed Aptar's public commitment to the Task Force on Climate- and Nature-Related Financial Disclosures (TCFD/TNFD) and supported the integration of these frameworks, along with the Double Materiality Assessment, into Aptar's Enterprise Risk Management (ERM) process. The VP of Group Treasury, reporting directly to the CFO, leads Enterprise Risk Management, ensuring climate- and nature-related risks are considered in capital and operational expenditures and strategic planning—such as renewable energy purchases, Power Purchasing Agreements, and refrigerant conversions. The CFO also oversees the Internal Audit Team, which conducts annual reviews of ESG/EHS control systems and reports findings directly to the CFO. Additionally, the Chief Accounting Officer, reporting to the CFO, leads an internal taskforce that meets monthly to address third-party assurance and regulatory ESG disclosure requirements. This taskforce regularly updates the CFO and the Board's Audit Committee. To stay informed, the CFO and her team hold regular meetings with the Chief Sustainability Officer and other functional leaders. They also participate in external financial networks and training webinars to stay current on ESG disclosure trends. Members of Aptar's Finance Team attend sessions hosted by major financial firms focused on evolving ESG reporting standards. The CFO receives monthly updates on sustainability performance, KPIs, and strategic goals during Executive Committee meetings, ensuring financial oversight is aligned with Aptar's broader sustainability strategy.

Biodiversity

(4.3.1.1) Position of individual or committee with responsibility

Executive level

✓ Chief Procurement Officer (CPO)

(4.3.1.2) Environmental responsibilities of this position

Engagement

- ☑ Managing supplier compliance with environmental requirements
- ☑ Managing value chain engagement related to environmental issues

Policies, commitments, and targets

- ✓ Measuring progress towards environmental corporate targets
- ✓ Measuring progress towards environmental science-based targets

Strategy and financial planning

- ✓ Implementing a climate transition plan
- ☑ Implementing the business strategy related to environmental issues

(4.3.1.4) Reporting line

Select from:

☑ Reports to the Chief Executive Officer (CEO)

(4.3.1.5) Frequency of reporting to the board on environmental issues

Select from:

✓ More frequently than quarterly

(4.3.1.6) Please explain

The Chief Purchasing Officer (CPO) has overall responsibility for the engagement and management of climate- and nature-related topics, particularly through collaboration with our suppliers and vendors. The CPO oversees the strategy for sourcing renewable energy, collaborates with the innovation teams to procure more sustainable materials for our products, and works with the operational excellence team to identify and implement more efficient technologies within our sites. As an example, the CPO and his organization were key facilitators of Aptar's recent execution of Power Purchasing Agreements in Europe and North America. The CPO and his organization host a Supplier Summit during which suppliers are encouraged to pitch ideas that will support Aptar's sustainability journey. In advance of the Supplier Summit, suppliers are provided with Aptar's Supplier Playbook, which helps them navigate our sustainability targets and initiatives. During the event, suppliers receive training on disclosure processes and tools. The CPO has responsibility for climate- and nature-related topics as they affect suppliers and purchases because he possesses the knowledge and expertise for making strategic purchasing decisions, has experience with our carbon disclosure and supplier screening tools, and is considered a key member of the Global Sustainability Council. The CPO is informed of and monitors climate- and nature-related issues through regular meetings with the Chief Sustainability Officer, the Director of Global Sustainability, the Senior Director of Product Sustainability and topic-specific consultants. Because it is integrated into his strategy, the CPO delivers sustainability messaging through presentations to the Executive Committee and Board of Directors. The CPO is also a member of external networks that keep members informed about sustainability drivers and offer training webinars.

Biodiversity

(4.3.1.1) Position of individual or committee with responsibility

Executive level

☑ Chief Sustainability Officer (CSO)

(4.3.1.2) Environmental responsibilities of this position

Dependencies, impacts, risks and opportunities

- ☑ Assessing environmental dependencies, impacts, risks, and opportunities
- ☑ Assessing future trends in environmental dependencies, impacts, risks, and opportunities
- ☑ Managing environmental dependencies, impacts, risks, and opportunities

Policies, commitments, and targets

- ☑ Monitoring compliance with corporate environmental policies and/or commitments
- ☑ Measuring progress towards environmental corporate targets
- ☑ Measuring progress towards environmental science-based targets
- ✓ Setting corporate environmental policies and/or commitments
- ✓ Setting corporate environmental targets

Strategy and financial planning

- ☑ Developing a business strategy which considers environmental issues
- ☑ Developing a climate transition plan
- ✓ Implementing a climate transition plan
- ☑ Implementing the business strategy related to environmental issues
- ☑ Managing environmental reporting, audit, and verification processes

(4.3.1.4) Reporting line

Select from:

☑ Reports to the Chief Executive Officer (CEO)

(4.3.1.5) Frequency of reporting to the board on environmental issues

Select from:

✓ More frequently than quarterly

(4.3.1.6) Please explain

The Chief Sustainability Officer (CSO) integrates climate and nature topics into strategy, tracks progress on corporate targets, and manages related risks and opportunities (DMA, TCFD, TNFD). The CSO leads sustainability strategy and target-setting, oversees ESG disclosure policies, interprets new regulations, evaluates risks for Aptar, and stays current on megatrends through external groups. In 2024 the CSO participated in a 3-week, in-person immersive leadership-in-sustainability program delivered in partnership with leading business schools and the World Business Council for Sustainable Development (WBCSD). As Liaison Delegate, the CSO attends the annual WBCSD membership summit. The CSO and her team are responsible to keep other leaders, including the Executive Committee and Board of Directors informed of Aptar's sustainability progress through dedicated tools and dashboards focused on the sustainability performance, KPIs, targets and goals.

Biodiversity

(4.3.1.1) Position of individual or committee with responsibility

Other

☑ Other, please specify: Sustainability Director

(4.3.1.2) Environmental responsibilities of this position

Dependencies, impacts, risks and opportunities

- ☑ Assessing environmental dependencies, impacts, risks, and opportunities
- ✓ Assessing future trends in environmental dependencies, impacts, risks, and opportunities
- ☑ Managing environmental dependencies, impacts, risks, and opportunities

Policies, commitments, and targets

- ☑ Measuring progress towards environmental corporate targets
- ☑ Measuring progress towards environmental science-based targets

Strategy and financial planning

✓ Conducting environmental scenario analysis

- ✓ Implementing a climate transition plan
- ✓ Managing environmental reporting, audit, and verification processes

(4.3.1.4) Reporting line

Select from:

☑ Reports to the Chief Sustainability Officer (CSO)

(4.3.1.5) Frequency of reporting to the board on environmental issues

Select from:

✓ More frequently than quarterly

(4.3.1.6) Please explain

Reporting through the CSO, the Sustainability Director integrates climate and nature topics into strategy, tracks progress on corporate targets, and manages related risks and opportunities (DMA, TCFD, TNFD). The Sustainability Director assists with developing sustainability strategy and targets, interpreting new regulations, evaluates risks for Aptar. The Director oversees climate-and nature-related risks and opportunities by conducting scenario analyses, supporting the development and implementation of the Climate Transition Plan aligned with overall sustainability strategy. The Sustainability Director, chosen for his expertise, keeps up with megatrends through external networks and stays informed via meetings, departmental reports, and board updates. Engagement with groups like WBCSD offers ongoing education; for instance, the energy manager attends yearly WBCSD energy sessions. Internally, tools and dashboards monitor KPIs, targets, and sustainability performance.

Climate change

(4.3.1.1) Position of individual or committee with responsibility

Executive level

☑ General Counsel

(4.3.1.2) Environmental responsibilities of this position

Policies, commitments, and targets

☑ Monitoring compliance with corporate environmental policies and/or commitments

- ☑ Measuring progress towards environmental corporate targets
- ☑ Measuring progress towards environmental science-based targets
- ✓ Setting corporate environmental policies and/or commitments
- ✓ Setting corporate environmental targets

Strategy and financial planning

- ☑ Developing a business strategy which considers environmental issues
- ☑ Managing environmental reporting, audit, and verification processes

(4.3.1.4) Reporting line

Select from:

☑ Reports to the Chief Executive Officer (CEO)

(4.3.1.5) Frequency of reporting to the board on environmental issues

Select from:

✓ More frequently than quarterly

(4.3.1.6) Please explain

This role serve as liasion between the Global Sustainability Team actions and the Board of Directors audit Governance Committee.

Biodiversity

(4.3.1.1) Position of individual or committee with responsibility

Other

✓ Other, please specify :Biodiversity Manager

(4.3.1.2) Environmental responsibilities of this position

Policies, commitments, and targets

✓ Measuring progress towards environmental science-based targets

Strategy and financial planning

- ✓ Implementing a climate transition plan
- ☑ Managing annual budgets related to environmental issues
- ☑ Managing major capital and/or operational expenditures relating to environmental issues

(4.3.1.4) Reporting line

Select from:

☑ Other, please specify :Operations - COO reporting line

(4.3.1.5) Frequency of reporting to the board on environmental issues

Select from:

✓ More frequently than quarterly

(4.3.1.6) Please explain

With a strong background in various aspects of Environmental, Health, and Safety (EHS) and Sustainability, the Global Biodiversity Manager collaborates through weekly cross-functional meetings with the Global Sustainability and EHS Teams. Key responsibilities include developing Aptar's biodiversity roadmap, water strategy, and managing CSRD ESRS E4 topics. Although the position is currently a temporary assignment, Aptar is evaluating the role to address these topics in the long term. To remain updated on best practices and emerging technologies, the manager actively participates in external working groups such as the World Business Council for Sustainable Development (WBCSD) and attends annual sessions focused on biodiversity management. Internally, the role utilizes dedicated tools and dashboards to track sustainability performance, key performance indicators (KPIs), and goals.

Water

(4.3.1.1) Position of individual or committee with responsibility

Executive level

✓ Chief Financial Officer (CFO)

(4.3.1.2) Environmental responsibilities of this position

Dependencies, impacts, risks and opportunities

☑ Managing environmental dependencies, impacts, risks, and opportunities

Strategy and financial planning

- ✓ Implementing a climate transition plan
- ☑ Managing acquisitions, mergers, and divestitures related to environmental issues
- ✓ Managing annual budgets related to environmental issues
- ☑ Managing major capital and/or operational expenditures relating to environmental issues

Other

☑ Providing employee incentives related to environmental performance

(4.3.1.4) Reporting line

Select from:

☑ Reports to the Chief Executive Officer (CEO)

(4.3.1.5) Frequency of reporting to the board on environmental issues

Select from:

✓ More frequently than quarterly

(4.3.1.6) Please explain

Chief Financial Officer (CFO) plays a central role in overseeing sustainability topics, particularly in external reporting, assurance, operational control, and risk management. The CFO confirmed Aptar's public commitment to the Task Force on Climate- and Nature-Related Financial Disclosures (TCFD/TNFD) and supported the integration of these frameworks, along with the Double Materiality Assessment, into Aptar's Enterprise Risk Management (ERM) process. The VP of Group Treasury, reporting directly to the CFO, leads Enterprise Risk Management, ensuring climate- and nature-related risks are considered in capital and operational expenditures and strategic planning—such as renewable energy purchases, Power Purchasing Agreements, and refrigerant conversions. The CFO also oversees the Internal Audit Team, which conducts annual reviews of ESG/EHS control systems and reports findings directly to the CFO. Additionally, the Chief Accounting Officer, reporting to the CFO, leads an internal taskforce that meets monthly to address third-party assurance and regulatory ESG disclosure requirements. This taskforce regularly updates the CFO and the Board's Audit Committee. To stay informed, the CFO and her team hold regular meetings with the Chief Sustainability Officer and other functional leaders. They also participate in external financial networks and training webinars to stay current on ESG disclosure trends. Members of Aptar's

Finance Team attend sessions hosted by major financial firms focused on evolving ESG reporting standards. The CFO receives monthly updates on sustainability performance, KPIs, and strategic goals during Executive Committee meetings, ensuring financial oversight is aligned with Aptar's broader sustainability strategy. [Add row]

(4.5) Do you provide monetary incentives for the management of environmental issues, including the attainment of targets?

Climate change

(4.5.1) Provision of monetary incentives related to this environmental issue

Select from:

✓ Yes

(4.5.2) % of total C-suite and board-level monetary incentives linked to the management of this environmental issue

100

(4.5.3) Please explain

Aptar believes it is the responsibility of all leaders and functions to maintain responsible business practices and to contribute toward our public sustainability commitments. These commitments should not be managed separately. Therefore, sustainability topics are integrated into leader incentives according to their accountabilities and what they have the ability to impact within their roles. For example, Aptar's Segment Presidents have sustainability targets integrated into their plans, which support our public commitments on climate change (responsible consumption) within our own operations and through suppliers/product development (renewable energy purchases, recycled content, recyclability of products).

Water

(4.5.1) Provision of monetary incentives related to this environmental issue

Select from:

✓ Yes

(4.5.2) % of total C-suite and board-level monetary incentives linked to the management of this environmental issue

(4.5.3) Please explain

Aptar is in-process of developing measurements and commitments along our biodiversity road map, including freshwater targets and goals in compliance with SBTN guidelines. This will subsequently help integrate incentives related to the management of water quality and consumption.

[Fixed row]

(4.5.1) Provide further details on the monetary incentives provided for the management of environmental issues (do not include the names of individuals).

Climate change

(4.5.1.1) Position entitled to monetary incentive

Board or executive level

✓ Chief Procurement Officer (CPO)

(4.5.1.2) **Incentives**

Select all that apply

- **☑** Bonus % of salary
- **✓** Salary increase
- **✓** Shares

(4.5.1.3) Performance metrics

Emission reduction

☑ Increased share of renewable energy in total energy consumption

Policies and commitments

- ☑ Increased supplier compliance with environmental requirements
- ☑ New or tighter environmental requirements applied to purchasing practices

Engagement

- ☑ Increased engagement with suppliers on environmental issues
- ☑ Increased engagement with smallholders on environmental issues
- ☑ Increased value chain visibility (traceability, mapping)

(4.5.1.4) Incentive plan the incentives are linked to

Select from:

☑ Both Short-Term and Long-Term Incentive Plan, or equivalent

(4.5.1.5) Further details of incentives

Our CPO is entitled to compensation (calculated as fix and variable part based on a repartition between company and personal performance.) considering collaborations with suppliers along the value chain. For example, the CPO is responsible for securing renewable energy purchases as well as hosting the Supplier Summit through which Aptar learns of innovative solutions to support our targets. The CPO also oversees the Supplier Diversity Program and Due Diligence Screening.

(4.5.1.6) How the position's incentives contribute to the achievement of your environmental commitments and/or climate transition plan

This incentive is linked to our commitment to SBTi commitment 2°C for Scope 3 throughout our supply chain by 2030.

Water

(4.5.1.1) Position entitled to monetary incentive

Senior-mid management

☑ Environment/Sustainability manager

(4.5.1.2) **Incentives**

Select all that apply

✓ Other, please specify

(4.5.1.3) Performance metrics

Strategy and financial planning

☑ Other strategy and financial planning-related metrics, please specify: Implementation of Biodiversity Roadmap

Pollution

☑ Other pollution-related metrics, please specify: Implementation of management system improvements aligned to Double Materiality nature risks.

(4.5.1.4) Incentive plan the incentives are linked to

Select from:

☑ The incentives are not linked to an incentive plan, or equivalent (e.g. discretionary bonus in the reporting year)

(4.5.1.5) Further details of incentives

Beginning in 2024 a formal but temporary assignment of "Global Biodiversity Manager" was introduced to further develop and commence implementation of the Biodiversity Roadmap. The company utilizes these temporary assignments to evaluate whether or not a more permanent position is needed for the implementation of a longer-term strategy, and typically places high-potential employees into these stretch assignments so they can showcase their ability to lead strategic development in unchartered territory.

(4.5.1.6) How the position's incentives contribute to the achievement of your environmental commitments and/or climate transition plan

This incentive is linked to our commitment to SBTi commitment for Scope 3 throughout our supply chain by 2030.

Climate change

(4.5.1.1) Position entitled to monetary incentive

Board or executive level

✓ Chief Sustainability Officer (CSO)

(4.5.1.2) Incentives

Select all that apply

- **☑** Bonus % of salary
- **✓** Salary increase
- **✓** Shares

(4.5.1.3) Performance metrics

Targets

- ✓ Progress towards environmental targets
- ✓ Achievement of environmental targets
- ✓ Organization performance against an environmental sustainability index
- ☑ Reduction in absolute emissions in line with net-zero target

Strategy and financial planning

☑ Board approval of climate transition plan

(4.5.1.4) Incentive plan the incentives are linked to

Select from:

☑ Both Short-Term and Long-Term Incentive Plan, or equivalent

(4.5.1.5) Further details of incentives

Our CSO is entitled to compensation (calculated as fix and variable part) considering progress along Aptar's public climate- and nature-related targets. The responsibility includes development and implementation of strategies, processes, systems, disclosures as well as influencing other Aptar leaders in a non-direct reporting relationship.

(4.5.1.6) How the position's incentives contribute to the achievement of your environmental commitments and/or climate transition plan

This incentive is linked to our commitment to SBTi commitment for Scope 1, Scope 2 and Scope 3 throughout our supply chain by 2030.

Climate change

(4.5.1.1) Position entitled to monetary incentive

Board or executive level

✓ Chief Financial Officer (CFO)

(4.5.1.2) Incentives

Select all that apply

- **☑** Bonus % of salary
- ✓ Salary increase
- Shares

(4.5.1.3) Performance metrics

Strategy and financial planning

☑ Increased alignment of capex with transition plan and/or sustainable finance taxonomy

(4.5.1.4) Incentive plan the incentives are linked to

Select from:

☑ Both Short-Term and Long-Term Incentive Plan, or equivalent

(4.5.1.5) Further details of incentives

Our CFO oversees the Internal and External auditing processes, which enable transparent performance disclosures along our public commitments. The CFO is incentivized according to implementation of appropriate disclosure systems, and ensuring data accuracy. These audit plans include oversight of the climate- and nature-related performance data and systems.

(4.5.1.6) How the position's incentives contribute to the achievement of your environmental commitments and/or climate transition plan

This incentive is linked to our SBTi and Net Zero commitment for the management of sustainable finance taxonomy.

Climate change

(4.5.1.1) Position entitled to monetary incentive

Senior-mid management

✓ Energy manager

(4.5.1.2) **Incentives**

Select all that apply

- **☑** Bonus % of salary
- **☑** Bonus set figure

(4.5.1.3) Performance metrics

Targets

☑ Reduction in absolute emissions in line with net-zero target

Emission reduction

- ☑ Implementation of an emissions reduction initiative
- ✓ Reduction in emissions intensity
- ☑ Increased share of renewable energy in total energy consumption
- ✓ Reduction in absolute emissions

Resource use and efficiency

- ☑ Improvements in emissions data, reporting, and third-party verification
- ☑ Energy efficiency improvement
- ☑ Reduction in total energy consumption

(4.5.1.4) Incentive plan the incentives are linked to

Select from:

☑ Short-Term Incentive Plan, or equivalent, only (e.g. contractual annual bonus)

(4.5.1.5) Further details of incentives

Our Global Energy Manager is entitled to a bonus of their salary (calculated as fix and variable part based on a repartition between company and personal performance.) considering alignment to reduction of energy consumption and GHG emissions in compliance with our validated SBT target and Net Zero scenario, implementation of energy conservation measures and increase of renewables.

(4.5.1.6) How the position's incentives contribute to the achievement of your environmental commitments and/or climate transition plan

This incentive is linked to SBTi and Net Zero commitment in alignment to 1.5°C commitment for Scope 1+2 by 2030.

Climate change

(4.5.1.1) Position entitled to monetary incentive

Senior-mid management

✓ Environment/Sustainability manager

(4.5.1.2) **Incentives**

Select all that apply

- **☑** Bonus % of salary
- **☑** Bonus set figure

(4.5.1.3) Performance metrics

Targets

- ✓ Progress towards environmental targets
- ☑ Reduction in absolute emissions in line with net-zero target

Strategy and financial planning

✓ Achievement of climate transition plan

	Resource	use	and	efficiency
--	----------	-----	-----	------------

☑ Improvements in emissions data, reporting, and third-party verification

(4.5.1.4) Incentive plan the incentives are linked to

Select from:

☑ Short-Term Incentive Plan, or equivalent, only (e.g. contractual annual bonus)

(4.5.1.5) Further details of incentives

Our Sustainability Director is entitled to a bonus of their salary (calculated as fix and variable part based on a repartition between company and personal performance) considering progress to environmental targets, including reduction in absolute GHG emissions in compliance with SBT target and Net Zero scenario, achieving the climate transition plan to Net Zero.

(4.5.1.6) How the position's incentives contribute to the achievement of your environmental commitments and/or climate transition plan

This incentive is linked to SBTi and Net Zero commitment in alignment to 1.5°C commitment for Scope 1+2 by 2030 and in general aligned to the climate transition plan.

[Add row]

(4.6) Does your organization have an environmental policy that addresses environmental issues?

Does your organization have any environmental policies?
Select from: ✓ Yes

[Fixed row]

(4.6.1) Provide details of your environmental policies.

Row 1

(4.6.1.1) Environmental issues covered

Select all that apply

- **✓** Climate change
- **✓** Water
- **☑** Biodiversity

(4.6.1.2) Level of coverage

Select from:

✓ Organization-wide

(4.6.1.3) Value chain stages covered

Select all that apply

- ✓ Direct operations
- ✓ Upstream value chain
- **☑** Downstream value chain

(4.6.1.4) Explain the coverage

Aptar environmental policy ("EHS Policy") covers all regions where we are operating, as well as our value chain. We do not have any exclusions in terms of geographical areas and/or business activities.

(4.6.1.5) Environmental policy content

Environmental commitments

- ☑ Commitment to a circular economy strategy
- ☑ Commitment to avoidance of negative impacts on threatened and protected species
- ☑ Commitment to comply with regulations and mandatory standards

- ☑ Commitment to take environmental action beyond regulatory compliance
- ☑ Commitment to stakeholder engagement and capacity building on environmental issues

Climate-specific commitments

- ☑ Commitment to 100% renewable energy
- ✓ Commitment to not invest in fossil-fuel expansion

Water-specific commitments

- ☑ Commitment to reduce water consumption volumes
- ✓ Commitment to reduce water withdrawal volumes
- ☑ Commitment to reduce or phase out hazardous substances
- ☑ Commitment to control/reduce/eliminate water pollution
- ☑ Commitment to safely managed WASH in local communities

Social commitments

- ☑ Adoption of the UN International Labour Organization principles
- ☑ Commitment to promote gender equality and women's empowerment
- ☑ Commitment to respect internationally recognized human rights

Additional references/Descriptions

☑ Description of renewable electricity procurement practices

- ☑ Commitment to the conservation of freshwater ecosystems
- ☑ Commitment to water stewardship and/or collective action

(4.6.1.6) Indicate whether your environmental policy is in line with global environmental treaties or policy goals

Select all that apply

- ✓ Yes, in line with the Paris Agreement
- ☑ Yes, in line with Sustainable Development Goal 6 on Clean Water and Sanitation

(4.6.1.7) Public availability

Select from:

☑ Publicly available

(4.6.1.8) Attach the policy

EHS Policy 2022.pdf [Add row]

(4.10) Are you a signatory or member of any environmental collaborative frameworks or initiatives?

(4.10.1) Are you a signatory or member of any environmental collaborative frameworks or initiatives?

Select from:

✓ Yes

(4.10.2) Collaborative framework or initiative

Select all that apply

☑ UN Global Compact

✓ Science-Based Targets for Nature (SBTN)

✓ Science-Based Targets Initiative (SBTi)

☑ Ellen MacArthur Foundation Global Commitment

☑ Global Reporting Initiative (GRI) Community Member

☑ Task Force on Nature-related Financial Disclosures (TNFD)

▼ Task Force on Climate-related Financial Disclosures (TCFD)

✓ World Business Council for Sustainable Development (WBCSD)

(4.10.3) Describe your organization's role within each framework or initiative

Ellen MacArthur Foundation: Aptar joined the New Plastic Economy Global Commitment in 2019. We have defined sustainability targets for our product portfolio which are based on Ellen MacArthur definitions. In addition, we are committed to circular economy principles and the participation in this framework support our strategy. GRI Community Member: Aptar is part of GRI community, our annual sustainability reporting is based on the GRI standard framework and our corporate sustainability team joins different events and training hosted by GRI. Science Based Targets Initiative and Science Based Targets for Nature: Aptar developed SBT target climate-related since year 2020 and in 2023 we have defined our Biodiversity road map in compliance with SBTN guidelines. TNFD and TCFD: Aptar since the beginning supported the development and piloting test of these methods, taking part of working group and commissions. WBCSD: Since 2019, Aptar has been a member of WBCSD supporting different working groups and topics, our CEO and our Liaison Delegate collaborated proactive to their agenda. Our Chief Sustainability Officer received the LEAP Leading Women Award recognition and completed a leadership program sponsored by WBCSD. We are also committed to the UN Global Compact and publish a progress report on an annual basis. [Fixed row]

(4.11) In the reporting year, did your organization engage in activities that could directly or indirectly influence policy, law, or regulation that may (positively or negatively) impact the environment?

(4.11.1) External engagement activities that could directly or indirectly influence policy, law, or regulation that may impact the environment

Select all that apply

✓ Yes, we engaged indirectly through, and/or provided financial or in-kind support to a trade association or other intermediary organization or individual whose activities could influence policy, law, or regulation

(4.11.2) Indicate whether your organization has a public commitment or position statement to conduct your engagement activities in line with global environmental treaties or policy goals

Select from:

✓ Yes, we have a public commitment or position statement in line with global environmental treaties or policy goals

(4.11.3) Global environmental treaties or policy goals in line with public commitment or position statement

Select all that apply

☑ Paris Agreement

(4.11.4) Attach commitment or position statement

SBTi Certificate AptarGroup.pdf

(4.11.5) Indicate whether your organization is registered on a transparency register

Select from:

✓ No

(4.11.8) Describe the process your organization has in place to ensure that your external engagement activities are consistent with your environmental commitments and/or transition plan

The organization has implemented various engagement relationships and activities lead by our global sustainability team that supports functional leaders across Aptar business divisions and geographies on specific topic (for example Paris Agreement and SBT commitment, Recyclability of the products, renewables and green energy), ensuring a common approach that can be in alignment with corporate sustainability strategies addressing the main environmental issues (for example decarbonization transition plan, climate, water and nature-related risks and opportunities). The global sustainability team, during the year, defined currently meeting with functional leaders on which they can have alignment on the main activities on-going respect Aptar external engagement, and, in case we should have misalignment, the internal team support the different departments on topics. Aptar external engagement activities are focused on the identified environmental dependencies, risks and impacts, for example engagement in the SBT for net zero target and TCFD, engagement in SBTN for biodiversity/freshwater management and TNFD risks assessment, recyclability for the New Plastic Economy Global Commitment and Circular Economy targets, renewables targets for the decarbonization program supporting our climate transition plan [Fixed row]

(4.11.2) Provide details of your indirect engagement on policy, law, or regulation that may (positively or negatively) impact the environment through trade associations or other intermediary organizations or individuals in the reporting year.

Row 1

(4.11.2.1) Type of indirect engagement

Select from:

☑ Indirect engagement via other intermediary organization or individual

(4.11.2.2) Type of organization or individual

Select from:

☑ Non-Governmental Organization (NGO) or charitable organization

(4.11.2.3) State the organization or position of individual

Aptar during the reporting year collaborated with WBCSD organization through Liaison Delegate (our CSO) and Membership by our CEO

(4.11.2.5) Environmental issues relevant to the policies, laws, or regulations on which the organization or individual has taken a position

Select all that apply

☑ Climate change

V Water

(4.11.2.6) Indicate whether your organization's position is consistent with the organization or individual you engage with

Select from:

Consistent

(4.11.2.7) Indicate whether your organization attempted to influence the organization or individual's position in the reporting year

Select from:

✓ Yes, we publicly promoted their current position

(4.11.2.8) Describe how your organization's position is consistent with or differs from the organization or individual's position, and any actions taken to influence their position

Aptar during the reporting year supported different working groups of WBCSD focused on climate change topic and biodiversity, especially on this last topic, we agreed in-kind support about the development of road map testing for the engagement of the value chain in the SBTN for nature.

(4.11.2.9) Funding figure your organization provided to this organization or individual in the reporting year (currency)

120000

(4.11.2.10) Describe the aim of this funding and how it could influence policy, law or regulation that may impact the environment

The funding was based on the membership fees that allow Aptar to take part of the working group and plan indirect activities that may impact the environmental topics

(4.11.2.11) Indicate if you have evaluated whether your organization's engagement is aligned with global environmental treaties or policy goals

Select from:

✓ Yes, we have evaluated, and it is aligned

(4.11.2.12) Global environmental treaties or policy goals aligned with your organization's engagement on policy, law or regulation

Select all that apply

- ✓ Paris Agreement
- ☑ Sustainable Development Goal 6 on Clean Water and Sanitation [Add row]

(4.12) Have you published information about your organization's response to environmental issues for this reporting year in places other than your CDP response?

Select from:

✓ Yes

(4.12.1) Provide details on the information published about your organization's response to environmental issues for this reporting year in places other than your CDP response. Please attach the publication.

Row 1

(4.12.1.1) **Publication**

Select from:

☑ In mainstream reports, in line with environmental disclosure standards or frameworks

(4.12.1.2) Standard or framework the report is in line with

Select all that apply

- **✓** ESRS
- ✓ GRI
- **✓** TCFD
- **✓** TNFD

(4.12.1.3) Environmental issues covered in publication

Select all that apply

✓ Climate change

- **✓** Water
- **☑** Biodiversity

(4.12.1.4) Status of the publication

Select from:

✓ Complete

(4.12.1.5) Content elements

Select all that apply

- Strategy
- **✓** Governance
- **☑** Emission targets
- **☑** Emissions figures
- ☑ Risks & Opportunities
- **✓** Water pollution indicators
- ☑ Content of environmental policies

- ✓ Value chain engagement
- ✓ Dependencies & Impacts
- ☑ Biodiversity indicators
- ✓ Public policy engagement
- ✓ Water accounting figures

(4.12.1.6) Page/section reference

Please see entire report summary

(4.12.1.7) Attach the relevant publication

2025-05-29_Aptar-CSR-24_FINAL.pdf

(4.12.1.8) Comment

Aptar Corporate Sustainability report is published annually [Add row]

C5. Business strategy					
(5.1) Does your organization use scenario analysis to identify environmental outcomes?					
Climate change					
(5.1.1) Use of scenario analysis					
Select from: ✓ Yes					
(5.1.2) Frequency of analysis					
Select from: ✓ Annually					
Water					
(5.1.1) Use of scenario analysis					
Select from: ✓ Yes					
(5.1.2) Frequency of analysis					
Select from: ✓ Annually [Fixed row]					

(5.1.1) Provide details of the scenarios used in your organization's scenario analysis.

Climate change

(5.1.1.1) Scenario used

Climate transition scenarios

☑ IEA NZE 2050

(5.1.1.3) Approach to scenario

Select from:

☑ Qualitative and quantitative

(5.1.1.4) Scenario coverage

Select from:

✓ Organization-wide

(5.1.1.5) Risk types considered in scenario

Select all that apply

- Policy
- ✓ Market
- Reputation
- ✓ Technology
- **☑** Liability

(5.1.1.6) Temperature alignment of scenario

Select from:

✓ 1.5°C or lower

(5.1.1.7) Reference year

2024

(5.1.1.8) Timeframes covered

Select all that apply

- **✓** 2030
- **✓** 2050
- **✓** 2100

(5.1.1.9) Driving forces in scenario

Local ecosystem asset interactions, dependencies and impacts

- ✓ Changes to the state of nature
- ☑ Climate change (one of five drivers of nature change)

Finance and insurance

✓ Sensitivity of capital (to nature impacts and dependencies)

Stakeholder and customer demands

- **✓** Consumer sentiment
- **☑** Consumer attention to impact

Regulators, legal and policy regimes

- **☑** Global regulation
- ✓ Political impact of science (from galvanizing to paralyzing)

Relevant technology and science

☑ Granularity of available data (from aggregated to local)

Direct interaction with climate

☑ On asset values, on the corporate

Macro and microeconomy

☑ Globalizing markets

(5.1.1.10) Assumptions, uncertainties and constraints in scenario

In line with recommendations made by the TNFD, a short-term timeframe of 2030 is envisaged as this is the agreed timeline established in the Global Biodiversity Framework (GBF) at a policy level for 'halting and reversing nature loss'. The longer timeframe in the GBF of 'living in harmony with nature by 2050' is used as a second reference point for transition. The scenario aligns with the IEA WEO NZE2050 pathway, an ambitious climate scenario in line with the Paris Agreement. Climate and biodiversity policy are developed in an integrated way, with strong international coordination and implementation of the Global Biodiversity Framework (GBF). Targets to reduce key pressures on nature (e.g. GBF Target 7) are embedded in national law, including binding measures on pollution, plastic use, and landuse change. Climate goals are reinforced through circular economy legislation, deforestation bans, and carbon pricing, supported by scenarios such as IEA WEO NZE2050; in this scenario, a rising carbon price drives decarbonization. Corporate sustainability disclosure, aligned with GBF Target 15, becomes mandatory globally, and requires businesses to report on nature-related impacts and dependencies, in addition to reporting on climate emissions underpinned by strengthened regulatory oversight. • Markets and corporate behavior shift in response to policy alignment and public demand. Consumers increasingly prefer products with low emissions, high recyclability, and traceable supply chains. Companies that integrate climate and biodiversity considerations into decision-making gain access to capital and markets. Nature-related risk and impact assessment becomes a core component of corporate governance. Investor expectations and reporting frameworks drive convergence between climate and nature strategies. • Environmental pressures are reduced through combined climate and nature action. Protected areas are expanded to meet the 30x30 target (GBF Target 3), and large-scale ecological restoration is implemented under GBF Target 2. Nature-based solutions such as wetland restoration play a dual role in supporting biodiversity and regulating climate. Water availability remains uneven, but basin-level cooperation, naturebased infrastructure, and sustainable land management help mitigate vulnerability to droughts, floods, and erosion. In many regions, ecosystems begin to recover and climate change impacts are stabilized, supported by shared targets, accountability, and long-term

(5.1.1.11) Rationale for choice of scenario

The chosen IEA WEO NZE2050 scenario is highly relevant to the resilience of Aptar's business strategy as it reflects an ambitious yet realistic pathway aligned with the Paris Agreement and the company's commitment to a 1.5°C science-based target. By adopting this scenario, Aptar ensures that its strategic planning is grounded in a forward-looking framework that anticipates regulatory, technological, and market shifts critical to long-term sustainability. This scenario integrates key assumptions that are central to Aptar's strategic and financial planning, including: - **Policy and regulatory evolution** in Europe and the U.S., which directly impacts compliance costs and operational decisions. - **Macroeconomic trends** such as market demand fluctuations and raw material pricing, which influence investment priorities and supply chain resilience. - **Technological advancement** toward low-carbon solutions, aligning with Aptar's innovation roadmap and product development strategy. - **Energy transition** and conservation measures, which support cost-efficiency and emissions reduction targets. - **CO\pi pricing projections*** (e.g., \$140/ton by 2030), which are embedded in financial risk assessments and scenario modeling. By evaluating both quantitative and qualitative impacts within a long-term horizon (2030–2100), Aptar reinforces its ability to adapt to external pressures while maintaining strategic coherence. This approach strengthens the organization's resilience by ensuring that decisions are informed by credible, science-based scenarios and that financial planning reflects the cost and opportunity of transitioning to a low-carbon economy.

Water

(5.1.1.1) Scenario used

Physical climate scenarios

✓ RCP 8.5

(5.1.1.2) Scenario used SSPs used in conjunction with scenario

Select from:

✓ SSP1

(5.1.1.3) Approach to scenario

Select from:

✓ Qualitative and quantitative

(5.1.1.4) Scenario coverage

Select from:

✓ Organization-wide

(5.1.1.5) Risk types considered in scenario

Select all that apply

- ✓ Acute physical
- ✓ Chronic physical

(5.1.1.6) Temperature alignment of scenario

Select from:

✓ 4.0°C and above

(5.1.1.7) Reference year

2024

(5.1.1.8) Timeframes covered

Select all that apply

✓ 2030

✓ 2040

2080

✓ 2100

(5.1.1.9) Driving forces in scenario

Local ecosystem asset interactions, dependencies and impacts

✓ Changes to the state of nature

☑ Climate change (one of five drivers of nature change)

(5.1.1.10) Assumptions, uncertainties and constraints in scenario

Aptar explored physical scenarios addressing patterns of physical impacts attributed to climate change. Aptar chose as baseline scenarios the RCP 8.5 scenario as it is broadly aligned with current policies or business-as-usual with increasing GHG emissions and higher GHG concentration levels. RCP8.5 is generally taken as the worst case for climate scenarios with emissions continuing to rise throughout the 21 century and a global temperature rise of around 5 degrees by 2100 compared to pre-industrial levels. The major assumptions are based on changes to the state of nature, and climate change as one of five drivers of nature change. The severity of the driving forces identified in the analysis has been identified considering the past and current impact of them. Under the assessed transition scenarios, the physical impacts in the scenario lead to measurable impacts on the business such as production losses due to business interruptions through physical impacts such as flooding or water stress or investment needs to protect against and face these physical impacts. Aptar assumed that the scenario's regionalized projections can be mapped to own manufacturing sites in different regions and lead to a variety of impacts on assets and production.

(5.1.1.11) Rationale for choice of scenario

Aptar selected the RCP 8.5 scenario as a baseline for assessing physical climate risks because it represents a high-impact, business-as-usual pathway that aligns with current global emission trends and policy inertia. As the most severe scenario in terms of projected temperature rise and environmental disruption, RCP 8.5 provides a robust stress test for Aptar's business strategy, allowing the organization to evaluate its resilience under extreme conditions. This scenario is particularly relevant to Aptar's strategic and financial planning for several reasons: - **Alignment with risk management priorities**: By modeling worst-case physical impacts such as flooding, water stress, and extreme weather events, Aptar can proactively identify vulnerabilities across its global manufacturing footprint and prioritize investments in adaptation and site protection. - **Integration of regionalized projections**: The ability to map scenario data to specific production sites enables localized risk assessments, which are critical for operational continuity and capital planning. - **Support for long-term asset resilience**: The scenario informs decisions on infrastructure upgrades, insurance strategies, and contingency planning, ensuring that Aptar's assets remain functional and protected under worsening climate conditions. - **Consistency with strategic assumptions**: The scenario incorporates key drivers of nature change—such as climate variability and resource depletion—that are already embedded in Aptar's sustainability and operational risk frameworks. By using RCP 8.5, Aptar strengthens its capacity to anticipate and respond to disruptive climate impacts, reinforcing the resilience of its business model and ensuring that financial planning reflects both short-term risks and long-term adaptation needs.

[Add row]

(5.1.2) Provide details of the outcomes of your organization's scenario analysis.

Climate change

(5.1.2.1) Business processes influenced by your analysis of the reported scenarios

Select all that apply

- ☑ Risk and opportunities identification, assessment and management
- ✓ Strategy and financial planning
- ☑ Resilience of business model and strategy
- ✓ Target setting and transition planning

(5.1.2.2) Coverage of analysis

Select from:

✓ Organization-wide

(5.1.2.3) Summarize the outcomes of the scenario analysis and any implications for other environmental issues

Aptar faces a variety of business impacts including revenue and cost implications, impacts on assets and own manufacturing sites, need for investments or business interruption to physical impacts such as flooding or water stress. Aptar faces several transition and physical risks for their manufacturing sites, due to the need to retrofit the building portfolio to 2030 as well as through physical, as Aptar faces high water stress among many sites. As both scenarios predict an increasing demand in recycled & more sustainable products, Aptar can make us of the opportunity through current efforts in PCR content, circular economy efforts and more sustainable product solutions. Informing business strategy: APTAR is in a good position regarding its current roadmap towards more sustainable and recycled products as this is projected by both transition scenarios. Further, APTAR needs to reduce emissions further as in line with its 1.5°C aligned SBT in order to reduce the risk to face high CO2-prices in future. Further, APTAR needs to revise their operation after as physical scenarios predict high impacts including drought, water stress or flooding. Financial planning is affected by upcoming financial impacts of climate scenario-related risks and opportunities, e.g. for example the upcoming CO2 price according to the IEA projections affects the development of an internal carbon price.

Water

(5.1.2.1) Business processes influenced by your analysis of the reported scenarios

Select all that apply

☑ Risk and opportunities identification, assessment and management

- ✓ Strategy and financial planning
- ☑ Resilience of business model and strategy
- **✓** Capacity building
- ✓ Target setting and transition planning

(5.1.2.2) Coverage of analysis

Select from:

✓ Organization-wide

(5.1.2.3) Summarize the outcomes of the scenario analysis and any implications for other environmental issues

Aptar faces a variety of business impacts including revenue and cost implications, impacts on assets and own manufacturing sites, need for investments or business interruption to physical impacts such as flooding or water stress. Aptar faces several transition and physical risks for their manufacturing sites, due to the need to retrofit the building portfolio to 2030 as well as through physical, as Aptar faces high water stress among many sites.

[Fixed row]

(5.2) Does your organization's strategy include a climate transition plan?

(5.2.1) Transition plan

Select from:

✓ Yes, we have a climate transition plan which aligns with a 1.5°C world

(5.2.3) Publicly available climate transition plan

Select from:

✓ Yes

(5.2.4) Plan explicitly commits to cease all spending on, and revenue generation from, activities that contribute to fossil fuel expansion

Select from:

✓ Yes

(5.2.5) Description of activities included in commitment and implementation of commitment

Aptar's climate transition plan includes actions that align with climate science and support the transition to a low-carbon economy. In addition, Aptar developed an ISO 14064-1 Compliant Greenhouse Gas Emissions (GHG) management system to map and ensure accurate carbon accounting and reporting. More in accuracy, our climate commitments are part of how we care for the environment. Aptar has set science-based targets (SBTs) for Scope 1 and Scope 2 emissions reductions that are in line with requirements to keep global warming at 1.5° Celsius by 2030. In addition, we have a renewable electricity target, as well as a Scope 3 target. Aptar's targets have been validated by the Science Based Targets Initiative (SBTi). They are as follows: • Aptar commits to reduce absolute Scope 1 and 2 GHG emissions 82% by 2030 from a 2019 base year. • Aptar commits to reduce absolute Scope 3 GHG emissions from purchased goods and services, upstream transportation and distribution, waste generated in operations, and downstream transportation and distribution 14% by 2030 from a 2019 base year. • Aptar also commits to increase annual sourcing of renewable electricity from 57% in 2019 to 100% by 2030.

(5.2.7) Mechanism by which feedback is collected from shareholders on your climate transition plan

Select from:

☑ We have a different feedback mechanism in place

(5.2.8) Description of feedback mechanism

Aptar's carbon transition plan to 1.5°C scenario, as reported annually in both our CDP assessment response and Corporate Sustainability Report, is summarized into a document called "Carbon Transition Plan" and posted within our ESG Reporting Center Hub on Aptar.com. We collect feedback via survey, and are able to share mid-long term targets for sustainability and climate actions in compliance to SBT and the 1.5°C scenario.

(5.2.9) Frequency of feedback collection

Select from:

✓ More frequently than annually

(5.2.10) Description of key assumptions and dependencies on which the transition plan relies

Aptar's climate transition plan considered key assumptions based on the future market trends for the more sustainable products from customers, regulatory changes on policy focused on the support to the transition to a low-carbon economy in compliance with climate science. In addition, the reduction of GHG emissions are also considering the technology influence and evolution, especially for the energy and water conservation measures and process efficiency. The major dependencies on which the climate transition plan relies is the policy scenarios and regulatory compliances, that can influence markets and consumer's trends that, consequently, will influence the entire strategy and actions defined in our plan. The following key assumptions can be identified: Scenario Alignment: The plan is built around the IEA

Net Zero Emissions by 2050 (NZE2050) scenario, which is consistent with the Paris Agreement and Aptar's ambition to align its science-based targets to a 1.5°C pathway. Carbon Pricing: Aptar incorporates the IEA's projected EU carbon price of \$140/ton by 2030, which influences financial modeling and investment decisions. Policy and Regulatory Evolution: The strategy assumes progressive climate policies in Europe and the U.S., including stricter emissions regulations and incentives for renewable energy adoption. Technology Trends: The plan anticipates continued advancement and cost reduction in low-carbon technologies, particularly in energy efficiency and renewable sourcing. Energy Mix Shift: Aptar expects a transition toward 100% renewable electricity by 2030, up from 57% in 2019, as a cornerstone of its Scope 2 emissions reduction. Macroeconomic Variables: Market demand, raw material pricing, and supply chain dynamics are factored in as variables that may influence emissions and investment capacity.

(5.2.11) Description of progress against transition plan disclosed in current or previous reporting period

Aptar's climate transition plan reported many progress against the previous reporting period, for example: in 2020 and 2021, we significantly surpassed our original goals for emission reductions to the WB2C scenario. Increases in renewable energy sourcing accounted for much of this progress. In 2022, we updated the Science Based Targets Initiative (SBTi) to set Scope 1 and 2 absolute emissions reductions goals to align to the 1.5C scenario. During the current reporting period we reduced Scope 1 and 2 emissions by 82% from 2019 baseline and we increased the renewables to 97%. Additionally, we increased our focus on our Scope 3 (value chain) emissions, as related to raw materials. Scope 3 emissions account for 92% of our total emissions and within that, most of these emissions come from Aptar's purchased goods & services, or raw materials. Plastic resins are our largest contributor to the raw material category therefore an added focus is needed to make progress towards our Scope 3 target. In addition to updating our Scope 1 and 2 targets, we are also working with the SBTi to update our Scope 3 baseline numbers as we have improved our ability to account for these emissions and have made some significant acquisitions since our initial validation in 2020.

(5.2.12) Attach any relevant documents which detail your climate transition plan (optional)

2024-Climate-Transition-Plan vF.pdf

(5.2.13) Other environmental issues that your climate transition plan considers

Select all that apply

✓ Plastics

✓ Water

☑ Biodiversity

(5.2.14) Explain how the other environmental issues are considered in your climate transition plan

Aptar Carbon Transition Plan reports also our commitment and results to plastics, for example plastic packaging recyclability and use of alternative materials, water management and biodiversity road map started during the current reporting year.

[Fixed row]

(5.3) Have environmental risks and opportunities affected your strategy and/or financial planning?

(5.3.1) Environmental risks and/or opportunities have affected your strategy and/or financial planning

Select from:

✓ Yes, both strategy and financial planning

(5.3.2) Business areas where environmental risks and/or opportunities have affected your strategy

Select all that apply

- ✓ Upstream/downstream value chain
- Operations

[Fixed row]

(5.3.1) Describe where and how environmental risks and opportunities have affected your strategy.

Upstream/downstream value chain

(5.3.1.1) Effect type

Select all that apply

- **✓** Risks
- Opportunities

(5.3.1.2) Environmental issues relevant to the risks and/or opportunities that have affected your strategy in this area

Select all that apply

- ✓ Climate change
- ✓ Water

(5.3.1.3) Describe how environmental risks and/or opportunities have affected your strategy in this area

Climate and water-related risks and opportunities influence strategic decision in our upstream value chain, reflected for example in the decarbonization of our overall value chain and the related costs for both short and long-term time horizons. Aptar's strategic decisions in value chain are based on the target to optimize the uses

and consumptions of natural resources in our value chain processes. Especially the reduction of greenhouse gas emissions and non-renewable resources, use of electricity from renewable energy sources, water conservation measures, and the reduction of process waste streams to landfill. These climate and water-related decisions can generate opportunities in terms of value chain cost reduction and increased value of fixed assets. As an example, a strategic decision in value chain included the definition of our sustainable materials uses, decarbonization of processes and optimization of freshwater that will define a decrease of the environmental impact along value chain in terms of greenhouse gases emissions and water consumption/pollution for direct and indirect activities.

Operations

(5.3.1.1) Effect type

Select all that apply

✓ Risks

Opportunities

(5.3.1.2) Environmental issues relevant to the risks and/or opportunities that have affected your strategy in this area

Select all that apply

✓ Climate change

✓ Water

(5.3.1.3) Describe how environmental risks and/or opportunities have affected your strategy in this area

Climate and water-related risks and opportunities influence strategic decision in our operations, reflected for example in the decarbonisation of our overall organization and the related costs for both short and long-term time horizons. Aptar's strategic decisions in operations are based on the target to optimize the consumption of natural resources in our operations and processes. Especially the reduction of greenhouse gas emissions, use of electricity from renewable energy sources, water conservation measures, and the reduction of process waste streams to landfill. These climate and water-related decisions can generate opportunities in terms of operational cost reduction and increased value of fixed assets. As an example, a strategic decision in operations included the definition of our Energy and Water Road Map in which the energy and water audit program, renewable energy plan and energy and water conservation measures for processes and buildings have been defined to decrease the environmental impact of operations in terms of greenhouse gases emissions and water consumption/pollution for direct and indirect activities.

(5.3.2) Describe where and how environmental risks and opportunities have affected your financial planning.

Row 1

[Add row]

(5.3.2.1) Financial planning elements that have been affected

Select all that apply

✓ Revenues

✓ Acquisitions and divestments

- ✓ Direct costs
- **✓** Indirect costs
- ☑ Capital allocation
- ☑ Capital expenditures

(5.3.2.2) Effect type

Select all that apply

- ✓ Risks
- Opportunities

(5.3.2.3) Environmental issues relevant to the risks and/or opportunities that have affected these financial planning elements

Select all that apply

- ✓ Climate change
- ✓ Water

(5.3.2.4) Describe how environmental risks and/or opportunities have affected these financial planning elements

Market requests and customer needs are generating climate and water risks and opportunities that are influencing our financial planning to investments for sustainable products and clean processes. This aspect is leading to an adaption in the financial planning in order to invest into clean technology for our operations. For example in 2019 Aptar defined the new global energy road map with goals and targets in order to reduce energy consumption in our operations, increase to 100% renewable electricity sources, implement energy conservation measures in our buildings and core processes. During the reporting year, our water road map defined water audit in the sites located in water stressed areas to reduce water consumptions and optimize wastewater pollution. The financial planning has been influenced about capital expenditures and allocation due to these new investments to reach our goals and targets year by year. The opportunity related to the development of low carbon product is driving the investment in clean technology that is influencing our financial planning for next years. The time horizon of financial planning linked to the energy and water road map is covering mid / long term period considering different investments such as PPAs for renewable energy and new clean technologies to be carbon neutral by 2050. Aptar carbon transition plan is supported with a dedicated CAPEX (defined at corporate level) for specific activities that contribute to the decarbonization of our operations and core processes. For example investments in clean technology and energy conservation measures in operations.

[Add row]

	Identification of spending/revenue that is aligned with your organization's climate transition
	Select from:
[Fixed row]	✓ No, but we plan to in the next two years
(5.9.1) Water-related CAPEX (+/- 9	% change)
1	
(5.9.2) Anticipated forward trend for	for CAPEX (+/- % change)
1	
(5.9.3) Water-related OPEX (+/- %	% change)
0	
0 (5.9.4) Anticipated forward trend for	for OPEX (+/- % change)

(5.9.5) Please explain

The main Capex focus is based on water stressed sites, these sites are required to implement consumption reduction projects. In addition, the awareness training is serving to educate more Aptar employees in all locations (in 2023 we completed new water circularity training and questionnaire for management and quality of the water). Further, we are improving the accuracy of the data tracked through our CapEx system in order to more efficiently identify and monitor sustainability related projects. About OPEX, we do not have it in our process. Capex, respect the previous reporting year, has not changed due to the market performance, it is linked to the sales revenue and budget forecast.

[Fixed row]

(5.10) Does your organization use an internal price on environmental externalities?

Use of internal pricing of environmental externalities	Primary reason for not pricing environmental externalities	Explain why your organization does not price environmental externalities
Select from: ✓ No, but we plan to in the next two years		Aptar is investigating the right approach about the adoption of the internal price on water and climate related externalities

[Fixed row]

(5.11) Do you engage with your value chain on environmental issues?

	Engaging with this stakeholder on environmental issues	Environmental issues covered
Suppliers	Select from:	Select all that apply
	✓ Yes	Select all that apply ✓ Climate change
		☑ Water

	Engaging with this stakeholder on environmental issues	Environmental issues covered
		✓ Plastics
Customers	Select from: ✓ Yes	Select all that apply ✓ Climate change ✓ Water ✓ Plastics
Investors and shareholders	Select from: ✓ Yes	Select all that apply ✓ Climate change ✓ Water ✓ Plastics
Other value chain stakeholders	Select from: ✓ Yes	Select all that apply ✓ Climate change ✓ Water ✓ Plastics

[Fixed row]

(5.11.1) Does your organization assess and classify suppliers according to their dependencies and/or impacts on the environment?

Climate change

(5.11.1.1) Assessment of supplier dependencies and/or impacts on the environment

Select from:

✓ Yes, we assess the dependencies and/or impacts of our suppliers

(5.11.1.2) Criteria for assessing supplier dependencies and/or impacts on the environment

Select all that apply

- ✓ Contribution to supplier-related Scope 3 emissions
- ☑ Dependence on ecosystem services/environmental assets
- **✓** Impact on pollution levels

(5.11.1.3) % Tier 1 suppliers assessed

Select from:

✓ 1-25%

(5.11.1.4) Define a threshold for classifying suppliers as having substantive dependencies and/or impacts on the environment

The threshold is defined by the percentage of suppliers engaged for the mapping of their GHG reduction targets and reporting annual emissions. In the reporting year, we measured the success of this strategy versus our targets as we have engaged suppliers with dedicated programs (such as EcoVadis). We classify suppliers as having substantive environmental dependencies or impacts when their operations involve resource-intensive activities, high exposure to environmental risks, or when they are cri

(5.11.1.5) % Tier 1 suppliers meeting the threshold for substantive dependencies and/or impacts on the environment

Select from:

✓ 51-75%

(5.11.1.6) Number of Tier 1 suppliers meeting the thresholds for substantive dependencies and/or impacts on the environment

594

Water

(5.11.1.1) Assessment of supplier dependencies and/or impacts on the environment

Select from:

✓ Yes, we assess the dependencies and/or impacts of our suppliers

(5.11.1.2) Criteria for assessing supplier dependencies and/or impacts on the environment

Select all that apply

- ✓ Dependence on water
- ☑ Impact on water availability
- ☑ Other, please specify :Water consumption

(5.11.1.3) % Tier 1 suppliers assessed

Select from:

✓ 1-25%

(5.11.1.4) Define a threshold for classifying suppliers as having substantive dependencies and/or impacts on the environment

In 2024, we evaluated for the first time the effectiveness of our strategy to engage suppliers in mapping their water consumption and management, through dedicated programs such as EcoVadis. Suppliers are classified as having significant environmental dependencies or impacts based on sector practices and sustainability questionnaires. To date, 226 suppliers—representing 26.5% of those assessed and 39% of total spend through our platforms—report water-related metrics.

(5.11.1.5) % Tier 1 suppliers meeting the threshold for substantive dependencies and/or impacts on the environment

Select from:

✓ 26-50%

(5.11.1.6) Number of Tier 1 suppliers meeting the thresholds for substantive dependencies and/or impacts on the environment

226

Plastics

(5.11.1.1) Assessment of supplier dependencies and/or impacts on the environment

Select from:

✓ Yes, we assess the dependencies and/or impacts of our suppliers

(5.11.1.2) Criteria for assessing supplier dependencies and/or impacts on the environment

Select all that apply

- ☑ Impact on plastic waste and pollution
- **✓** Impact on pollution levels
- ☑ Other, please specify: Primary data about CO2 plastic impact

(5.11.1.3) % Tier 1 suppliers assessed

Select from:

✓ 1-25%

(5.11.1.4) Define a threshold for classifying suppliers as having substantive dependencies and/or impacts on the environment

The threshold is defined by the percentage of suppliers engaged for the mapping of their primary CO2 data impact for the production of plastic. In the reporting year we measured the success of this strategy versus our targets as we have engaged suppliers with dedicated programs (such as CDP Supply Chain). So far, we have engaged our top 10 resin suppliers by volume, representing approximately 85% of our Scope 3 emissions.

(5.11.1.5) % Tier 1 suppliers meeting the threshold for substantive dependencies and/or impacts on the environment

Select from:

✓ 76-99%

(5.11.1.6) Number of Tier 1 suppliers meeting the thresholds for substantive dependencies and/or impacts on the environment

10

[Fixed row]

(5.11.2) Does your organization prioritize which suppliers to engage with on environmental issues?

Climate change

(5.11.2.1) Supplier engagement prioritization on this environmental issue

Select from:

✓ Yes, we prioritize which suppliers to engage with on this environmental issue

(5.11.2.2) Criteria informing which suppliers are prioritized for engagement on this environmental issue

Select all that apply

- ☑ In line with the criteria used to classify suppliers as having substantive dependencies and/or impacts relating to climate change
- ✓ Material sourcing
- ✓ Procurement spend
- ✓ Product safety and compliance
- **✓** Regulatory compliance

(5.11.2.4) Please explain

Our supplier engagement strategy is based around the Scope 3 component of our SBTi-approved science-based target, which commitment to working with our suppliers (representing more than 80% of our supply chain emissions). The coverage of this target prioritizes Aptar's engagement to "key suppliers" monitoring key KPIs that will help Aptar assess suppliers that will maximize the science-based target's impact. The target's requirement of suppliers to report emission reduction progress will not only encourage progress on GHG emissions management but also allow measurement of absolute emissions reductions. Our supplier information collection approach is based around information related to climate change management, GHG reporting, energy efficiency, and renewables thanks to the use of EcoVadis program. The target's requirement of suppliers to report emission reduction progress will not only encourage progress on GHG emissions management but also allow measurement of absolute emissions reductions.

Water

(5.11.2.1) Supplier engagement prioritization on this environmental issue

Select from:

✓ Yes, we prioritize which suppliers to engage with on this environmental issue

(5.11.2.2) Criteria informing which suppliers are prioritized for engagement on this environmental issue

Select all that apply

- ☑ In line with the criteria used to classify suppliers as having substantive dependencies and/or impacts relating to water
- ✓ Supplier performance improvement

(5.11.2.4) Please explain

Our supplier engagement strategy is based around the engagement of suppliers on water management and water consumption. The coverage of this target prioritizes Aptar's engagement to "key suppliers" monitoring key KPIs that will help Aptar assess suppliers which will maximize the water conservation measures. The target's requirement of suppliers to report water consumption progress will not only encourage progress on water road map but also allow measurement of absolute water reduction and water conservation initiatives.

Plastics

(5.11.2.1) Supplier engagement prioritization on this environmental issue

Select from:

✓ Yes, we prioritize which suppliers to engage with on this environmental issue

(5.11.2.2) Criteria informing which suppliers are prioritized for engagement on this environmental issue

Select all that apply

- ☑ In line with the criteria used to classify suppliers as having substantive dependencies and/or impacts relating to plastics
- ✓ Material sourcing
- ✓ Product lifecycle

(5.11.2.4) Please explain

Our supplier engagement strategy is based around the Scope 3 component of our SBTi-approved science-based target, which is committed to work with our suppliers (representing more than 80% of its supply chain emissions) the coverage of this target prioritizes Aptar's engagement to "key suppliers" monitoring key KPIs that will help Aptar to analyze suppliers which will maximize the science-based target's impact. The target's requirement of suppliers to report emission reduction progress will not only encourage progress on GHG emissions management but also allow measurement of absolute emissions reductions, sustainable materials and product life cycle. For 2025, EcoVadis' Carbon Action Module and other digital solutions are currently being assessed as Aptar's tool to collect accurate data from our main suppliers already registered in EcoVadis. We plan to collect carbon data from our suppliers, including Scope 1, 2, and 3 emissions, as well as product-level carbon footprint (PCF), in line with recognized standards and the PACT framework. In parallel, we are currently working with our IT department on building a solution that could enable us to connect these ESG metrics with our systems.

[Fixed row]

(5.11.5) Do your suppliers have to meet environmental requirements as part of your organization's purchasing process?

Climate change

(5.11.5.1) Suppliers have to meet specific environmental requirements related to this environmental issue as part of the purchasing process

Select from:

✓ Yes, environmental requirements related to this environmental issue are included in our supplier contracts

(5.11.5.2) Policy in place for addressing supplier non-compliance

Select from:

☑ Yes, we have a policy in place for addressing non-compliance

(5.11.5.3) Comment

Aptar develops solutions in accordance with fair business dealings and labour laws, while respecting the environment and its natural resources. In order to guarantee to its customers that it provides them with high quality products that come from a fair and respectful value chain, Aptar expects this approach to be implemented throughout its entire value chain. The Sustainable Purchasing Charter outlines the expectations Aptar has for a partnership with its suppliers based on fair dealing, honesty and mutual respect. Compliance with this Charter is a prerequisite for consideration and a requirement for a commercial relationship with Aptar. Aptar expects its suppliers to comply with local requirements in terms of environment and sustainable development and more particularly comply with environmental norms where applicable, and supporting the decarbonization process reducing GHG emissions in alignment with climate science target and scenarios. In addition, our internal policy support the retain and engage of our value chain in case they are not compliance with regulatory requirements and/or Aptar strategic targets. We also provide suppliers with a Supplier Playbook to help them understand how their efforts affect our initiatives.

Water

(5.11.5.1) Suppliers have to meet specific environmental requirements related to this environmental issue as part of the purchasing process

Select from:

☑ Yes, environmental requirements related to this environmental issue are included in our supplier contracts

(5.11.5.2) Policy in place for addressing supplier non-compliance

Select from:

☑ Yes, we have a policy in place for addressing non-compliance

(5.11.5.3) Comment

Aptar develops solutions in accordance with fair business dealings and labour laws, while respecting the environment and its natural resources. In order to guarantee to its customers that it provides them with high quality products that come from a fair and respectful value chain, Aptar expects this approach to be implemented throughout its entire value chain. The Sustainable Purchasing Charter outlines the expectations Aptar has for a partnership with its suppliers based on fair dealing, honesty and mutual respect. Compliance with this Charter is a prerequisite for consideration and a requirement for a commercial relationship with Aptar. Aptar expects its suppliers to comply with local requirements in terms of environment and sustainable development and more particularly comply with environmental norms where applicable, and supporting the water management and water conservation measures supporting the biodiversity and nature preservation, in alignment with science based target for nature. In addition, our internal policy support the retain and engage of our value chain in case they are not compliance with regulatory requirements and/or Aptar strategic targets. We also provide suppliers with a Supplier Playbook to help them understand how their efforts affect our initiatives. [Fixed row]

(5.11.6) Provide details of the environmental requirements that suppliers have to meet as part of your organization's purchasing process, and the compliance measures in place.

Climate change

(5.11.6.1) Environmental requirement

Select from:

☑ Environmental disclosure through a non-public platform

(5.11.6.2) Mechanisms for monitoring compliance with this environmental requirement

Select all that apply

- ☑ Supplier scorecard or rating
- ✓ Supplier self-assessment
- ☑ Other, please specify :Aptar Global Sustainable Purchasing Charter

(5.11.6.3) % tier 1 suppliers by procurement spend required to comply with this environmental requirement

Select from:

✓ 76-99%

(5.11.6.4) % tier 1 suppliers by procurement spend in compliance with this environmental requirement

Select from:

✓ 76-99%

(5.11.6.7) % tier 1 supplier-related scope 3 emissions attributable to the suppliers required to comply with this environmental requirement

Select from:

☑ 76-99%

(5.11.6.8) % tier 1 supplier-related scope 3 emissions attributable to the suppliers in compliance with this environmental requirement

Select from:

✓ 26-50%

(5.11.6.9) Response to supplier non-compliance with this environmental requirement

Select from:

✓ Retain and engage

(5.11.6.10) % of non-compliant suppliers engaged

Select from:

✓ 1-25%

(5.11.6.11) Procedures to engage non-compliant suppliers

Select all that apply

- ✓ Providing information on appropriate actions that can be taken to address non-compliance
- ☑ Re-integrating suppliers back into upstream value chain based on the successful and verifiable completion of activities

(5.11.6.12) Comment

Our supplier engagement strategy focuses on collecting key ESG data related to climate change management, GHG emissions reporting, energy efficiency, renewable energy use, and Science-Based Target (SBT) commitments, primarily through EcoVadis. This strategy prioritizes engagement with "key suppliers", using targeted KPIs to help Aptar identify those whose actions will most effectively contribute to our SBT goals. By requiring suppliers to report on their emissions reduction progress, we not only promote improvements in GHG management but also enable the measurement of absolute emissions reductions. To date, 594 suppliers – representing 69,5% of all suppliers assessed through our platforms and tools and accounting for 77,3% of our total spend with suppliers assessed through our platforms and tools – report climate change metrics.

Water

(5.11.6.1) Environmental requirement

Select from:

▼ Total water withdrawal volumes reduction

(5.11.6.2) Mechanisms for monitoring compliance with this environmental requirement

Select all that apply

- ✓ Supplier scorecard or rating
- **✓** Supplier self-assessment
- ☑ Other, please specify :Aptar Global Sustainable Purchasing Charter

(5.11.6.3) % tier 1 suppliers by procurement spend required to comply with this environmental requirement

Select from:

✓ 76-99%

(5.11.6.4) % tier 1 suppliers by procurement spend in compliance with this environmental requirement

Select from:

✓ 26-50%

(5.11.6.5) % tier 1 suppliers with substantive environmental dependencies and/or impacts related to this environmental issue required to comply with this environmental requirement

Select from:

✓ 76-99%

(5.11.6.6) % tier 1 suppliers with substantive environmental dependencies and/or impacts related to this environmental issue that are in compliance with this environmental requirement

Select from:

✓ 26-50%

(5.11.6.9) Response to supplier non-compliance with this environmental requirement

Select from:

✓ Retain and engage

(5.11.6.10) % of non-compliant suppliers engaged

Select from:

✓ 1-25%

(5.11.6.11) Procedures to engage non-compliant suppliers

Select all that apply

- ☑ Providing information on appropriate actions that can be taken to address non-compliance
- ☑ Re-integrating suppliers back into upstream value chain based on the successful and verifiable completion of activities

(5.11.6.12) Comment

Our supplier engagement strategy focuses on collecting key ESG data related to climate change management, GHG emissions reporting, energy efficiency, renewable energy use, and Science-Based Target (SBT) commitments—primarily through EcoVadis. This strategy prioritizes engagement with "key suppliers," using targeted KPIs to help Aptar identify those whose actions will most effectively contribute to our SBT goals. By requiring suppliers to report on their emissions reduction progress, we not only promote improvements in GHG management but also enable the measurement of absolute emissions reductions. To date, 226 suppliers – representing 26.5% of all suppliers assessed through our platforms and tools and accounting for 39% of our total spend with suppliers assessed through our platforms and tools – report water metrics.

[Add row]

(5.11.7) Provide further details of your organization's supplier engagement on environmental issues.

Climate change

(5.11.7.2) Action driven by supplier engagement

Select from:

☑ Emissions reduction

(5.11.7.3) Type and details of engagement

Capacity building

- ✓ Provide training, support and best practices on how to measure GHG emissions
- ✓ Provide training, support and best practices on how to set science-based targets
- ☑ Support suppliers to develop public time-bound action plans with clear milestones

Information collection

- ☑ Collect climate transition plan information at least annually from suppliers
- ☑ Collect GHG emissions data at least annually from suppliers
- ☑ Collect targets information at least annually from suppliers

Innovation and collaboration

☑ Collaborate with suppliers on innovations to reduce environmental impacts in products and services

(5.11.7.4) Upstream value chain coverage

Select all that apply

✓ Tier 1 suppliers

(5.11.7.5) % of tier 1 suppliers by procurement spend covered by engagement

Select from:

✓ 76-99%

(5.11.7.6) % of tier 1 supplier-related scope 3 emissions covered by engagement

Select from:

✓ 26-50%

(5.11.7.9) Describe the engagement and explain the effect of your engagement on the selected environmental action

Aptar engaged resin vendors for primary data collection on the CO2 impact from the production of raw materials. In addition, we are asking information about actions planned to promote the decarbonization of processes and products. Annually we complete this process thanks to external tool like CDP Supply Chain module and Ecovadis tool. Our team support also the training of suppliers, educating them about methology to calculate emissions and report the performance. Quantitative thresholds has been defined in 90% of engagement.

(5.11.7.10) Engagement is helping your tier 1 suppliers meet an environmental requirement related to this environmental issue

Select from:

☑ Yes, please specify the environmental requirement :GHG reduction and compliance with non financial disclosure regulatory requirement

(5.11.7.11) Engagement is helping your tier 1 suppliers engage with their own suppliers on the selected action

Select from:

✓ Yes

Water

(5.11.7.2) Action driven by supplier engagement

Select from:

☑ Total water withdrawal volumes reduction

(5.11.7.3) Type and details of engagement

Information collection

- ☑ Collect targets information at least annually from suppliers
- ☑ Collect water quantity information at least annually from suppliers (e.g., withdrawal and discharge volumes)

Innovation and collaboration

☑ Incentivize collaborative sustainable water management in river basins

(5.11.7.4) Upstream value chain coverage

Select all that apply

✓ Tier 1 suppliers

(5.11.7.5) % of tier 1 suppliers by procurement spend covered by engagement

Select from:

✓ 76-99%

(5.11.7.7) % tier 1 suppliers with substantive impacts and/or dependencies related to this environmental issue covered by engagement

Select from:

✓ 26-50%

(5.11.7.9) Describe the engagement and explain the effect of your engagement on the selected environmental action

Aptar engaged resin vendors for primary data collection on the water management and water consumptions related to the production of raw materials. In addition, we are asking information about actions planned to promote the water conservation measures. Annually we complete this process thanks to external tool like CDP Supply Chain module and Ecovadis tool. In addition, our team promote the incentivization of collaboration for the biodiversity road map on which we are planning to engage suppliers to a sustainable water management in the river basins. Quantitative thresholds has been defined in 90% of engagement.

(5.11.7.10) Engagement is helping your tier 1 suppliers meet an environmental requirement related to this environmental issue

Select from:

☑ Yes, please specify the environmental requirement :Water consumption reduction and compliance with local regulatory wastewater pollutants

(5.11.7.11) Engagement is helping your tier 1 suppliers engage with their own suppliers on the selected action

Select from:

✓ Yes

Plastics

(5.11.7.2) Action driven by supplier engagement

Select from:

☑ Circular economy

(5.11.7.3) Type and details of engagement

Innovation and collaboration

- ☑ Collaborate with suppliers on innovations to reduce environmental impacts in products and services
- ☑ Collaborate with suppliers to develop reuse infrastructure and reuse models

(5.11.7.4) Upstream value chain coverage

Select all that apply

✓ Tier 1 suppliers

(5.11.7.5) % of tier 1 suppliers by procurement spend covered by engagement

Select from:

✓ 76-99%

(5.11.7.9) Describe the engagement and explain the effect of your engagement on the selected environmental action

Aptar engaged resin vendors for the investigation of new sustainable materials following innovation to reuse and circular economy principle (recycled biofeedstock and renewables). In addition, we are asking information about actions planned to promote the circular economy measures. Annually we complete this process thanks to external tool like CDP Supply Chain module and Ecovadis tool. In addition, our team promote the incentivization of collaboration for the development of reuse models that can promote green product's solutions. Quantitative thresholds has been defined in 90% of engagement.

(5.11.7.11) Engagement is helping your tier 1 suppliers engage with their own suppliers on the selected action

Select from:

✓ Yes

[Add row]

(5.11.9) Provide details of any environmental engagement activity with other stakeholders in the value chain.

Climate change

(5.11.9.1) Type of stakeholder

Select from:

✓ Customers

(5.11.9.2) Type and details of engagement

Education/Information sharing

- ☑ Share information about your products and relevant certification schemes
- ☑ Share information on environmental initiatives, progress and achievements

Innovation and collaboration

- ☑ Align your organization's goals to support customers' targets and ambitions
- ☑ Collaborate with stakeholders in creation and review of your climate transition plan
- ☑ Collaborate with stakeholders on innovations to reduce environmental impacts in products and services
- ☑ Engage with stakeholders to advocate for policy or regulatory change

(5.11.9.3) % of stakeholder type engaged

Select from:

✓ 51-75%

(5.11.9.4) % stakeholder-associated scope 3 emissions

Select from:

✓ 76-99%

(5.11.9.5) Rationale for engaging these stakeholders and scope of engagement

Aptar engaged customers in the alignment process to decarbonization goals and science based targets thanks to ecodesign innovation of products and services. The rationale is related to the support of customer's strategy and commitment, increase market share and increase sales revenue of sustainable products. The scope is based on the GHG reduction, energy management renewables, circular economy, ecodesign, and biodiversity actions.

(5.11.9.6) Effect of engagement and measures of success

The effect of engagement is based on the major customer fidelization and we are measuring the success with the number of customers engaged in sustainability project and commitments (for example submit SBT or other sustainability claiming). Quantitative thresholds has been defined in 90% of engagement.

Water

(5.11.9.1) Type of stakeholder

Select from:

✓ Customers

(5.11.9.2) Type and details of engagement

Education/Information sharing

- ☑ Share information about your products and relevant certification schemes
- ☑ Share information on environmental initiatives, progress and achievements

Innovation and collaboration

- ✓ Align your organization's goals to support customers' targets and ambitions
- ☑ Collaborate with stakeholders on innovations to reduce environmental impacts in products and services
- ☑ Incentivize collaborative sustainable water management in river basins

(5.11.9.3) % of stakeholder type engaged

Select from:

✓ 51-75%

(5.11.9.5) Rationale for engaging these stakeholders and scope of engagement

Aptar planned the engagement of our customers in the alignment process to water management and biodiversity topic thanks to innovation of products and services for the reduction of water consumptions and wastewater pollution. The rationale is related to the support of customer's strategy and commitment, increase market share and increase sales revenue of sustainable products. The scope is based on the water management and biodiversity aspects related to freshwater conservation from river basins at risk.

(5.11.9.6) Effect of engagement and measures of success

The effect of engagement is based on the major customer fidelization and we are measuring the success with the number of customers engaged in sustainability project and commitments (for example submit SBT for nature or other sustainability claiming). Quantitative thresholds has been defined in 90% of engagement. [Add row]

(5.12) Indicate any mutually beneficial environmental initiatives you could collaborate on with specific CDP Supply Chain members.

Row 1

(5.12.1) Requesting member

Select from:

(5.12.2) Environmental issues the initiative relates to

Select all that apply

✓ Climate change

(5.12.4) Initiative category and type

Innovation

☑ New product or service that has a lower upstream emissions footprint

(5.12.5) Details of initiative

Use of post consumer recycled resin in product portfolio for customer.

Select all that apply ✓ Reduction of downstream value chain emissions (own scope 3)	
(5.12.7) Estimated timeframe for realization of benefits	
Select from: ✓ 1-3 years	
(5.12.8) Are you able to estimate the lifetime CO2e and/or v	vater savings of this initiative?
Select from: ✓ Yes, lifetime CO2e savings only	
(5.12.9) Estimated lifetime CO2e savings	
261	
(5.12.11) Please explain	
The CO2 benefit has been calculated on 5 million of finished products, using [Add row]	the post consumer recycled content plastic instead of conventional resin.
(5.13) Has your organization already implemented any mut member engagement?	ually beneficial environmental initiatives due to CDP Supply Chair
	Environmental initiatives implemented due to CDP Supply Chain member engagement
	Select from:
	220

(5.12.6) Expected benefits

Environmental initiatives implemented due to CDP Supply Chain member engagement
✓ Yes

[Fixed row]

(5.13.1) Specify the CDP Supply Chain members that have prompted your implementation of mutually beneficial environmental initiatives and provide information on the initiatives.

Row 1

(5.13.1.1) Requesting member

Select from:

(5.13.1.2) Environmental issues the initiative relates to

Select all that apply

✓ Climate change

(5.13.1.4) **Initiative ID**

Select from:

✓ Ini1

(5.13.1.5) Initiative category and type

Innovation

☑ New product or service that has a lower upstream emissions footprint

(5.13.1.6) Details of initiative

Product portfolio optimized with the use of post consumer recycled plastic.

(5.13.1.7) Benefits achieved

Select all that apply

☑ Reduction of downstream value chain emissions (own scope 3)

(5.13.1.8) Are you able to provide figures for emissions savings or water savings in the reporting year?

Select from:

✓ Yes, emissions savings only

(5.13.1.9) Estimated savings in the reporting year in metric tons of CO2e

260

(5.13.1.11) Please explain how success for this initiative is measured

LCA analysis completed to evaluate the CO2 saving

(5.13.1.12) Would you be happy for CDP Supply Chain members to highlight this work in their external communication?

Select from:

✓ Yes

[Add row]

C6. Environmental Performance - Consolidation Approach

(6.1) Provide details on your chosen consolidation approach for the calculation of environmental performance data.

	Consolidation approach used	Provide the rationale for the choice of consolidation approach
Climate change	Select from: ✓ Operational control	Aptar chose the same consolidation approach used in our financial accounting.
Water	Select from: ✓ Operational control	Aptar chose the same consolidation approach used in our financial accounting.
Plastics	Select from: ✓ Operational control	Aptar chose the same consolidation approach used in our financial accounting.
Biodiversity	Select from: ✓ Operational control	Aptar chose the same consolidation approach used in our financial accounting.

[Fixed row]

C7. Environmental performance - Climate Change	
(7.1) Is this your first year of reporting emissions data to CD	P?
Select from: ✓ No	
(7.1.1) Has your organization undergone any structural chan being accounted for in this disclosure of emissions data?	ges in the reporting year, or are any previous structural changes
	Has there been a structural change?
	Select all that apply ✓ No
[Fixed row]	
(7.1.2) Has your emissions accounting methodology, boundar	y, and/or reporting year definition changed in the reporting year
	Change(s) in methodology, boundary, and/or reporting year definition?
	Select all that apply
[Fixed row]	✓ No

(7.2) Select the name of the standard, protocol, or methodology you have used to collect activity data and calculate emissions.

Select all that apply

- **✓** ISO 14064-1
- ☑ The Greenhouse Gas Protocol: Scope 2 Guidance
- ☑ The Greenhouse Gas Protocol: Corporate Value Chain (Scope 3) Standard
- ☑ 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories
- ☑ The Greenhouse Gas Protocol: A Corporate Accounting and Reporting Standard (Revised Edition)
- ☑ Defra Environmental Reporting Guidelines: Including streamlined energy and carbon reporting guidance, 2019

(7.3) Describe your organization's approach to reporting Scope 2 emissions.

Scope 2, location-based	Scope 2, market-based	Comment	
Select from: ✓ We are reporting a Scope 2, location-based figure	Select from: ✓ We are reporting a Scope 2, market-based figure	Our official Scope 2 target is calculated with market based approach	

[Fixed row]

(7.4) Are there any sources (e.g. facilities, specific GHGs, activities, geographies, etc.) of Scope 1, Scope 2 or Scope 3 emissions that are within your selected reporting boundary which are not included in your disclosure?

Select from:

✓ No

(7.5) Provide your base year and base year emissions.

Scope 1

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

23022

(7.5.3) Methodological details

Measurement approach is based on the direct observation of inputs used in our direct operations (e.g. fuels and natural gas invoices). Emission factors are based on the database listed in section 7.2, we have mapped the main direct energy sources used in our plants, in agreement with GHG Protocol standards.

Scope 2 (location-based)

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

178400.0

(7.5.3) Methodological details

Measurement approach is based on the direct observation of inputs used in our direct operations (e.g. electricity invoices). Emission factors are based on the database listed in section 7.2, we have mapped the main direct electricity sources used in our plants, in agreement with GHG Protocol standards.

Scope 2 (market-based)

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

112703.0

(7.5.3) Methodological details

Measurement approach is based on the direct observation of inputs used in our direct operations (e.g. electricity invoices). Emission factors are based on the primary data from electricity suppliers, we have mapped the main direct electricity sources used in our plants, in agreement with GHG Protocol standards.

Scope 3 category 1: Purchased goods and services

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

340526

(7.5.3) Methodological details

Measurement approach is based on the direct observation of purchased goods and services spend during the reporting year for our direct operations (e.g. raw materials). Emission factors are based on the database listed in section 7.2, we have mapped the most material purchased goods and services used in our plants, in agreement with GHG Protocol standards.

Scope 3 category 2: Capital goods

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

0.0

(7.5.3) Methodological details

Not relevant and significance Scope 3 category for Aptar as per approval of SBT target audit.

Scope 3 category 3: Fuel-and-energy-related activities (not included in Scope 1 or 2)

(7.5.1) **Base year end**

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

11477.0

(7.5.3) Methodological details

Measurement approach is based on the direct observation of inputs used in our direct operations (e.g. electricity invoices). Emission factors are based on the primary data from electricity suppliers, we have mapped the main direct electricity sources used in our plants, in agreement with GHG Protocol standards.

Scope 3 category 4: Upstream transportation and distribution

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

13567.0

(7.5.3) Methodological details

Measurement approach is based on the direct observation of upstream transportation reports from our main suppliers. Emission factors are based on the database provided by our suppliers, we have mapped the top suppliers covering more than 80% of shipments with detailed routes and transportation means.

Scope 3 category 5: Waste generated in operations

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

16133.0

(7.5.3) Methodological details

Measurement approach is based on the direct observation of waste generated in our operations (e.g. waste amount reported). Emission factors are based on the database listed in section 7.2, we have mapped the main waste treatment scenarios related to waste produced in our plants, in agreement with GHG Protocol standards.

Scope 3 category 6: Business travel

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

4982.0

(7.5.3) Methodological details

Measurement approach is based on the direct observation of travel reports received from our travel agencies. Emission factors are based on the database like DEFRA, we have mapped the main business travel for employees with distance and transportation means.

Scope 3 category 7: Employee commuting

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

7735.0

(7.5.3) Methodological details

Measurement approach is based on the estimation of employee commuting travel for sites located in different regions. Emission factors are based on the database like DEFRA, we have mapped the number of employees (e.g. M&P) with average distance and transportation means.

Scope 3 category 8: Upstream leased assets

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

0.0

(7.5.3) Methodological details

Not relevant and significance Scope 3 category for Aptar as per approval of SBT target audit.

Scope 3 category 9: Downstream transportation and distribution

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

9044.0

(7.5.3) Methodological details

Measurement approach is based on the direct observation of downstream transportation reports from our main suppliers. Emission factors are based on the database provided by our suppliers, we have mapped the top suppliers covering more than 80% of shipments with detailed routes and transportation means.

Scope 3 category 10: Processing of sold products

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

4833.0

(7.5.3) Methodological details

Measurement approach is based on the direct observation of processing of sold products emissions (intensity KPIs) from report of Aptar customers. Main suppliers data has been collected. Emission factors are based on the primary data released by Aptar customer in their corporate sustainability reporting.

Scope 3 category 11: Use of sold products

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

0.0

(7.5.3) Methodological details

Not relevant and significance Scope 3 category for Aptar as per approval of SBT target audit.

Scope 3 category 12: End of life treatment of sold products

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

3502.0

(7.5.3) Methodological details

Measurement approach is based on the estimation of Aptar products end of life waste (e.g. end of life in different countries). Emission factors are based on the database listed in section 7.2, we have mapped the main waste treatment scenarios related to product end of life in agreement with GHG Protocol standards and national statistic about waste management scenarios.

Scope 3 category 13: Downstream leased assets

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

0.0

(7.5.3) Methodological details

Not relevant and significance Scope 3 category for Aptar as per approval of SBT target audit.

Scope 3 category 14: Franchises

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

0.0

(7.5.3) Methodological details

Not relevant and significance Scope 3 category for Aptar as per approval of SBT target audit.

Scope 3 category 15: Investments

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

15.0

(7.5.3) Methodological details

Measurement approach is based on the direct observation of direct and indirect emissions generated by company where Aptar has financial investments. All the investments has been collected and considered. Emission factors are based on the secondary datasets and sustainability reporting.

Scope 3: Other (upstream)

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

0.0

(7.5.3) Methodological details

Not relevant and significance Scope 3 category for Aptar as per approval of SBT target audit.

Scope 3: Other (downstream)

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

0.0

(7.5.3) Methodological details

Not relevant and significance Scope 3 category for Aptar as per approval of SBT target audit. [Fixed row]

(7.6) What were your organization's gross global Scope 1 emissions in metric tons CO2e?

Reporting year

(7.6.1) Gross global Scope 1 emissions (metric tons CO2e)

24805

(7.6.3) Methodological details

Scope 1 has been calculated considering the main direct emissions generated in our operations: natural gas, fuels, and refrigerants. The measurement approach is direct observation of invoices and data. Emission factors based on secondary dataset like DEFRA database.

[Fixed row]

(7.7) What were your organization's gross global Scope 2 emissions in metric tons CO2e?

Reporting year

(7.7.1) Gross global Scope 2, location-based emissions (metric tons CO2e)

164367

(7.7.2) Gross global Scope 2, market-based emissions (metric tons CO2e)

8174

(7.7.4) Methodological details

Aptar monitors Scope 2 emissions through direct observation of electricity consumed in each operation. Invoices are registered in dedicated tool. Emission factors are based on the primary and secondary datasets, from official national source. Renewable Energy Certificates are used for market-based emissions. [Fixed row]

(7.8) Account for your organization's gross global Scope 3 emissions, disclosing and explaining any exclusions.

Purchased goods and services

(7.8.1) Evaluation status

Select from:

✓ Relevant, calculated

(7.8.2) Emissions in reporting year (metric tons CO2e)

322230

(7.8.3) Emissions calculation methodology

Select all that apply

✓ Average product method

(7.8.4) Percentage of emissions calculated using data obtained from suppliers or value chain partners

100

(7.8.5) Please explain

Data are based on the raw materials purchased by Aptar and transformed in our operations. The data source is based on the SAP database, where we can calculate per each raw material the quantity purchased from specific vendors. We are considering plastics, metals, rubbers, and other chemicals. Emission factors are based on the secondary datasets IPCC AR5 and GWP100. The rationale behind the identification of these raw materials is linked to the fact that raw materials like plastics, metals, rubbers and other chemicals are the most important purchased goods and services consumed by our company core processes. The boundary of our reporting is from cradle to Aptar's gate. We do not have particular assumptions to declare and allocation method. Data has been third party verified (limited data assurance in compliance with ISO 14064-1).

Capital goods

(7.8.1) Evaluation status

Select from:

✓ Not relevant, explanation provided

(7.8.5) Please explain

Upstream emissions of purchased capital goods (such as injection molding press, compressors, buildings and other equipment) are not contributing significantly (1.0%) due to the fact that their emissions are allocated considering the entire life cycle of these capital goods (long term).

Fuel-and-energy-related activities (not included in Scope 1 or 2)

(7.8.1) Evaluation status

Select from:

✓ Relevant, calculated

(7.8.2) Emissions in reporting year (metric tons CO2e)

4750

(7.8.3) Emissions calculation methodology

Select all that apply

✓ Fuel-based method

(7.8.4) Percentage of emissions calculated using data obtained from suppliers or value chain partners

100

(7.8.5) Please explain

Activity data based on the transportation and distribution of raw materials, semi-finished components and finished products to customers paid for by Aptar. Data collection based on incoterms included into the supplier's contracts and sustainability reporting from our main suppliers (covering 60% of total spend). Distance and transportation means collected from database considering delivery notes and invoices. Emission factors for transportation by road, by sea, by rail and by air based on primary data calculation by suppliers. Emission factors are based on the secondary datasets IPCC AR5 and GWP100. Calculation is based on the WtW methodology. Data has been third party verified (limited data assurance in compliance with ISO 14064-1).

Upstream transportation and distribution

(7.8.1) Evaluation status

Select from:

☑ Relevant, calculated

(7.8.2) Emissions in reporting year (metric tons CO2e)

15890

(7.8.3) Emissions calculation methodology

Select all that apply

- ✓ Fuel-based method
- ✓ Distance-based method

(7.8.4) Percentage of emissions calculated using data obtained from suppliers or value chain partners

100

(7.8.5) Please explain

Activity data based on the transportation and distribution of raw materials, semi-finished components and finished products to customers paid for by Aptar. Data collection based on incoterms included into the supplier's contracts and sustainability reporting from our main suppliers (covering 60% of total spend). Distance and transportation means collected from database considering delivery notes and invoices. Emission factors for transportation by road, by sea, by rail and by air based on primary data calculation by suppliers. Emission factors are based on the secondary datasets IPCC AR5 and GWP100. Calculation is based on the WtW methodology. Data has been third party verified (limited data assurance in compliance with ISO 14064-1).

Waste generated in operations

(7.8.1) Evaluation status

Select from:

☑ Relevant, calculated

(7.8.2) Emissions in reporting year (metric tons CO2e)

17066

(7.8.3) Emissions calculation methodology

Select all that apply

✓ Waste-type-specific method

(7.8.4) Percentage of emissions calculated using data obtained from suppliers or value chain partners

100

(7.8.5) Please explain

Activity data based on the waste produced in our operations. Activity data based on internal data collection on which each site reports total quantity of hazardous and not hazardous waste with treatment scenarios to disposal or to recycle. Average emissions data for recovery and disposal process have been considered with DEFRA and GaBi database about waste treatment scenarios. Annual data collected as reported in internal section of Operational Eco-efficiency tool. Emission factors are based on the secondary datasets IPCC AR5 and GWP100. Data has been third party verified (limited data assurance in compliance with ISO 14064-1).

Business travel

(7.8.1) Evaluation status

Select from:

✓ Not relevant, calculated

(7.8.2) Emissions in reporting year (metric tons CO2e)

1663

(7.8.3) Emissions calculation methodology

Select all that apply

✓ Distance-based method

(7.8.4) Percentage of emissions calculated using data obtained from suppliers or value chain partners

100

(7.8.5) Please explain

Activity data based on the business travel monitored by travel agency considering travel per each Aptar plant and region. We are mapping more than 70% of business travel, the remain part of business travels are not mapped in a dedicated tool. The CO2 calculation is based on the secondary dataset IPCC AR5 and GWP100. During the reporting year 2024 our business travels have been planned.

Employee commuting

(7.8.1) Evaluation status

Select from:

✓ Not relevant, calculated

(7.8.2) Emissions in reporting year (metric tons CO2e)

6440

(7.8.3) Emissions calculation methodology

Select all that apply

✓ Distance-based method

(7.8.4) Percentage of emissions calculated using data obtained from suppliers or value chain partners

100

(7.8.5) Please explain

Activity data based on the local community monitoring by HR department. We are mapping Aptar employee categories in production and offices estimating that in south east asia and north east asia regions the use of vehicles to go to work are not used very often. The CO2 calculation is based on the secondary dataset IPCC AR5 and GWP100. Data collection based on the employee categories and regions with estimation of fuel based method and distance based method. The significance of this category is

Upstream leased assets

(7.8.1) Evaluation status

Select from:

✓ Not relevant, explanation provided

(7.8.5) Please explain

Upstream leased assets are not part of Aptar core activities and business.

Downstream transportation and distribution

(7.8.1) Evaluation status

Select from:

✓ Relevant, calculated

(7.8.2) Emissions in reporting year (metric tons CO2e)

14092

(7.8.3) Emissions calculation methodology

Select all that apply

- ✓ Fuel-based method
- ✓ Distance-based method

(7.8.4) Percentage of emissions calculated using data obtained from suppliers or value chain partners

100

(7.8.5) Please explain

Activity data based on the transportation and distribution of raw materials, semi-finished components and finished products to customers paid for by Aptar. Data collection based on incoterms included into the supplier's contracts and sustainability reporting from our main suppliers (covering 60% of total spend). Distance and transportation means collected from database considering delivery notes and invoices. Emission factors for transportation by road, by sea, by rail and by air based on primary data calculation by suppliers. Emission factors are based on the secondary datasets IPCC AR5 and GWP100. Calculation is based on the WtW methodology. Data has been third party verified (limited data assurance in compliance with ISO 14064-1).

Processing of sold products

(7.8.1) Evaluation status

Select from:

✓ Not relevant, calculated

(7.8.2) Emissions in reporting year (metric tons CO2e)

4833

(7.8.3) Emissions calculation methodology

Select all that apply

☑ Other, please specify: Direct observation suppliers CO2 intensive information

(7.8.4) Percentage of emissions calculated using data obtained from suppliers or value chain partners

100

(7.8.5) Please explain

Measurement approach is based on the direct observation of processing of sold products emissions (intensity KPIs) from report of Aptar customers. Main suppliers data has been collected. Emission factors are based on the primary data released by Aptar customer in their corporate sustainability reporting. [Fixed row]

(7.9) Indicate the verification/assurance status that applies to your reported emissions.

	Verification/assurance status
Scope 1	Select from: ✓ Third-party verification or assurance process in place

	Verification/assurance status
Scope 2 (location-based or market-based)	Select from: ☑ Third-party verification or assurance process in place
Scope 3	Select from: ✓ Third-party verification or assurance process in place

[Fixed row]

(7.9.1) Provide further details of the verification/assurance undertaken for your Scope 1 emissions, and attach the relevant statements.

Row 1

(7.9.1.1) Verification or assurance cycle in place

Select from:

✓ Annual process

(7.9.1.2) Status in the current reporting year

Select from:

✓ Complete

(7.9.1.3) Type of verification or assurance

Select from:

✓ Reasonable assurance

(7.9.1.4) Attach the statement

(7.9.1.5) Page/section reference

1

(7.9.1.6) Relevant standard

Select from:

☑ ISO14064-1

(7.9.1.7) Proportion of reported emissions verified (%)

100

[Add row]

(7.9.2) Provide further details of the verification/assurance undertaken for your Scope 2 emissions and attach the relevant statements.

Row 1

(7.9.2.1) **Scope 2** approach

Select from:

✓ Scope 2 location-based

(7.9.2.2) Verification or assurance cycle in place

Select from:

✓ Annual process

(7.9.2.3) Status in the current reporting year

Select from:

✓ Complete

(7.9.2.4) Type of verification or assurance

Select from:

✓ Reasonable assurance

(7.9.2.5) Attach the statement

ISO 14064-1.pdf

(7.9.2.6) Page/ section reference

1

(7.9.2.7) Relevant standard

Select from:

☑ ISO14064-1

(7.9.2.8) Proportion of reported emissions verified (%)

100

[Add row]

(7.9.3) Provide further details of the verification/assurance undertaken for your Scope 3 emissions and attach the relevant statements.

Row 1

(7.9.3.1) **Scope 3 category**

Select all that apply

✓ Scope 3: Investments

✓ Scope 3: Business travel

✓ Scope 3: Employee commuting

✓ Scope 3: Waste generated in operations

✓ Scope 3: End-of-life treatment of sold products

☑ Scope 3: Upstream transportation and distribution

- ✓ Scope 3: Processing of sold products
- ✓ Scope 3: Purchased goods and services

- ✓ Scope 3: Downstream transportation and distribution
- ☑ Scope 3: Fuel and energy-related activities (not included in Scopes 1 or 2)

(7.9.3.2) Verification or assurance cycle in place

Select from:

✓ Annual process

(7.9.3.3) Status in the current reporting year

Select from:

✓ Complete

(7.9.3.4) Type of verification or assurance

Select from:

✓ Limited assurance

(7.9.3.5) Attach the statement

ISO 14064-1.pdf

(7.9.3.6) Page/section reference

1

(7.9.3.7) Relevant standard

Select from:

☑ ISO14064-1

(7.9.3.8) Proportion of reported emissions verified (%)

100

[Add row]

(7.10) How do your gross global emissions (Scope 1 and 2 combined) for the reporting year compare to those of the previous reporting year?

Select from:

Increased

(7.10.1) Identify the reasons for any change in your gross global emissions (Scope 1 and 2 combined), and for each of them specify how your emissions compare to the previous year.

Change in renewable energy consumption

(7.10.1.1) Change in emissions (metric tons CO2e)

1005

(7.10.1.2) Direction of change in emissions

Select from:

✓ Increased

(7.10.1.3) Emissions value (percentage)

14.02

(7.10.1.4) Please explain calculation

Renewable Energy Certificate (RECs) was purchased for added site.

Other emissions reduction activities

(7.10.1.1) Change in emissions (metric tons CO2e)

145

(7.10.1.2) Direction of change in emissions

✓ Increased

(7.10.1.3) Emissions value (percentage)

0.57

(7.10.1.4) Please explain calculation

Increased Refrigerant use: Due to recharging, new refrigerant type.

Divestment

(7.10.1.1) Change in emissions (metric tons CO2e)

0

(7.10.1.2) Direction of change in emissions

Select from:

✓ No change

(7.10.1.3) Emissions value (percentage)

n

(7.10.1.4) Please explain calculation

No Change

Acquisitions

(7.10.1.1) Change in emissions (metric tons CO2e)

0

(7.10.1.2) Direction of change in emissions Select from: ✓ No change (7.10.1.3) Emissions value (percentage) 0 (7.10.1.4) Please explain calculation No Change Mergers (7.10.1.1) Change in emissions (metric tons CO2e) 0 (7.10.1.2) Direction of change in emissions Select from: ✓ No change (7.10.1.3) Emissions value (percentage) 0 (7.10.1.4) Please explain calculation No Change **Change in output** (7.10.1.1) Change in emissions (metric tons CO2e)

		11	١ 1	TD	C			
r	· /) Direction	Λt	change	ın	emissions
N	/ •		,,,	 , Direction	OI	Change		CIIIIBBIUIB

Select from:

✓ No change

(7.10.1.3) Emissions value (percentage)

0

(7.10.1.4) Please explain calculation

No Change

Change in methodology

(7.10.1.1) Change in emissions (metric tons CO2e)

0

(7.10.1.2) Direction of change in emissions

Select from:

✓ No change

(7.10.1.3) Emissions value (percentage)

0

(7.10.1.4) Please explain calculation

No Change

Change in boundary

(7.10.1.1) Change in emissions (metric tons CO2e) 0 (7.10.1.2) Direction of change in emissions Select from: ✓ No change (7.10.1.3) Emissions value (percentage) 0 (7.10.1.4) Please explain calculation No Change Change in physical operating conditions (7.10.1.1) Change in emissions (metric tons CO2e) 0 (7.10.1.2) Direction of change in emissions Select from: ✓ No change (7.10.1.3) Emissions value (percentage) 0 (7.10.1.4) Please explain calculation

No Change

Unidentified

(7.10.1.1) Change in emissions (metric tons CO2e)

0

(7.10.1.2) Direction of change in emissions

Select from:

✓ No change

(7.10.1.3) Emissions value (percentage)

0

(7.10.1.4) Please explain calculation

No Change

Other

(7.10.1.1) Change in emissions (metric tons CO2e)

642

(7.10.1.2) Direction of change in emissions

Select from:

✓ Decreased

(7.10.1.3) Emissions value (percentage)

3.73

(7.10.1.4) Please explain calculation

(1) Natural Gas Reduction Projects implemented. (2) Low Refrigerant Leak/Recharge (Non-Kyoto Protocol). (3) Low Fuel (Biogenic) [Fixed row] (7.10.2) Are your emissions performance calculations in 7.10 and 7.10.1 based on a location-based Scope 2 emissions figure or a market-based Scope 2 emissions figure? Select from: ✓ Market-based (7.12) Are carbon dioxide emissions from biogenic carbon relevant to your organization? Select from: ✓ No (7.15) Does your organization break down its Scope 1 emissions by greenhouse gas type? Select from: **V** Yes (7.15.1) Break down your total gross global Scope 1 emissions by greenhouse gas type and provide the source of each used global warming potential (GWP). Row 1 **(7.15.1.1) Greenhouse** gas Select from: ✓ CO2 (7.15.1.2) Scope 1 emissions (metric tons of CO2e) 23901

(7.15.1.3) **GWP** Reference

Select from: ☑ IPCC Fifth Assessment Report (AR5 – 100 year) [Add row]
(7.16) Break down your total gross global Scope 1 and 2 emissions by country/area.
Argentina
(7.16.1) Scope 1 emissions (metric tons CO2e)
175
(7.16.2) Scope 2, location-based (metric tons CO2e)
1626
(7.16.3) Scope 2, market-based (metric tons CO2e)
1626
Bahrain
(7.16.1) Scope 1 emissions (metric tons CO2e)
110
(7.16.2) Scope 2, location-based (metric tons CO2e)
3973
(7.16.3) Scope 2, market-based (metric tons CO2e)
38

Brazil

(7.16.1) Scope 1 emissions (metric tons CO2e)
384
(7.16.2) Scope 2, location-based (metric tons CO2e)
2081
(7.16.3) Scope 2, market-based (metric tons CO2e)
122
China
(7.16.1) Scope 1 emissions (metric tons CO2e)
1105
(7.16.2) Scope 2, location-based (metric tons CO2e)
29478
(7.16.3) Scope 2, market-based (metric tons CO2e)
290
Colombia
(7.16.1) Scope 1 emissions (metric tons CO2e)
35
(7.16.2) Scope 2, location-based (metric tons CO2e)
64

(7.16.3) Scope 2, market-based (metric tons CO2e)
64
Czechia
(7.16.1) Scope 1 emissions (metric tons CO2e)
120
(7.16.2) Scope 2, location-based (metric tons CO2e)
4577
(7.16.3) Scope 2, market-based (metric tons CO2e)
69
France
(7.16.1) Scope 1 emissions (metric tons CO2e)
13548
(7.16.2) Scope 2, location-based (metric tons CO2e)
9017
(7.16.3) Scope 2, market-based (metric tons CO2e)
928
Germany
(7.16.1) Scope 1 emissions (metric tons CO2e)

0


(7.16.2) Scope 2, location-based (metric tons CO2e) 27397 (7.16.3) Scope 2, market-based (metric tons CO2e) 495 India (7.16.1) Scope 1 emissions (metric tons CO2e) 165 (7.16.2) Scope 2, location-based (metric tons CO2e) 5019 (7.16.3) Scope 2, market-based (metric tons CO2e) 3 Indonesia (7.16.1) Scope 1 emissions (metric tons CO2e) (7.16.2) Scope 2, location-based (metric tons CO2e) (7.16.3) Scope 2, market-based (metric tons CO2e)

Italy
(7.16.1) Scope 1 emissions (metric tons CO2e)
3691
(7.16.2) Scope 2, location-based (metric tons CO2e)
5142
(7.16.3) Scope 2, market-based (metric tons CO2e)
109
Mexico
(7.16.1) Scope 1 emissions (metric tons CO2e)
150
(7.16.2) Scope 2, location-based (metric tons CO2e)
11317
(7.16.3) Scope 2, market-based (metric tons CO2e)
168
Russian Federation
(7.16.1) Scope 1 emissions (metric tons CO2e)
265

(7.16.2) Scope 2, location-based (metric tons CO2e)

2042	
(7.16.3) Scope 2, market-based (metric tons CO2e)	
2042	
Spain	
(7.16.1) Scope 1 emissions (metric tons CO2e)	
15	
(7.16.2) Scope 2, location-based (metric tons CO2e)	
1156	
(7.16.3) Scope 2, market-based (metric tons CO2e)	
45	
Switzerland	
(7.16.1) Scope 1 emissions (metric tons CO2e)	
59	
(7.16.2) Scope 2, location-based (metric tons CO2e)	
82	
(7.16.3) Scope 2, market-based (metric tons CO2e)	
12	

Thailand

(7.16.3) Scope 2, market-based (metric tons CO2e) 1132 [Fixed row] (7.17) Indicate which gross global Scope 1 emissions breakdowns you are able to provide. Select all that apply **☑** By facility (7.17.2) Break down your total gross global Scope 1 emissions by business facility. Row 1 (7.17.2.1) Facility Aptar Annecy (7.17.2.2) Scope 1 emissions (metric tons CO2e) 6781 (7.17.2.3) Latitude 45.884 (7.17.2.4) Longitude 6.119 Row 2

(7.17.2.1) Facility

Aptar Charleval

(7.17.2.2) Scope 1 emissions (metric tons CO2e)
22
(7.17.2.3) Latitude
49.374
(7.17.2.4) Longitude
1.371
Row 3
(7.17.2.1) Facility
Aptar Chavanod (Reboul)
(7.17.2.2) Scope 1 emissions (metric tons CO2e)
28
(7.17.2.3) Latitude
45.893
(7.17.2.4) Longitude
6.077
Row 4
(7.17.2.1) Facility

Aptar Chieti

(7.17.2.2) Scope 1 emissions (metric tons CO2e)
134
(7.17.2.3) Latitude
42.304
(7.17.2.4) Longitude
14.052
Row 5
(7.17.2.1) Facility
Aptar Dortmund
(7.17.2.2) Scope 1 emissions (metric tons CO2e)
98
(7.17.2.3) Latitude
51.529
(7.17.2.4) Longitude
7.628
Row 6
(7.17.2.1) Facility

262

Aptar Le Neubourg

7.17.2.2) Scope 1 emissions (metric tons CO2e)
21
7.17.2.3) Latitude
9.158
7.17.2.4) Longitude
.907
Row 7
7.17.2.1) Facility
ptar Menden
7.17.2.2) Scope 1 emissions (metric tons CO2e)
10
7.17.2.3) Latitude
1.451
7.17.2.4) Longitude
.786
Row 8
7.17.2.1) Facility

Aptar Oyonnax Groissiat

(7.17.2.2) Scope 1 emissions (metric tons CO2e)
0
(7.17.2.3) Latitude
46.247
(7.17.2.4) Longitude
5.645
Row 9
(7.17.2.1) Facility
Aptar Oyonnax Evron
(7.17.2.2) Scope 1 emissions (metric tons CO2e)
0
(7.17.2.3) Latitude
46.247
(7.17.2.4) Longitude
5.645
Row 10
(7.17.2.1) Facility

Aptar Oyonnax Bellignat

(7.17.2.2) Scope 1 emissions (metric tons CO2e)
0
(7.17.2.3) Latitude
46.247
(7.17.2.4) Longitude
5.645
Row 11
(7.17.2.1) Facility
Aptar Oyonnax BeOne
(7.17.2.2) Scope 1 emissions (metric tons CO2e)
2395
(7.17.2.3) Latitude
46.247
(7.17.2.4) Longitude
5.645
Row 12
(7.17.2.1) Facility

Aptar Pescara

7.17.2.2) Scope 1 emissions (metric tons CO2e)
557
7.17.2.3) Latitude
2.304
7.17.2.4) Longitude
4.052
ow 13
7.17.2.1) Facility
otar Verneuil
7.17.2.2) Scope 1 emissions (metric tons CO2e)
57
7.17.2.3) Latitude
3.746
7.17.2.4) Longitude
927
ow 14
7.17.2.1) Facility

Aptar Villingen

(7.17.2.2) Scope 1 emissions (metric tons CO2e)
426
(7.17.2.3) Latitude
48.083
(7.17.2.4) Longitude
8.505
Row 15
(7.17.2.1) Facility
Aptar Barcelona
(7.17.2.2) Scope 1 emissions (metric tons CO2e)
0
(7.17.2.3) Latitude
41.475
(7.17.2.4) Longitude
2.095
Row 16
(7.17.2.1) Facility

Aptar Hyderabad

(7.17.2.2) Scope 1 emissions (metric tons CO2e)
87
(7.17.2.3) Latitude
17.623
(7.17.2.4) Longitude
78.511
Row 17
(7.17.2.1) Facility
Aptar Berazategui
(7.17.2.2) Scope 1 emissions (metric tons CO2e)
175
(7.17.2.3) Latitude
-34.871
(7.17.2.4) Longitude
-58.17
Row 18

Aptar Cajamar

(7.17.2.2) Scope 1 emissions (metric tons CO2e) 0 (7.17.2.3) Latitude -23.346 (7.17.2.4) Longitude -46.854 **Row 19** (7.17.2.1) Facility Aptar Cali (7.17.2.2) Scope 1 emissions (metric tons CO2e) 35 (7.17.2.3) Latitude 3.562 (7.17.2.4) Longitude -76.45 **Row 20**

(7.17.2.1) Facility

Aptar Jundiai

(7.17.2.2) Scope 1 emissions (metric tons CO2e) 377 (7.17.2.3) Latitude -23.221 (7.17.2.4) Longitude -46.877 **Row 21** (7.17.2.1) Facility Aptar Camacari (7.17.2.2) Scope 1 emissions (metric tons CO2e) (7.17.2.3) Latitude -12.733 (7.17.2.4) Longitude -38.311 **Row 22**

(7.17.2.1) Facility

Aptar Cary North

(7.17.2.2) Scope 1 emissions (metric tons CO2e)
78
(7.17.2.3) Latitude
42.226
(7.17.2.4) Longitude
-88.249
Row 23
(7.17.2.1) Facility
Aptar Cary South
(7.17.2.2) Scope 1 emissions (metric tons CO2e)
294
(7.17.2.3) Latitude
42.226
(7.17.2.4) Longitude
-88.249
Row 24
(7.17.2.1) Facility

Aptar Libertyville

(7.17.2.2) Scope 1 emissions (metric tons CO2e) 0 (7.17.2.3) Latitude 42.293 (7.17.2.4) Longitude -87.99 **Row 25** (7.17.2.1) Facility Aptar McHenry (7.17.2.2) Scope 1 emissions (metric tons CO2e) 39 (7.17.2.3) Latitude 42.226 (7.17.2.4) Longitude -88.249 **Row 26**

(7.17.2.1) Facility

Aptar Eatontown

7.17.2.2) Scope 1 emissions (metric tons CO2e)
6
7.17.2.3) Latitude
0.272
7.17.2.4) Longitude
74.07
Row 27
7.17.2.1) Facility
ptar Fusion Dallas
7.17.2.2) Scope 1 emissions (metric tons CO2e)
7.17.2.3) Latitude
2.822
7.17.2.4) Longitude
96.834
28 28

Aptar Fusion Paramus

(7.17.2.2) Scope 1 emissions (metric tons CO2e) 5 (7.17.2.3) Latitude 32.822 (7.17.2.4) Longitude -96.834 **Row 29** (7.17.2.1) Facility Aptar Fusion Los Angeles (7.17.2.2) Scope 1 emissions (metric tons CO2e) 3 (7.17.2.3) Latitude 32.822 (7.17.2.4) Longitude -96.834 **Row 30**

(7.17.2.1) Facility

Aptar Elgin DC

(7.17.2.2) Scope 1 emissions (metric tons CO2e)	
206	
(7.17.2.3) Latitude	
42.101	
(7.17.2.4) Longitude	
-88.341	
Row 31	
(7.17.2.1) Facility	
Aptar Howell	
(7.17.2.2) Scope 1 emissions (metric tons CO2e)	
63	
(7.17.2.3) Latitude	
40.22	
(7.17.2.4) Longitude	
-74.22	
Row 32	

Aptar Suzhou Bh

Aptar Brecey

(7.17.2.2) Scope 1 emissions (metric tons CO2e)	
971	
(7.17.2.3) Latitude	
48.727	
(7.17.2.4) Longitude	
-1.163	
Row 35	
(7.17.2.1) Facility	
Aptar Eigeltingen	
(7.17.2.2) Scope 1 emissions (metric tons CO2e)	
498	
(7.17.2.3) Latitude	
47.854	
(7.17.2.4) Longitude	
8.902	
Row 36	
(7.17.2.1) Facility	

Aptar Granville

(7.17.2.2) Scope 1 emissions (metric tons CO2e)
1582
(7.17.2.3) Latitude
48.838
(7.17.2.4) Longitude
-1.562
Row 37
(7.17.2.1) Facility
Aptar Le Vaudreuil
(7.17.2.2) Scope 1 emissions (metric tons CO2e)
413
(7.17.2.3) Latitude
49.26
(7.17.2.4) Longitude
1.198
Row 38
(7.17.2.1) Facility

Aptar Mezzovico

(7.17.2.2) Scope 1 emissions (metric tons CO2e)	
59	
(7.17.2.3) Latitude	
46.094	
(7.17.2.4) Longitude	
8.924	
Row 39	
(7.17.2.1) Facility	
Aptar Val De Reuil	
(7.17.2.2) Scope 1 emissions (metric tons CO2e)	
644	
(7.17.2.3) Latitude	
49.265	
(7.17.2.4) Longitude	
1.2007	
Row 40	
(7.17.2.1) Facility	

Aptar Villepinte

(7.17.2.2) Scope 1 emissions (metric tons CO2e)
(7.17.2.3) Latitude
48.968
(7.17.2.4) Longitude
2.51
Row 41
(7.17.2.1) Facility
Aptar Congers
(7.17.2.2) Scope 1 emissions (metric tons CO2e)
500
(7.17.2.3) Latitude
41.165
(7.17.2.4) Longitude
-73.936
Row 42

Aptar Gateway Analytical

(7.17.2.2) Scope 1 emissions (metric tons CO2e)
20
7.17.2.3) Latitude
10.617
7.17.2.4) Longitude
79.947
Row 43
7.17.2.1) Facility
Aptar Mumbai
7.17.2.2) Scope 1 emissions (metric tons CO2e)
78
7.17.2.3) Latitude
9.114
7.17.2.4) Longitude
73.009
Row 44

Aptar Suzhou Pha

(7.17.2.2) Scope 1 emissions (metric tons CO2e)
822
(7.17.2.3) Latitude
31.283
(7.17.2.4) Longitude
120.769
Row 45
(7.17.2.1) Facility
Aptar Hengyu
(7.17.2.2) Scope 1 emissions (metric tons CO2e)
186
(7.17.2.3) Latitude
37.428
(7.17.2.4) Longitude
122.04
Row 46
(7.17.2.1) Facility

Aptar Ckyne

(7.17.2.2) Scope 1 emissions (metric tons CO2e)
120
(7.17.2.3) Latitude
49.113
(7.17.2.4) Longitude
13.837
Row 47
(7.17.2.1) Facility
Aptar Freyung
(7.17.2.2) Scope 1 emissions (metric tons CO2e)
581
(7.17.2.3) Latitude
48.822
(7.17.2.4) Longitude
14.57
Row 48
(7.17.2.1) Facility

Aptar Leeds

7.17.2.2) Scope 1 emissions (metric tons CO2e)
1
7.17.2.3) Latitude
3.745
7.17.2.4) Longitude
1.598
Row 49
7.17.2.1) Facility
ptar Bahrain
7.17.2.2) Scope 1 emissions (metric tons CO2e)
10
7.17.2.3) Latitude
6.174
7.17.2.4) Longitude
0.599
Row 50

Aptar Poincy

Aptar Vladimir

7.17.2.2) Scope 1 emissions (metric tons CO2e)
265
7.17.2.3) Latitude
56.097
7.17.2.4) Longitude
0.353
Row 53
7.17.2.1) Facility
Aptar Lincolnton
7.17.2.2) Scope 1 emissions (metric tons CO2e)
299
7.17.2.3) Latitude
35.546
7.17.2.4) Longitude
81.219
Row 54
7 17 2 1) Facility

Aptar Midland

(7.17.2.2) Scope 1 emissions (metric tons CO2e)
38
(7.17.2.3) Latitude
43.618
(7.17.2.4) Longitude
-84.184
Row 55
(7.17.2.1) Facility
Aptar Mukwonago
(7.17.2.2) Scope 1 emissions (metric tons CO2e)
110
(7.17.2.3) Latitude
42.869
(7.17.2.4) Longitude
-88.32
Row 56

Aptar East Troy 2

(7.17.2.2) Scope 1 emissions (metric tons CO2e)	
287	
(7.17.2.3) Latitude	
42.778	
(7.17.2.4) Longitude	
-88.4	
Row 57	
(7.17.2.1) Facility	
Aptar Guangzhou	
(7.17.2.2) Scope 1 emissions (metric tons CO2e)	
0	
(7.17.2.3) Latitude	
23.393	
(7.17.2.4) Longitude	
113.494	
Row 58	
(7.17.2.1) Facility	

Aptar Suzhou Fb

(7.17.2.2) Scope 1 emissions (metric tons CO2e) 0 (7.17.2.3) Latitude 31.283 (7.17.2.4) Longitude 120.769 **Row 59** (7.17.2.1) Facility Aptar Maringa (7.17.2.2) Scope 1 emissions (metric tons CO2e) (7.17.2.3) Latitude -23.451 (7.17.2.4) Longitude -51.991 **Row 60**

(7.17.2.1) Facility

Aptar Queretaro

7.17.2.2) Scope 1 emissions (metric tons CO2e)
50
7.17.2.3) Latitude
0.564
7.17.2.4) Longitude
100.259
Row 61
7.17.2.1) Facility
ptar Crystal Lake
7.17.2.2) Scope 1 emissions (metric tons CO2e)
3
7.17.2.3) Latitude
2.234
7.17.2.4) Longitude
38.3
Row 62

(7.17.2.1) Facility

Aptar CSP Atlanta

(7.17.2.2) Scope 1 emissions (metric tons CO2e)
19
(7.17.2.3) Latitude
33.721
(7.17.2.4) Longitude
-84.575
Row 63
(7.17.2.1) Facility
Aptar CSP Auburn 960
(7.17.2.2) Scope 1 emissions (metric tons CO2e)
565
(7.17.2.3) Latitude
32.558
(7.17.2.4) Longitude
-85.521
Row 64

(7.17.2.1) Facility

Aptar CSP Auburn 1000

(7.17.2.2) Scope 1 emissions (metric tons CO2e) 2 (7.17.2.3) Latitude 32.558 (7.17.2.4) Longitude -85.521 **Row 65** (7.17.2.1) Facility Aptar CSP 358 (7.17.2.2) Scope 1 emissions (metric tons CO2e) 101 (7.17.2.3) Latitude 32.558 (7.17.2.4) Longitude -85.521 **Row 66**

(7.17.2.1) Facility

Aptar CSP Niederbronn

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

26

(7.17.2.3) Latitude

48.9299

(7.17.2.4) **Longitude**

7.6465 [Add row]

(7.20) Indicate which gross global Scope 2 emissions breakdowns you are able to provide.

Select all that apply

☑ By facility

(7.20.2) Break down your total gross global Scope 2 emissions by business facility.

Row 1

(7.20.2.1) Facility

Eigeltingen

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

6529

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

118

Row 2

(7.20.2.1) Facility
Maringa
(7.20.2.2) Scope 2, location-based (metric tons CO2e)
1301
(7.20.2.3) Scope 2, market-based (metric tons CO2e)
76
Row 3
(7.20.2.1) Facility
Cali
(7.20.2.2) Scope 2, location-based (metric tons CO2e)
64
(7.20.2.3) Scope 2, market-based (metric tons CO2e)
64
Row 4
(7.20.2.1) Facility
Annecy
(7.20.2.2) Scope 2, location-based (metric tons CO2e)

Cary Campus (South, North, McHenry)

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

4075

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

125

Row 8

(7.20.2.1) Facility

Chavanod

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

136

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

14

Row 9

(7.20.2.1) Facility

Val De Reuil

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

343

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

Row 10

(7.20.2.1) Facility

Verneuil

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

639

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

66

Row 11

(7.20.2.1) Facility

Le Neubourg

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

932

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

96

Row 12

(7.20.2.1) Facility

Fusion Los Angeles

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

0

Row 13

(7.20.2.1) Facility

Cajamar

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

148

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

9

Row 14

(7.20.2.1) Facility

Poincy

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

203

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

21

Row 15

(7.20.2.1) Facility
Fusion Paramus
(7.20.2.2) Scope 2, location-based (metric tons CO2e)
12
(7.20.2.3) Scope 2, market-based (metric tons CO2e)
0
Row 16
(7.20.2.1) Facility
Suzhou
(7.20.2.2) Scope 2, location-based (metric tons CO2e)
18680
(7.20.2.3) Scope 2, market-based (metric tons CO2e)
206
Row 17
(7.20.2.1) Facility
Hengyu

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

3468

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

2

Row 21

(7.20.2.1) Facility

CSP Tech Niederbronn - les - bains

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

778

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

80

Row 22

(7.20.2.1) Facility

Howell

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

19

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

Row 23

(7.20.2.1) Facility

Guangzhou

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

3222

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

23

Row 24

(7.20.2.1) Facility

Dortmund

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

1791

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

32

Row 25

(7.20.2.1) Facility

Le Vaudreuil

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

212

Row 26

(7.20.2.1) Facility

Granville

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

1158

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

119

Row 27

(7.20.2.1) Facility

Lincolnton

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

11680

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

271

Row 28

(7.20.2.1) Facility
Evron
(7.20.2.2) Scope 2, location-based (metric tons CO2e)
0
(7.20.2.3) Scope 2, market-based (metric tons CO2e)
0
Row 29
(7.20.2.1) Facility
Gateway Analytical
(7.20.2.2) Scope 2, location-based (metric tons CO2e)
104
(7.20.2.3) Scope 2, market-based (metric tons CO2e)
2
Row 30
(7.20.2.1) Facility
Mumbai

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

Oyonnax BeOne

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

815

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

84

Row 34

(7.20.2.1) Facility

Menden

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

2305

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

42

Row 35

(7.20.2.1) Facility

Mukwonago

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

24252

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

Row 36

(7.20.2.1) Facility

Radolfzell

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

1912

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

35

Row 37

(7.20.2.1) Facility

Chonburi

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

1004

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

1004

Row 38

(7.20.2.1) Facility

Vladimir

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

Row 41

2042	
(7.20.2.3) Scope 2, market-based (metric tons CO2e)	
2042	
Row 39	
(7.20.2.1) Facility	
Midland	
(7.20.2.2) Scope 2, location-based (metric tons CO2e)	
895	
(7.20.2.3) Scope 2, market-based (metric tons CO2e)	
16	
Row 40	
(7.20.2.1) Facility	
Congers	
(7.20.2.2) Scope 2, location-based (metric tons CO2e)	
2678	
(7.20.2.3) Scope 2, market-based (metric tons CO2e)	
81	

7.20.2.1) Facility
Charleval Charles and Charles
7.20.2.2) Scope 2, location-based (metric tons CO2e)
84
7.20.2.3) Scope 2, market-based (metric tons CO2e)
9
Row 42
7.20.2.1) Facility
eeds
7.20.2.2) Scope 2, location-based (metric tons CO2e)
092
7.20.2.3) Scope 2, market-based (metric tons CO2e)
4
Row 43
7.20.2.1) Facility
rystal Lake 265

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

273

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

16

Row 47

(7.20.2.1) Facility

Freyung

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

10644

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

192

Row 48

(7.20.2.1) Facility

Elgin Distribution Center

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

58

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

Row 49

(7.20.2.1) Facility

East Troy 1+2

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

83

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

1

Row 50

(7.20.2.1) Facility

Groissat

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

0

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

0

Row 51

(7.20.2.1) Facility

Mezzovico

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

12

Row 52

(7.20.2.1) Facility

Torello

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

1156

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

45

Row 53

(7.20.2.1) Facility

CSP Tech Auburn

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

14088

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

286

Row 54

(7.20.2.1) Facility
Martignat
(7.20.2.2) Scope 2, location-based (metric tons CO2e)
o
(7.20.2.3) Scope 2, market-based (metric tons CO2e)
o
Row 55
(7.20.2.1) Facility
Pescara
(7.20.2.2) Scope 2, location-based (metric tons CO2e)
3667
(7.20.2.3) Scope 2, market-based (metric tons CO2e)
78
Row 56
(7.20.2.1) Facility
Ckyne
(7.20.2.2) Scope 2, location-based (metric tons CO2e)

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

0

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

0

Row 60

(7.20.2.1) Facility

Berazategui

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

1626

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

1626

Row 61

(7.20.2.1) Facility

Libertyville

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

0

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

Row 62

(7.20.2.1) Facility

Villepinte

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

9

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

1

Row 63

(7.20.2.1) Facility

Villingen

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

4216

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

76

[Add row]

(7.22) Break down your gross Scope 1 and Scope 2 emissions between your consolidated accounting group and other entities included in your response.

Consolidated accounting group

(7.22.1) Scope 1 emissions (metric tons CO2e)

164367

(7.22.3) Scope 2, market-based emissions (metric tons CO2e)

8174

(7.22.4) Please explain

Emissions certified in compliance with ISO 14064-1

All other entities

(7.22.1) Scope 1 emissions (metric tons CO2e)

0

(7.22.2) Scope 2, location-based emissions (metric tons CO2e)

0

(7.22.3) Scope 2, market-based emissions (metric tons CO2e)

0

(7.22.4) Please explain

None

[Fixed row]

(7.23) Is your organization able to break down your emissions data for any of the subsidiaries included in your CDP response?

Select from:

☑ Not relevant as we do not have any subsidiaries

(7.26) Allocate your emissions to your customers listed below according to the goods or services you have sold them in this reporting period.

Row 1

(7.26.1) Requesting member

Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 3

(7.26.3) Scope 3 category(ies)

Select all that apply

☑ Category 1: Purchased goods and services

(7.26.4) Allocation level

Select from:

☑ Commodity

(7.26.6) Allocation method

Select from:

☑ Allocation not necessary as secondary data used

(7.26.9) Emissions in metric tonnes of CO2e

(7.26.10) **Uncertainty** (±%)

5

(7.26.11) Major sources of emissions

Emissions based on the raw materials production, from cradle to Aptar's gate. We mapped GHG emissions related to the production of plastics, metals, and rubbers used in our bill of materials.

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

GHG sources have been identified considering the upstream value chain in terms of raw materials production, from cradle to Aptar gate. We have collected primary data in terms of quantity of raw materials used in our products portfolio, but, secondary data about the calculation of environmental impact of raw materials production processes.

(7.26.14) Where published information has been used, please provide a reference

Aptar Corporate Sustainability Report 2025

Row 2

(7.26.1) Requesting member

Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 2: market-based

(7.26.4) Allocation level

Select from:

✓ Facility

(7.26.5) Allocation level detail

Allocation is purchased components based and it is considering the total amount of finished product produced in the site.

(7.26.6) Allocation method

Select from:

✓ Allocation based on the number of units purchased

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

☑ Other unit, please specify :Number of pieces

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

96312699

(7.26.9) Emissions in metric tonnes of CO2e

31.89

(7.26.10) Uncertainty (±%)

5

(7.26.11) Major sources of emissions

Emissions based on the electrical energy (Scope 2 market based), and fuels, natural gas, and refrigerants (Scope 1). Please note that this total amount is reflecting Scope 1 + Scope 2 emissions.

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

GHG sources have been identified considering operational control of our operations. The major inputs used in the production processes of injection molding, assembling, air compressors, HVAC and auxiliaries activities has been mapped following GHG Protocol Standard and ISO 14064-1 requirements.

(7.26.14) Where published information has been used, please provide a reference

Aptar Corporate Sustainability Report 2025

Row 3

(7.26.1) Requesting member

Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 3

(7.26.3) Scope 3 category(ies)

Select all that apply

☑ Category 1: Purchased goods and services

(7.26.4) Allocation level

Select from:

✓ Commodity

(7.26.6) Allocation method

Select from:

✓ Allocation not necessary as secondary data used

(7.26.9) Emissions in metric tonnes of CO2e

1170

(7.26.10) **Uncertainty** (±%)

5

(7.26.11) Major sources of emissions

Emissions based on the raw materials production, from cradle to Aptar's gate. We mapped GHG emissions related to the production of plastics, metals, and rubbers used in our bill of materials.

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

GHG sources have been identified considering the upstream value chain in terms of raw materials production, from cradle to Aptar gate. We have collected primary data in terms of quantity of raw materials used in our products portfolio, but, secondary data about the calculation of environmental impact of raw materials production processes.

(7.26.14) Where published information has been used, please provide a reference

Aptar Corporate Sustainability Report 2025

Row 4

(7.26.1) Requesting member

Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 2: market-based

(7.26.4) Allocation level

Select from:

✓ Facility

(7.26.5) Allocation level detail

Allocation is purchased components based and it is considering the total amount of finished product produced in the site.

(7.26.6) Allocation method

Select from:

☑ Allocation based on the number of units purchased

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

☑ Other unit, please specify :number of finished products

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

145529223

(7.26.9) Emissions in metric tonnes of CO2e

164

(7.26.10) Uncertainty $(\pm\%)$

5

(7.26.11) Major sources of emissions

Emissions based on the electrical energy (Scope 2 market based), and fuels, natural gas, and refrigerants (Scope 1). Please note that this total amount is reflecting Scope 1 + Scope 2 emissions.

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

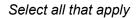
GHG sources have been identified considering operational control of our operations. The major inputs used in the production processes of injection molding, assembling, air compressors, HVAC and auxiliaries activities has been mapped following GHG Protocol Standard and ISO 14064-1 requirements.

(7.26.14) Where published information has been used, please provide a reference

Aptar Corporate Sustainability Report 2025

Row 5

(7.26.1) Requesting member


Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 3

(7.26.3) Scope 3 category(ies)

☑ Category 1: Purchased goods and services

(7.26.4) Allocation level

Select from:

Commodity

(7.26.6) Allocation method

Select from:

✓ Allocation not necessary as secondary data used

(7.26.9) Emissions in metric tonnes of CO2e

15.7

(7.26.10) **Uncertainty** (±%)

5

(7.26.11) Major sources of emissions

Emissions based on the raw materials production, from cradle to Aptar's gate. We mapped GHG emissions related to the production of plastics, metals, and rubbers used in our bill of materials.

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

GHG sources have been identified considering the upstream value chain in terms of raw materials production, from cradle to Aptar gate. We have collected primary data in terms of quantity of raw materials used in our products portfolio, but, secondary data about the calculation of environmental impact of raw materials production processes.

(7.26.14) Where published information has been used, please provide a reference

Aptar Corporate Sustainability Report 2025

Row 6

(7.26.1) Requesting member

Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 2: market-based

(7.26.4) Allocation level

Select from:

✓ Facility

(7.26.5) Allocation level detail

Allocation is purchased components based and it is considering the total amount of finished product produced in the site.

(7.26.6) Allocation method

Select from:

✓ Allocation based on the number of units purchased

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

☑ Other unit, please specify :number of finished components

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

1478396

(7.26.9) Emissions in metric tonnes of CO2e

0.63

(7.26.10) Uncertainty (±%)

5

(7.26.11) Major sources of emissions

Emissions based on the electrical energy (Scope 2 market based), and fuels, natural gas, and refrigerants (Scope 1). Please note that this total amount is reflecting Scope 1 + Scope 2 emissions.

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

GHG sources have been identified considering operational control of our operations. The major inputs used in the production processes of injection molding, assembling, air compressors, HVAC and auxiliaries activities has been mapped following GHG Protocol Standard and ISO 14064-1 requirements.

(7.26.14) Where published information has been used, please provide a reference

Aptar Corporate Sustainability Report 2025

Row 7

(7.26.1) Requesting member

Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 3

(7.26.3) Scope 3 category(ies)

Select all that apply

☑ Category 1: Purchased goods and services

(7.26.4) Allocation level

Select from:

✓ Commodity

(7.26.6) Allocation method

Select from:

☑ Allocation not necessary as secondary data used

(7.26.9) Emissions in metric tonnes of CO2e

347

(7.26.10) Uncertainty $(\pm\%)$

5

(7.26.11) Major sources of emissions

Emissions based on the raw materials production, from cradle to Aptar's gate. We mapped GHG emissions related to the production of plastics, metals, and rubbers used in our bill of materials.

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

GHG sources have been identified considering the upstream value chain in terms of raw materials production, from cradle to Aptar gate. We have collected primary data in terms of quantity of raw materials used in our products portfolio, but, secondary data about the calculation of environmental impact of raw materials production processes.

(7.26.14) Where published information has been used, please provide a reference

Aptar Corporate Sustainability Report 2025

Row 8

(7.26.1) Requesting member

Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 2: market-based

(7.26.4) Allocation level

Select from:

✓ Facility

(7.26.5) Allocation level detail

Allocation is purchased components based and it is considering the total amount of finished product produced in the site.

(7.26.6) Allocation method

Select from:

✓ Allocation based on the number of units purchased

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

☑ Other unit, please specify :number of finished products

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

28930025

(7.26.9) Emissions in metric tonnes of CO2e

47.67

(7.26.10) Uncertainty (±%)

5

(7.26.11) Major sources of emissions

Emissions based on the electrical energy (Scope 2 market based), and fuels, natural gas, and refrigerants (Scope 1). Please note that this total amount is reflecting Scope 1 + Scope 2 emissions.

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

GHG sources have been identified considering operational control of our operations. The major inputs used in the production processes of injection molding, assembling, air compressors, HVAC and auxiliaries activities has been mapped following GHG Protocol Standard and ISO 14064-1 requirements.

(7.26.14) Where published information has been used, please provide a reference

Aptar Corporate Sustainability Report 2025

Row 9

(7.26.1) Requesting member

Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 3

(7.26.3) Scope 3 category(ies)

Select all that apply

✓ Category 1: Purchased goods and services

(7.26.4) Allocation level

Select from:

✓ Commodity

(7.26.6) Allocation method

Select from:

✓ Allocation not necessary as secondary data used

(7.26.9) Emissions in metric tonnes of CO2e

3261

(7.26.10) Uncertainty (±%)

5

(7.26.11) Major sources of emissions

Emissions based on the raw materials production, from cradle to Aptar's gate. We mapped GHG emissions related to the production of plastics, metals, and rubbers used in our bill of materials.

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

GHG sources have been identified considering the upstream value chain in terms of raw materials production, from cradle to Aptar gate. We have collected primary data in terms of quantity of raw materials used in our products portfolio, but, secondary data about the calculation of environmental impact of raw materials production processes.

(7.26.14) Where published information has been used, please provide a reference

Aptar Corporate Sustainability Report 2025

Row 10

(7.26.1) Requesting member

Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 2: market-based

(7.26.4) Allocation level

Select from:

✓ Facility

(7.26.5) Allocation level detail

Allocation is purchased components based and it is considering the total amount of finished product produced in the site.

(7.26.6) Allocation method

Select from:

✓ Allocation based on the number of units purchased

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

☑ Other unit, please specify :number of finished products

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

160973689

(7.26.9) Emissions in metric tonnes of CO2e

19.02

(7.26.10) Uncertainty (±%)

5

(7.26.11) Major sources of emissions

Emissions based on the electrical energy (Scope 2 market based), and fuels, natural gas, and refrigerants (Scope 1). Please note that this total amount is reflecting Scope 1 + Scope 2 emissions.

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

GHG sources have been identified considering operational control of our operations. The major inputs used in the production processes of injection molding, assembling, air compressors, HVAC and auxiliaries activities has been mapped following GHG Protocol Standard and ISO 14064-1 requirements.

(7.26.14) Where published information has been used, please provide a reference

Aptar Corporate Sustainability Report 2025

Row 11

(7.26.1) Requesting member

Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 3

(7.26.3) Scope 3 category(ies)

Select all that apply

☑ Category 1: Purchased goods and services

(7.26.4) Allocation level

Select from:

☑ Commodity

(7.26.6) Allocation method

Select from:

✓ Allocation not necessary as secondary data used

(7.26.9) Emissions in metric tonnes of CO2e

14750

(7.26.10) Uncertainty $(\pm\%)$

5

(7.26.11) Major sources of emissions

Emissions based on the raw materials production, from cradle to Aptar's gate. We mapped GHG emissions related to the production of plastics, metals, and rubbers used in our bill of materials.

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

GHG sources have been identified considering the upstream value chain in terms of raw materials production, from cradle to Aptar gate. We have collected primary data in terms of quantity of raw materials used in our products portfolio, but, secondary data about the calculation of environmental impact of raw materials production processes.

(7.26.14) Where published information has been used, please provide a reference

Aptar Corporate Sustainability Report 2025

Row 12

(7.26.1) Requesting member

Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 2: market-based

(7.26.4) Allocation level

Select from:

✓ Facility

(7.26.5) Allocation level detail

Allocation is purchased components based and it is considering the total amount of finished product produced in the site.

(7.26.6) Allocation method

Select from:

✓ Allocation based on the number of units purchased

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

☑ Other unit, please specify :number of finished products

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

607540728

(7.26.9) Emissions in metric tonnes of CO2e

139

(7.26.10) Uncertainty $(\pm\%)$

5

(7.26.11) Major sources of emissions

Emissions based on the electrical energy (Scope 2 market based), and fuels, natural gas, and refrigerants (Scope 1). Please note that this total amount is reflecting Scope 1 + Scope 2 emissions.

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

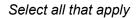
GHG sources have been identified considering operational control of our operations. The major inputs used in the production processes of injection molding, assembling, air compressors, HVAC and auxiliaries activities has been mapped following GHG Protocol Standard and ISO 14064-1 requirements.

(7.26.14) Where published information has been used, please provide a reference

Aptar Corporate Sustainability Report 2025

Row 13

(7.26.1) Requesting member


Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 3

(7.26.3) Scope 3 category(ies)

☑ Category 1: Purchased goods and services

(7.26.4) Allocation level

Select from:

✓ Commodity

(7.26.6) Allocation method

Select from:

✓ Allocation not necessary as secondary data used

(7.26.9) Emissions in metric tonnes of CO2e

4352

(7.26.10) **Uncertainty** (±%)

5

(7.26.11) Major sources of emissions

Emissions based on the raw materials production, from cradle to Aptar's gate. We mapped GHG emissions related to the production of plastics, metals, and rubbers used in our bill of materials.

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

GHG sources have been identified considering the upstream value chain in terms of raw materials production, from cradle to Aptar gate. We have collected primary data in terms of quantity of raw materials used in our products portfolio, but, secondary data about the calculation of environmental impact of raw materials production processes.

(7.26.14) Where published information has been used, please provide a reference

Aptar Corporate Sustainability Report 2025

Row 14

(7.26.1) Requesting member

Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 2: market-based

(7.26.4) Allocation level

Select from:

✓ Facility

(7.26.5) Allocation level detail

Allocation is purchased components based and it is considering the total amount of finished product produced in the site.

(7.26.6) Allocation method

Select from:

✓ Allocation based on the number of units purchased

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

☑ Other unit, please specify :number of finished products

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

516110496

(7.26.9) Emissions in metric tonnes of CO2e

354

(7.26.10) Uncertainty (±%)

5

(7.26.11) Major sources of emissions

Emissions based on the electrical energy (Scope 2 market based), and fuels, natural gas, and refrigerants (Scope 1). Please note that this total amount is reflecting Scope 1 + Scope 2 emissions.

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

GHG sources have been identified considering operational control of our operations. The major inputs used in the production processes of injection molding, assembling, air compressors, HVAC and auxiliaries activities has been mapped following GHG Protocol Standard and ISO 14064-1 requirements.

(7.26.14) Where published information has been used, please provide a reference

Aptar Corporate Sustainability Report 2025

Row 15

(7.26.1) Requesting member

Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 3

(7.26.3) Scope 3 category(ies)

Select all that apply

☑ Category 1: Purchased goods and services

(7.26.4) Allocation level

Select from:

✓ Commodity

(7.26.6) Allocation method

Select from:

☑ Allocation not necessary as secondary data used

(7.26.9) Emissions in metric tonnes of CO2e

5032

(7.26.10) Uncertainty $(\pm\%)$

5

(7.26.11) Major sources of emissions

Emissions based on the raw materials production, from cradle to Aptar's gate. We mapped GHG emissions related to the production of plastics, metals, and rubbers used in our bill of materials.

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

GHG sources have been identified considering the upstream value chain in terms of raw materials production, from cradle to Aptar gate. We have collected primary data in terms of quantity of raw materials used in our products portfolio, but, secondary data about the calculation of environmental impact of raw materials production processes.

(7.26.14) Where published information has been used, please provide a reference

Aptar Corporate Sustainability Report 2025

Row 16

(7.26.1) Requesting member

Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 2: market-based

(7.26.4) Allocation level

Select from:

✓ Facility

(7.26.5) Allocation level detail

Allocation is purchased components based and it is considering the total amount of finished product produced in the site.

(7.26.6) Allocation method

Select from:

✓ Allocation based on the number of units purchased

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

✓ Other unit, please specify :number of finished products

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

293299262

(7.26.9) Emissions in metric tonnes of CO2e

80

(7.26.10) Uncertainty (±%)

5

(7.26.11) Major sources of emissions

Emissions based on the electrical energy (Scope 2 market based), and fuels, natural gas, and refrigerants (Scope 1). Please note that this total amount is reflecting Scope 1 + Scope 2 emissions.

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

GHG sources have been identified considering operational control of our operations. The major inputs used in the production processes of injection molding, assembling, air compressors, HVAC and auxiliaries activities has been mapped following GHG Protocol Standard and ISO 14064-1 requirements.

(7.26.14) Where published information has been used, please provide a reference

Aptar Corporate Sustainability Report 2025

Row 17

(7.26.1) Requesting member

Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 3

(7.26.3) Scope 3 category(ies)

Select all that apply

✓ Category 1: Purchased goods and services

(7.26.4) Allocation level

Select from:

✓ Commodity

(7.26.6) Allocation method

Select from:

✓ Allocation not necessary as secondary data used

(7.26.9) Emissions in metric tonnes of CO2e

3881

(7.26.10) Uncertainty (±%)

5

(7.26.11) Major sources of emissions

Emissions based on the raw materials production, from cradle to Aptar's gate. We mapped GHG emissions related to the production of plastics, metals, and rubbers used in our bill of materials.

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

GHG sources have been identified considering the upstream value chain in terms of raw materials production, from cradle to Aptar gate. We have collected primary data in terms of quantity of raw materials used in our products portfolio, but, secondary data about the calculation of environmental impact of raw materials production processes.

(7.26.14) Where published information has been used, please provide a reference

Aptar Corporate Sustainability Report 2025

Row 18

(7.26.1) Requesting member

Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 2: market-based

(7.26.4) Allocation level

Select from:

✓ Facility

(7.26.5) Allocation level detail

Allocation is purchased components based and it is considering the total amount of finished product produced in the site.

(7.26.6) Allocation method

Select from:

✓ Allocation based on the number of units purchased

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

☑ Other unit, please specify: finished products produced

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

371961950

(7.26.9) Emissions in metric tonnes of CO2e

38

(7.26.10) Uncertainty (±%)

5

(7.26.11) Major sources of emissions

Emissions based on the electrical energy (Scope 2 market based), and fuels, natural gas, and refrigerants (Scope 1). Please note that this total amount is reflecting Scope 1 + Scope 2 emissions.

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

GHG sources have been identified considering operational control of our operations. The major inputs used in the production processes of injection molding, assembling, air compressors, HVAC and auxiliaries activities has been mapped following GHG Protocol Standard and ISO 14064-1 requirements.

(7.26.14) Where published information has been used, please provide a reference

Aptar Corporate Sustainability Report 2025

Row 19

(7.26.1) Requesting member

Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 3

(7.26.3) Scope 3 category(ies)

Select all that apply

☑ Category 1: Purchased goods and services

(7.26.4) Allocation level

Select from:

✓ Commodity

(7.26.6) Allocation method

Select from:

✓ Allocation not necessary as secondary data used

(7.26.9) Emissions in metric tonnes of CO2e

958

(7.26.10) Uncertainty $(\pm\%)$

5

(7.26.11) Major sources of emissions

Emissions based on the raw materials production, from cradle to Aptar's gate. We mapped GHG emissions related to the production of plastics, metals, and rubbers used in our bill of materials.

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

GHG sources have been identified considering the upstream value chain in terms of raw materials production, from cradle to Aptar gate. We have collected primary data in terms of quantity of raw materials used in our products portfolio, but, secondary data about the calculation of environmental impact of raw materials production processes.

(7.26.14) Where published information has been used, please provide a reference

Aptar Corporate Sustainability Report 2025

Row 20

(7.26.1) Requesting member

Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 2: market-based

(7.26.4) Allocation level

Select from:

✓ Facility

(7.26.5) Allocation level detail

Allocation is purchased components based and it is considering the total amount of finished product produced in the site.

(7.26.6) Allocation method

Select from:

✓ Allocation based on the number of units purchased

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

☑ Other unit, please specify :number of finished components

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

58230676

(7.26.9) Emissions in metric tonnes of CO2e

13

(7.26.10) Uncertainty $(\pm\%)$

5

(7.26.11) Major sources of emissions

Emissions based on the electrical energy (Scope 2 market based), and fuels, natural gas, and refrigerants (Scope 1). Please note that this total amount is reflecting Scope 1 + Scope 2 emissions.

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

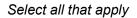
GHG sources have been identified considering operational control of our operations. The major inputs used in the production processes of injection molding, assembling, air compressors, HVAC and auxiliaries activities has been mapped following GHG Protocol Standard and ISO 14064-1 requirements.

(7.26.14) Where published information has been used, please provide a reference

Aptar Corporate Sustainability Report 2025

Row 21

(7.26.1) Requesting member


Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 3

(7.26.3) Scope 3 category(ies)

☑ Category 1: Purchased goods and services

(7.26.4) Allocation level

Select from:

Commodity

(7.26.6) Allocation method

Select from:

✓ Allocation not necessary as secondary data used

(7.26.9) Emissions in metric tonnes of CO2e

12548

(7.26.10) Uncertainty (±%)

5

(7.26.11) Major sources of emissions

Emissions based on the raw materials production, from cradle to Aptar's gate. We mapped GHG emissions related to the production of plastics, metals, and rubbers used in our bill of materials.

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

GHG sources have been identified considering the upstream value chain in terms of raw materials production, from cradle to Aptar gate. We have collected primary data in terms of quantity of raw materials used in our products portfolio, but, secondary data about the calculation of environmental impact of raw materials production processes.

(7.26.14) Where published information has been used, please provide a reference

Aptar Corporate Sustainability Report 2025

Row 22

(7.26.1) Requesting member

Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 2: market-based

(7.26.4) Allocation level

Select from:

✓ Facility

(7.26.5) Allocation level detail

Allocation is purchased components based and it is considering the total amount of finished product produced in the site.

(7.26.6) Allocation method

Select from:

✓ Allocation based on the number of units purchased

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

☑ Other unit, please specify :number of finished products

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

860945253

(7.26.9) Emissions in metric tonnes of CO2e

597

(7.26.10) Uncertainty (±%)

5

(7.26.11) Major sources of emissions

Emissions based on the electrical energy (Scope 2 market based), and fuels, natural gas, and refrigerants (Scope 1). Please note that this total amount is reflecting Scope 1 + Scope 2 emissions.

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

GHG sources have been identified considering operational control of our operations. The major inputs used in the production processes of injection molding, assembling, air compressors, HVAC and auxiliaries activities has been mapped following GHG Protocol Standard and ISO 14064-1 requirements.

(7.26.14) Where published information has been used, please provide a reference

Aptar Corporate Sustainability Report 2025

Row 23

(7.26.1) Requesting member

Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 3

(7.26.3) Scope 3 category(ies)

Select all that apply

☑ Category 1: Purchased goods and services

(7.26.4) Allocation level

Select from:

✓ Commodity

(7.26.6) Allocation method

Select from:

☑ Allocation not necessary as secondary data used

(7.26.9) Emissions in metric tonnes of CO2e

1086

(7.26.10) Uncertainty $(\pm\%)$

5

(7.26.11) Major sources of emissions

Emissions based on the raw materials production, from cradle to Aptar's gate. We mapped GHG emissions related to the production of plastics, metals, and rubbers used in our bill of materials.

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

GHG sources have been identified considering the upstream value chain in terms of raw materials production, from cradle to Aptar gate. We have collected primary data in terms of quantity of raw materials used in our products portfolio, but, secondary data about the calculation of environmental impact of raw materials production processes.

(7.26.14) Where published information has been used, please provide a reference

Aptar Corporate Sustainability Report 2025

Row 24

(7.26.1) Requesting member

Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 2: market-based

(7.26.4) Allocation level

Select from:

✓ Facility

(7.26.5) Allocation level detail

Allocation is purchased components based and it is considering the total amount of finished product produced in the site.

(7.26.6) Allocation method

Select from:

✓ Allocation based on the number of units purchased

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

☑ Other unit, please specify :number of finished products

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

85324929

(7.26.9) Emissions in metric tonnes of CO2e

8

(7.26.10) Uncertainty (±%)

5

(7.26.11) Major sources of emissions

Emissions based on the electrical energy (Scope 2 market based), and fuels, natural gas, and refrigerants (Scope 1). Please note that this total amount is reflecting Scope 1 + Scope 2 emissions.

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

GHG sources have been identified considering operational control of our operations. The major inputs used in the production processes of injection molding, assembling, air compressors, HVAC and auxiliaries activities has been mapped following GHG Protocol Standard and ISO 14064-1 requirements.

(7.26.14) Where published information has been used, please provide a reference

Aptar Corporate Sustainability Report 2025 [Add row]

(7.27) What are the challenges in allocating emissions to different customers, and what would help you to overcome these challenges?

Row 1

(7.27.1) Allocation challenges

Select from:

☑ Customer base is too large and diverse to accurately track emissions to the customer level

(7.27.2) Please explain what would help you overcome these challenges

During the reporting year, the product sustainability team started the development of an LCA eco-design tool directly connected to SAP bill of materials and master data in order to solve this challenge. The system will be able to calculate the CO2 impact of different product families in real time.

Row 2

(7.27.1) Allocation challenges

Select from:

☑ Doing so would require we disclose business sensitive/proprietary information

(7.27.2) Please explain what would help you overcome these challenges

In situations where we are not able to group our LCA results into product family ranges, and particularly with highly customized solutions, it is possible that disclosing LCA data will pose a risk to our business. Customers can help us overcome this issue by treating our LCA results with a high degree of sensitivity and by refraining from comparing our results to similar products from other suppliers who may not be using the same processes or level of accuracy for LCA measurements. This is

one of the main reasons why we engaged in the Environmental Product Declaration (EPD) for the GS and GSA pumps -- to provide customers with an accurate and transparent view of our environmental impacts. We intend to use the information we glean from our LCAs to improve future generations of products and hope this information is not used against us.

Row 3

(7.27.1) Allocation challenges

Select from:

✓ Managing the different emission factors of diverse and numerous geographies makes calculating total footprint difficult

(7.27.2) Please explain what would help you overcome these challenges

Aptar has more than 40 operations in different countries and regions, emission factors for Scope 2 makes calculating total footprint difficult but in the latest 3 years, thanks to our energy road map, we have used up to 97% of renewable energy with primary data for emission factor that increased the level of accuracy for the Scope 2 calculation.

Row 4

(7.27.1) Allocation challenges

Select from:

☑ Diversity of product lines makes accurately accounting for each product/product line cost ineffective

(7.27.2) Please explain what would help you overcome these challenges

In 2015 we established a Life Cycle Assessment strategy with a target to assess over 50% of our product families (by volume sold, excluding Pharma products that are highly regulated and difficult to change) by the end of 2016 we surpassed this target, having completed an LCA of 69% of product families. In the future we will continue to prioritize and conduct LCAs on the remainder of our product families. In addition, we continue to evaluate partnerships with customers specifically requesting LCAs. We are prioritizing the product families to include in our assessments by focusing on the volumes of products we supplied to key customers, including all customers requesting a response from us through the CDP Supply Chain questionnaire. Due to the diversity of our products, we believe an approach based on product ranges is most effective. The analysis of every product in every product family and every Aptar location would be time consuming and cost prohibitive, and we believe the analysis of ranges will provide a close depiction of current state. Our customers can help us overcome this challenge by accepting the results of our LCAs at the product family range and by accepting our assumptions. Product sustainability team is investigating solutions in order to integrate LCA tool with SAP system on which thanks to the Bill of Material will be possible to have carbon footprint analysis for the entire products portfolio.

[Add row]

(7.28) Do you plan to develop your capabilities to allocate emissions to your customers in the future?

Do you plan to develop your capabilities to allocate emissions to your customers in the future?	Describe how you plan to develop your capabilities
Select from: ✓ Yes	Aptar Product Sustainability Team developed an internal LCA tool that is able to calculate in real time LCA data from SKU purchased by customers.

[Fixed row]

(7.29) What percentage of your total operational spend in the reporting year was on energy?

Select from:

✓ More than 0% but less than or equal to 5%

(7.30) Select which energy-related activities your organization has undertaken.

	Indicate whether your organization undertook this energy-related activity in the reporting year
Consumption of fuel (excluding feedstocks)	Select from: ✓ Yes
Consumption of purchased or acquired electricity	Select from: ✓ Yes
Consumption of purchased or acquired heat	Select from: ✓ No
Consumption of purchased or acquired steam	Select from:

	Indicate whether your organization undertook this energy-related activity in the reporting year
	☑ No
Consumption of purchased or acquired cooling	Select from: ✓ No
Generation of electricity, heat, steam, or cooling	Select from: ✓ Yes

[Fixed row]

(7.30.1) Report your organization's energy consumption totals (excluding feedstocks) in MWh.

Consumption of fuel (excluding feedstock)

(7.30.1.1) Heating value

Select from:

✓ LHV (lower heating value)

(7.30.1.2) MWh from renewable sources

0

(7.30.1.3) MWh from non-renewable sources

7771.37

(7.30.1.4) Total (renewable + non-renewable) MWh

7771.37

Consumption of purchased or acquired electricity

(7.30.1.1) Heating value

Select from:

✓ LHV (lower heating value)

(7.30.1.2) MWh from renewable sources

547840.25

(7.30.1.3) MWh from non-renewable sources

14092.65

(7.30.1.4) Total (renewable + non-renewable) MWh

561932.90

Consumption of self-generated non-fuel renewable energy

(7.30.1.1) Heating value

Select from:

✓ LHV (lower heating value)

(7.30.1.2) MWh from renewable sources

4040.81

(7.30.1.4) Total (renewable + non-renewable) MWh

4040.81

Total energy consumption

(7.30.1.1) Heating value

Select from:

✓ LHV (lower heating value)

(7.30.1.2) MWh from renewable sources

547840.25

(7.30.1.3) MWh from non-renewable sources

24805

(7.30.1.4) Total (renewable + non-renewable) MWh

572645.25 [Fixed row]

(7.30.6) Select the applications of your organization's consumption of fuel.

	Indicate whether your organization undertakes this fuel application
Consumption of fuel for the generation of electricity	Select from: ✓ No
Consumption of fuel for the generation of heat	Select from: ✓ Yes
Consumption of fuel for the generation of steam	Select from: ✓ Yes
Consumption of fuel for the generation of cooling	Select from:

	Indicate whether your organization undertakes this fuel application
	✓ No
Consumption of fuel for co-generation or tri-generation	Select from: ✓ Yes
[Fixed row]	
(7.30.7) State how much fuel in MWh your organization ha	as consumed (excluding feedstocks) by fuel type.
Sustainable biomass	
(7.30.7.1) Heating value	

Select from:

✓ LHV

(7.30.7.2) Total fuel MWh consumed by the organization

(7.30.7.4) MWh fuel consumed for self-generation of heat

0

(7.30.7.5) MWh fuel consumed for self-generation of steam

(7.30.7.7) MWh fuel consumed for self- cogeneration or self-trigeneration

No energy input used

Other biomass

(7.30.7.1) Heating value

Select from:

✓ LHV

(7.30.7.2) Total fuel MWh consumed by the organization

0

(7.30.7.4) MWh fuel consumed for self-generation of heat

0

(7.30.7.5) MWh fuel consumed for self-generation of steam

0

(7.30.7.7) MWh fuel consumed for self- cogeneration or self-trigeneration

0

(7.30.7.8) Comment

No energy input used

Other renewable fuels (e.g. renewable hydrogen)

(7.30.7.1) Heating value

Select from: ☑ LHV
(7.30.7.2) Total fuel MWh consumed by the organization
0
(7.30.7.4) MWh fuel consumed for self-generation of heat
o
(7.30.7.5) MWh fuel consumed for self-generation of steam
o
(7.30.7.7) MWh fuel consumed for self- cogeneration or self-trigeneration
0
(7.30.7.8) Comment
No energy input used
Coal
(7.30.7.1) Heating value
Select from: ☑ LHV
(7.30.7.2) Total fuel MWh consumed by the organization
o
(7.30.7.4) MWh fuel consumed for self-generation of heat

(7.30.7.5) MWh fuel consumed for self-generation of steam

0

(7.30.7.7) MWh fuel consumed for self- cogeneration or self-trigeneration

0

(7.30.7.8) Comment

No energy input used

Oil

(7.30.7.1) Heating value

Select from:

✓ LHV

(7.30.7.2) Total fuel MWh consumed by the organization

7771.37

(7.30.7.4) MWh fuel consumed for self-generation of heat

0

(7.30.7.5) MWh fuel consumed for self-generation of steam

0

(7.30.7.7) MWh fuel consumed for self- cogeneration or self-trigeneration

0

(7.30.7.8) Comment Fuel Oils Used In Operations Gas **(7.30.7.1)** Heating value Select from: **✓** LHV (7.30.7.2) Total fuel MWh consumed by the organization 105961.48 (7.30.7.4) MWh fuel consumed for self-generation of heat 0 (7.30.7.5) MWh fuel consumed for self-generation of steam 0 (7.30.7.7) MWh fuel consumed for self-cogeneration or self-trigeneration 0 (7.30.7.8) Comment Natural gas used in operations

Other non-renewable fuels (e.g. non-renewable hydrogen)

(7.30.7.1) **Heating value**

Select from:

V	T	H	\mathbf{V}

(7.30.7.2) Total fuel MWh consumed by the organization

0

(7.30.7.4) MWh fuel consumed for self-generation of heat

0

(7.30.7.5) MWh fuel consumed for self-generation of steam

0

(7.30.7.7) MWh fuel consumed for self-cogeneration or self-trigeneration

0

(7.30.7.8) Comment

No energy input used

Total fuel

(7.30.7.1) **Heating value**

Select from:

✓ LHV

(7.30.7.2) Total fuel MWh consumed by the organization

113732.85

(7.30.7.4) MWh fuel consumed for self-generation of heat

0

(7.30.7.5) MWh fuel consumed for self-generation of steam

0

(7.30.7.7) MWh fuel consumed for self-cogeneration or self-trigeneration

0

(7.30.7.8) Comment

Total fuels energy used in operations [Fixed row]

(7.30.9) Provide details on the electricity, heat, steam, and cooling your organization has generated and consumed in the reporting year.

Electricity

(7.30.9.1) Total Gross generation (MWh)

7031.01

(7.30.9.2) Generation that is consumed by the organization (MWh)

7031.01

(7.30.9.3) Gross generation from renewable sources (MWh)

547840.25

(7.30.9.4) Generation from renewable sources that is consumed by the organization (MWh)

547840.25

Heat

(7.30.9.1) Total Gross generation (MWh)
0
(7.30.9.2) Generation that is consumed by the organization (MWh)
0
(7.30.9.3) Gross generation from renewable sources (MWh)
0
(7.30.9.4) Generation from renewable sources that is consumed by the organization (MWh)
0
Steam
(7.30.9.1) Total Gross generation (MWh)
0
(7.30.9.2) Generation that is consumed by the organization (MWh)
0
(7.30.9.3) Gross generation from renewable sources (MWh)
0
(7.30.9.4) Generation from renewable sources that is consumed by the organization (MWh)
0
Cooling

(7.30.9.1) Total Gross generation (MWh)

0

(7.30.9.2) Generation that is consumed by the organization (MWh)

0

(7.30.9.3) Gross generation from renewable sources (MWh)

0

(7.30.9.4) Generation from renewable sources that is consumed by the organization (MWh)

0

[Fixed row]

(7.30.14) Provide details on the electricity, heat, steam, and/or cooling amounts that were accounted for at a zero or near-zero emission factor in the market-based Scope 2 figure reported in 7.7.

Row 1

(7.30.14.1) Country/area

Select from:

✓ France

(7.30.14.2) Sourcing method

Select from:

☑ Unbundled procurement of energy attribute certificates (EACs)

(7.30.14.3) **Energy carrier**

Select from:

✓ Electricity
(7.30.14.4) Low-carbon technology type
Select from: ☑ Solar
(7.30.14.5) Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)
250000
(7.30.14.6) Tracking instrument used
Select from: ☑ I-REC
(7.30.14.7) Country/area of origin (generation) of the low-carbon energy or energy attribute
Select from: ✓ France
(7.30.14.8) Are you able to report the commissioning or re-powering year of the energy generation facility?
Select from: ☑ No
(7.30.14.10) Comment
No Comment [Add row]
(7.30.16) Provide a breakdown by country/area of your electricity/heat/steam/cooling consumption in the reporting year.

Argentina

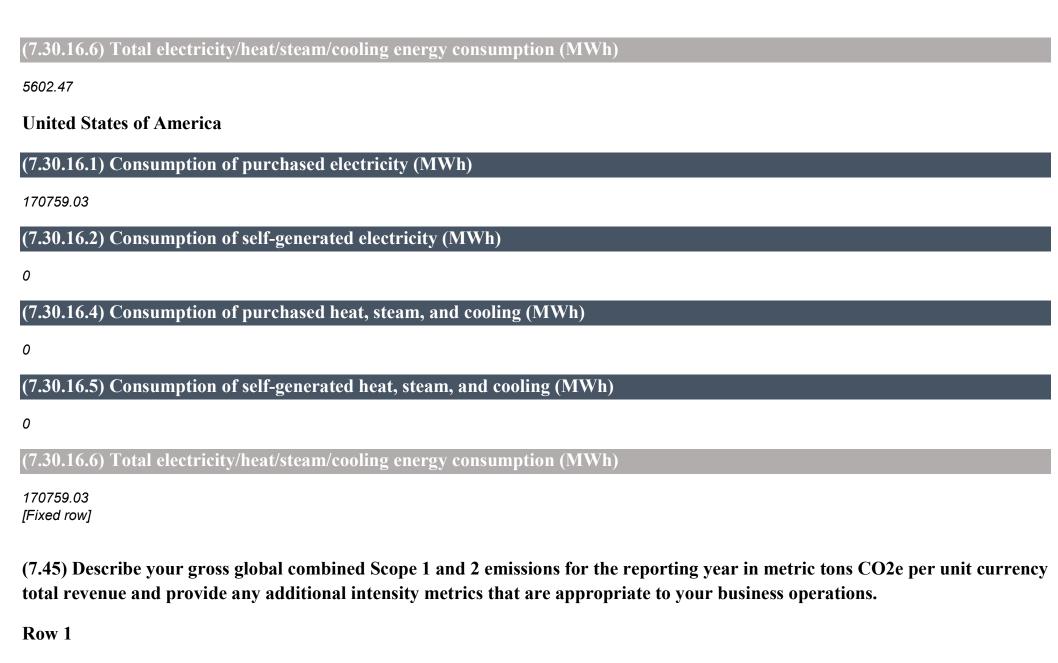
(7.30.16.1) Consumption of purchased electricity (MWh)
5226.24
(7.30.16.2) Consumption of self-generated electricity (MWh)
o
(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)
o
(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)
o
(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)
5226.24
Bahrain
(7.30.16.1) Consumption of purchased electricity (MWh)
5691.5
(7.30.16.2) Consumption of self-generated electricity (MWh)
o
(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)
o
(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)
<i>0</i> 374

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)
5691.50
Brazil
(7.30.16.1) Consumption of purchased electricity (MWh)
28547.62
(7.30.16.2) Consumption of self-generated electricity (MWh)
0
(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)
o
(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)
0
(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)
28547.62
China
(7.30.16.1) Consumption of purchased electricity (MWh)
49311.38
(7.30.16.2) Consumption of self-generated electricity (MWh)
1301.67

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)
0
(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)
0
(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)
50613.05
Colombia
(7.30.16.1) Consumption of purchased electricity (MWh)
431
(7.30.16.2) Consumption of self-generated electricity (MWh)
0
(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)
0
(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)
0
(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)
431.00
Czechia

(7.30.16.1) Consumption of purchased electricity (MWh)
10426.96
(7.30.16.2) Consumption of self-generated electricity (MWh)
o and the state of
(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)
0
(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)
0
(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)
10426.96
France
(7.30.16.1) Consumption of purchased electricity (MWh)
140905.63
(7.30.16.2) Consumption of self-generated electricity (MWh)
o
(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)
0
(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)
<i>0</i> 377

(7.20.17.1) Table last in the
(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)
140905.63
Germany
(7.30.16.1) Consumption of purchased electricity (MWh)
75058.26
(7.30.16.2) Consumption of self-generated electricity (MWh)
0
(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)
o
(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)
o
(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)
75058.26
India
(7.30.16.1) Consumption of purchased electricity (MWh)
8275.48
(7.30.16.2) Consumption of self-generated electricity (MWh)
0


(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)
0
(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)
0
(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)
8275.48
Indonesia
(7.30.16.1) Consumption of purchased electricity (MWh)
0
(7.30.16.2) Consumption of self-generated electricity (MWh)
0
(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)
0
(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)
0
(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)
0.00
Italy

(7.30.16.1) Consumption of purchased electricity (MWh)
9900.26
(7.30.16.2) Consumption of self-generated electricity (MWh)
7031.01
(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)
0
(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)
0
(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)
16931.27
Mexico
(7.30.16.1) Consumption of purchased electricity (MWh)
25488.38
(7.30.16.2) Consumption of self-generated electricity (MWh)
o
(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)
o
(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)
<i>0</i> 380

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)
25488.38
Russian Federation
(7.30.16.1) Consumption of purchased electricity (MWh)
5834.97
(7.30.16.2) Consumption of self-generated electricity (MWh)
0
(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)
0
(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)
o
(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)
5834.97
Spain
(7.30.16.1) Consumption of purchased electricity (MWh)
6800.84
(7.30.16.2) Consumption of self-generated electricity (MWh)
0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh) 0 (7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh) 0 (7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh) 6800.84 **Switzerland** (7.30.16.1) Consumption of purchased electricity (MWh) 3170.75 (7.30.16.2) Consumption of self-generated electricity (MWh) 0 (7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh) 0 (7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh) 0 (7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh) 3170.75 **Thailand**

(7.30.16.1) Consumption of purchased electricity (MWh)
2088.22
(7.30.16.2) Consumption of self-generated electricity (MWh)
o
(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)
o
(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)
0
(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)
2088.22
United Kingdom of Great Britain and Northern Ireland
(7.30.16.1) Consumption of purchased electricity (MWh)
5602.47
(7.30.16.2) Consumption of self-generated electricity (MWh)
0
(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)
O
(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)
O 383

(7.45.1) Intensity figure

0.35

(7.45.2) Metric numerator (Gross global combined Scope 1 and 2 emissions, metric tons CO2e)

32979

(7.45.3) Metric denominator

Select from:

✓ unit of production

(7.45.4) Metric denominator: Unit total

94037799699

(7.45.5) Scope 2 figure used

Select from:

✓ Market-based

(7.45.6) % change from previous year

9

(7.45.7) Direction of change

Select from:

Increased

(7.45.8) Reasons for change

Select all that apply

- ☑ Change in renewable energy consumption
- ✓ Change in output

(7.45.9) Please explain

Aptar increased production of outputs and implemented energy conservation measures.

(7.52) Provide any additional climate-related metrics	relevant to	your business.
---	-------------	----------------

Row 1

(7.52.1) Description

Select from:

✓ Energy usage

(7.52.2) **Metric value**

7.2

(7.52.3) Metric numerator

kWh

(7.52.4) Metric denominator (intensity metric only)

total finished product produced

(7.52.5) % change from previous year

2.1

(7.52.6) Direction of change

Select from:

Increased

(7.52.7) Please explain

In 2024, the volume of Aptar's finished products decreased at some sites. However, we had novel products that required more cavities, resulting in increased machine cycle times and, consequently, higher energy usage.

Row 2

(7.52.1) Description

Select from:

✓ Waste

(7.52.2) Metric value

52978

(7.52.3) Metric numerator

tons

(7.52.4) Metric denominator (intensity metric only)

intensity metric not calculated

(7.52.5) % change from previous year

4.97

(7.52.6) Direction of change

Select from:

Increased

(7.52.7) Please explain

Couple sites with machine issues affecting product quality that needed to be scrapped. [Add row]

(7.53) Did you have an emissions target that was active in the reporting year?

Select all that apply

✓ Absolute target

(7.53.1) Provide details of your absolute emissions targets and progress made against those targets.

Row 1

(7.53.1.1) Target reference number

Select from:

✓ Abs 1

(7.53.1.2) Is this a science-based target?

Select from:

☑ Yes, and this target has been approved by the Science Based Targets initiative

(7.53.1.3) Science Based Targets initiative official validation letter

SBTi Certificate_AptarGroup (1).pdf

(7.53.1.4) **Target ambition**

Select from:

✓ 1.5°C aligned

(7.53.1.5) Date target was set

01/31/2023

(7.53.1.6) Target coverage

Select from:

✓ Organization-wide

(7.53.1.7) Greenhouse gases covered by target

Select all that apply

- ✓ Methane (CH4)
- ✓ Nitrous oxide (N2O)
- ✓ Carbon dioxide (CO2)
- ✓ Perfluorocarbons (PFCs)
- ✓ Hydrofluorocarbons (HFCs)

- ✓ Sulphur hexafluoride (SF6)
- ✓ Nitrogen trifluoride (NF3)

(7.53.1.8) Scopes

Select all that apply

- ✓ Scope 1
- ✓ Scope 2

(7.53.1.9) Scope 2 accounting method

Select from:

✓ Market-based

(7.53.1.11) **End date of base year**

12/30/2019

(7.53.1.12) Base year Scope 1 emissions covered by target (metric tons CO2e)

23515

(7.53.1.13) Base year Scope 2 emissions covered by target (metric tons CO2e)

112703

(7.53.1.31) Base year total Scope 3 emissions covered by target (metric tons CO2e)

(7.53.1.32) Total base year emissions covered by target in all selected Scopes (metric tons CO2e)

136218.000

(7.53.1.33) Base year Scope 1 emissions covered by target as % of total base year emissions in Scope 1

99.72

(7.53.1.34) Base year Scope 2 emissions covered by target as % of total base year emissions in Scope 2

99.72

(7.53.1.53) Base year emissions covered by target in all selected Scopes as % of total base year emissions in all selected Scopes

99.72

(7.53.1.54) End date of target

12/30/2030

(7.53.1.55) Targeted reduction from base year (%)

82

(7.53.1.56) Total emissions at end date of target covered by target in all selected Scopes (metric tons CO2e)

24519.240

(7.53.1.57) Scope 1 emissions in reporting year covered by target (metric tons CO2e)

24805

(7.53.1.58) Scope 2 emissions in reporting year covered by target (metric tons CO2e)

8174

(7.53.1.77) Total emissions in reporting year covered by target in all selected scopes (metric tons CO2e)

32979.000

(7.53.1.78) Land-related emissions covered by target

Select from:

☑ No, it does not cover any land-related emissions (e.g. non-FLAG SBT)

(7.53.1.79) % of target achieved relative to base year

92.43

(7.53.1.80) Target status in reporting year

Select from:

✓ Achieved

(7.53.1.82) Explain target coverage and identify any exclusions

The target cover all scope 1 and 2 emissions in the company's GHG inventory, developed in line with the GHG Protocol Corporate Standardard. The GHG emissions inventory covers all relevant GHG emissions, from all relevant sources and subsidiaries. The GHG inventory is composed exclusively of fossil based emissions, and no biogenic emissions have been reported alongside the GHG inventory.

(7.53.1.83) Target objective

The objective of the target is to reduce the GHG emissions and energy consumption, with an increase of renewables.

(7.53.1.85) Target derived using a sectoral decarbonization approach

Select from:

✓ No

(7.53.1.86) List the emissions reduction initiatives which contributed most to achieving this target

The main contributors to the progress in the achievement of SBT target for Scope 12 are the increase of renewable energy uses, decrease of natural gas uses in our operations, and implementation of energy conservation measures in our energy intensive plants.

Row 2

(7.53.1.1) Target reference number

Select from:

✓ Abs 2

(7.53.1.2) Is this a science-based target?

Select from:

☑ Yes, and this target has been approved by the Science Based Targets initiative

(7.53.1.3) Science Based Targets initiative official validation letter

SBTi Certificate_AptarGroup (1).pdf

(7.53.1.4) Target ambition

Select from:

✓ 2°C aligned

(7.53.1.5) Date target was set

01/31/2023

(7.53.1.6) Target coverage

Select from:

✓ Organization-wide

(7.53.1.7) Greenhouse gases covered by target

Select all that apply

- ✓ Methane (CH4)
- ✓ Nitrous oxide (N2O)
- ✓ Carbon dioxide (CO2)
- ✓ Perfluorocarbons (PFCs)
- ☑ Hydrofluorocarbons (HFCs)

- ✓ Sulphur hexafluoride (SF6)
- ✓ Nitrogen trifluoride (NF3)

(7.53.1.8) Scopes

Select all that apply

✓ Scope 3

(7.53.1.10) Scope 3 categories

Select all that apply

- ☑ Scope 3, Category 1 Purchased goods and services
- ☑ Scope 3, Category 4 Upstream transportation and distribution
- ☑ Scope 3, Category 5 Waste generated in operations
- ☑ Scope 3, Category 9 Downstream transportation and distribution

(7.53.1.11) **End date of base year**

12/30/2019

(7.53.1.14) Base year Scope 3, Category 1: Purchased goods and services emissions covered by target (metric tons CO2e)

245761.0

(7.53.1.17) Base year Scope 3, Category 4: Upstream transportation and distribution emissions covered by target (metric tons CO2e)

13567.0

(7.53.1.18) Base year Scope 3, Category 5: Waste generated in operations emissions covered by target (metric tons CO2e)

(7.53.1.22) Base year Scope 3, Category 9: Downstream transportation and distribution emissions covered by target (metric tons CO2e)

9045

(7.53.1.31) Base year total Scope 3 emissions covered by target (metric tons CO2e)

284506.000

(7.53.1.32) Total base year emissions covered by target in all selected Scopes (metric tons CO2e)

284506.000

(7.53.1.35) Base year Scope 3, Category 1: Purchased goods and services emissions covered by target as % of total base year emissions in Scope 3, Category 1: Purchased goods and services (metric tons CO2e)

86.0

(7.53.1.38) Base year Scope 3, Category 4: Upstream transportation and distribution covered by target as % of total base year emissions in Scope 3, Category 4: Upstream transportation and distribution (metric tons CO2e)

5.0

(7.53.1.39) Base year Scope 3, Category 5: Waste generated in operations emissions covered by target as % of total base year emissions in Scope 3, Category 5: Waste generated in operations (metric tons CO2e)

6.0

(7.53.1.43) Base year Scope 3, Category 9: Downstream transportation and distribution emissions covered by target as % of total base year emissions in Scope 3, Category 9: Downstream transportation and distribution (metric tons CO2e)

3.0

(7.53.1.52) Base year total Scope 3 emissions covered by target as % of total base year emissions in Scope 3 (in all Scope 3 categories)

71.6

(7.53.1.53) Base year emissions covered by target in all selected Scopes as % of total base year emissions in all selected Scopes

100.0

(7.53.1.54) End date of target

12/30/2030

(7.53.1.55) Targeted reduction from base year (%)

14

(7.53.1.56) Total emissions at end date of target covered by target in all selected Scopes (metric tons CO2e)

244675.160

(7.53.1.59) Scope 3, Category 1: Purchased goods and services emissions in reporting year covered by target (metric tons CO2e)

237986

(7.53.1.62) Scope 3, Category 4: Upstream transportation and distribution emissions in reporting year covered by target (metric tons CO2e)

15890

(7.53.1.63) Scope 3, Category 5: Waste generated in operations emissions in reporting year covered by target (metric tons CO2e)

17066

(7.53.1.67) Scope 3, Category 9: Downstream transportation and distribution emissions in reporting year covered by target (metric tons CO2e)

(7.53.1.76) Total Scope 3 emissions in reporting year covered by target (metric tons CO2e)

285034.000

(7.53.1.77) Total emissions in reporting year covered by target in all selected scopes (metric tons CO2e)

285034.000

(7.53.1.78) Land-related emissions covered by target

Select from:

☑ No, it does not cover any land-related emissions (e.g. non-FLAG SBT)

(7.53.1.79) % of target achieved relative to base year

-1.33

(7.53.1.80) Target status in reporting year

Select from:

Underway

(7.53.1.82) Explain target coverage and identify any exclusions

A complete screening has been carried out with scope 3 GHG emissions accounting for 75% of the total emissions, and a scope 3 target has been set. The GHG emissions inventory covers all relevant GHG emissions, from all relevant sources and subsidiaries. The GHG inventory is composed exclusively of fossil based emissions, and no biogenic emissions have been reported alongside the GHG inventory.

(7.53.1.83) Target objective

The objective of the target is to reduce the indirect GHG emissions related to plastics raw materials, waste generated in operations, and upstream and downstream transportation.

(7.53.1.84) Plan for achieving target, and progress made to the end of the reporting year

Aptar defined appropriate conversion plan and chemical phase out in order to reduce the consumption of non-renewables raw materials, increasing the recycled content and biofeedstock supporting the reduction of GHG emissions. In addition, we planned several partnership with our suppliers along value chain for the optimization of transportations, logistic routes and use of sustainable fuels. From management of waste produced in our operations, our sites increased the best practices for the reuse of waste and increased the recycling scenarios for the non hazardous waste. During the reporting year, for the first time since baseline year, the GHG emissions related to plastics raw materials decreased, thanks to the ecodesign approaches and new sustainable materials used.

(7.53.1.85) Target derived using a sectoral decarbonization approach

Select	from:
--------	-------

✓ No

[Add row]

(7.54) Did you have any other climate-related targets that were active in the reporting year?

Select all that apply

- ✓ Targets to increase or maintain low-carbon energy consumption or production
- ✓ Targets to reduce methane emissions
- ✓ Net-zero targets

(7.54.1) Provide details of your targets to increase or maintain low-carbon energy consumption or production.

Row 1

(7.54.1.1) Target reference number

Select from:

✓ Low 1

(7.54.1.2) Date target was set

01/31/2023

(7.54.1.3) Target coverage

Select from:

✓ Organization-wide

(7.54.1.4) Target type: energy carrier

Select from:

Electricity

(7.54.1.5) **Target type: activity**

Select from:

✓ Production

(7.54.1.6) Target type: energy source

Select from:

✓ Renewable energy source(s) only

(7.54.1.7) End date of base year

01/31/2023

(7.54.1.8) Consumption or production of selected energy carrier in base year (MWh)

316062

(7.54.1.9) % share of low-carbon or renewable energy in base year

57

(7.54.1.10) End date of target

08/18/2030

(7.54.1.11) % share of low-carbon or renewable energy at end date of target

100

(7.54.1.12) % share of low-carbon or renewable energy in reporting year

97.5

(7.54.1.13) % of target achieved relative to base year

94.19

(7.54.1.14) Target status in reporting year

Select from:

Underway

(7.54.1.16) Is this target part of an emissions target?

Yes, it is supporting the reduction target for Scope 2 market based in 1.5°C scenario

(7.54.1.17) Is this target part of an overarching initiative?

Select all that apply

✓ Science Based Targets initiative

(7.54.1.18) Science Based Targets initiative official validation letter

SBTi Certificate_AptarGroup (1).pdf

(7.54.1.19) Explain target coverage and identify any exclusions

Target covers 100% of electrical energy usage in operations.

(7.54.1.20) Target objective

the objective of the target is to reduce the indirect GHG emissions related to the use of electricity thanks to the increase of renewables sources.

(7.54.1.21) Plan for achieving target, and progress made to the end of the reporting year

Aptar increased the purchase of Renewable Energy Certificates to 97.5% of coverage and in parallel, we signed two virtual PPA contract in EMEA and NAM. [Add row]

(7.54.2) Provide details of any other climate-related targets, including methane reduction targets.

Row 1

(7.54.2.1) Target reference number

Select from:

✓ Oth 1

(7.54.2.2) Date target was set

12/31/2019

(7.54.2.3) Target coverage

Select from:

✓ Organization-wide

(7.54.2.4) Target type: absolute or intensity

Select from:

✓ Intensity

(7.54.2.5) Target type: category & metric (target numerator if reporting an intensity target)

Energy productivity

✓ megawatt hours (MWh)

(7.54.2.6) Target denominator (intensity targets only)

Select from:

✓ unit of production
(7.54.2.7) End date of base year
12/31/2019
(7.54.2.8) Figure or percentage in base year
6.7
(7.54.2.9) End date of target
12/30/2025
(7.54.2.10) Figure or percentage at end of date of target
5.7
(7.54.2.11) Figure or percentage in reporting year
5.98
(7.54.2.12) % of target achieved relative to base year
72.000000000
(7.54.2.13) Target status in reporting year
Select from: ✓ Underway
(7.54.2.15) Is this target part of an emissions target?
Yes, it is supporting the market based scope 2 reduction target

(7.54.2.16) Is this target part of an overarching initiative?

☑ No, it's not part of an overarching initiative

(7.54.2.18) Please explain target coverage and identify any exclusions

Target covers the entire organization with all operations.

(7.54.2.19) **Target objective**

the objective of the target is to reduce the indirect GHG emissions related to the use of electricity thanks to the implementation of energy conservation measures.

(7.54.2.20) Plan for achieving target, and progress made to the end of the reporting year

Energy conservation measures related to the use of electrical presses for the injection molding, optimization of HVAC system, compressed air uses and compressors. [Add row]

(7.54.3) Provide details of your net-zero target(s).

Row 1

(7.54.3.1) Target reference number

Select from:

☑ NZ1

(7.54.3.2) Date target was set

01/31/2023

(7.54.3.3) Target Coverage

Select from:

✓ Organization-wide

(7.54.3.4) Targets linked to this net zero target

✓ Abs1

(7.54.3.5) End date of target for achieving net zero

12/30/2030

(7.54.3.6) Is this a science-based target?

Select from:

☑ Yes, and this target has been approved by the Science Based Targets initiative

(7.54.3.7) Science Based Targets initiative official validation letter

SBTi Certificate AptarGroup (1).pdf

(7.54.3.8) Scopes

Select all that apply

✓ Scope 1

✓ Scope 2

(7.54.3.9) Greenhouse gases covered by target

Select all that apply

✓ Methane (CH4)

✓ Nitrous oxide (N2O)

✓ Carbon dioxide (CO2)

✓ Perfluorocarbons (PFCs)

✓ Sulphur hexafluoride (SF6)

✓ Nitrogen trifluoride (NF3)

(7.54.3.10) Explain target coverage and identify any exclusions

The target cover all scope 1 and 2 emissions in the company's GHG inventory, developed in line with the GHG Protocol Corporate Standardard. The GHG emissions inventory covers all relevant GHG emissions, from all relevant sources and subsidiaries. The GHG inventory is composed exclusively of fossil based emissions, and no biogenic emissions have been reported alongside the GHG inventory.

(7.54.3.11) Target objective

the objective of the target is to reduce the GHG emissions and energy consumption, with an increase of renewables.

(7.54.3.12) Do you intend to neutralize any residual emissions with permanent carbon removals at the end of the target?

Select from:

✓ Unsure

(7.54.3.13) Do you plan to mitigate emissions beyond your value chain?

Select from:

☑ No, but we plan to within the next two years

(7.54.3.17) Target status in reporting year

Select from:

Underway

(7.54.3.19) Process for reviewing target

Aptar defined an internal process for the annual review of target achievement, we monitor performances and our carbon transition plan progress with external energy data assurance in compliance with ISO 14064-1 standard.

[Add row]

(7.55) Did you have emissions reduction initiatives that were active within the reporting year? Note that this can include those in the planning and/or implementation phases.

Select from:

✓ Yes

(7.55.1) Identify the total number of initiatives at each stage of development, and for those in the implementation stages, the estimated CO2e savings.

	Number of initiatives	Total estimated annual CO2e savings in metric tonnes CO2e	
Under investigation	26	`Numeric input	
To be implemented	11	487	
Implementation commenced	6	17	
Implemented	5	651	
Not to be implemented	15	`Numeric input	

[Fixed row]

(7.55.2) Provide details on the initiatives implemented in the reporting year in the table below.

Row 1

(7.55.2.1) Initiative category & Initiative type

Energy efficiency in buildings

✓ Lighting

(7.55.2.2) Estimated annual CO2e savings (metric tonnes CO2e)

4

(7.55.2.3) Scope(s) or Scope 3 category(ies) where emissions savings occur

Select all that apply

✓ Scope 2 (location-based)
✓ Scope 2 (market-based)
(7.55.2.4) Voluntary/Mandatory
Select from: ✓ Mandatory
(7.55.2.5) Annual monetary savings (unit currency – as specified in 1.2)
150000
(7.55.2.6) Investment required (unit currency – as specified in 1.2)
45000
(7.55.2.7) Payback period
Select from: ✓ <1 year
(7.55.2.8) Estimated lifetime of the initiative
Select from: ✓ 6-10 years
(7.55.2.9) Comment
No Comment
Row 2
(7.55.2.1) Initiative category & Initiative type

Energy	efficiency	in	buil	ldings

☑ Heating, Ventilation and Air Conditioning (HVAC)

(7.55.2.2) Estimated annual CO2e savings (metric tonnes CO2e)

156

(7.55.2.3) Scope(s) or Scope 3 category(ies) where emissions savings occur

Select all that apply

- ✓ Scope 1
- ✓ Scope 2 (location-based)
- ✓ Scope 2 (market-based)

(7.55.2.4) Voluntary/Mandatory

Select from:

✓ Mandatory

(7.55.2.5) Annual monetary savings (unit currency – as specified in 1.2)

250000

(7.55.2.6) Investment required (unit currency – as specified in 1.2)

1200000

(7.55.2.7) **Payback period**

Select from:

✓ 4-10 years

(7.55.2.8) Estimated lifetime of the initiative

Select from:

☑ 6-10 years

(7.55.2.9) Comment

No Comment

Row 3

(7.55.2.1) Initiative category & Initiative type

Energy efficiency in production processes

✓ Waste heat recovery

(7.55.2.2) Estimated annual CO2e savings (metric tonnes CO2e)

430

(7.55.2.3) Scope(s) or Scope 3 category(ies) where emissions savings occur

Select all that apply

✓ Scope 1

(7.55.2.4) Voluntary/Mandatory

Select from:

✓ Voluntary

(7.55.2.5) Annual monetary savings (unit currency – as specified in 1.2)

321000

(7.55.2.6) Investment required (unit currency – as specified in 1.2)

956000

(7.55.2.7) Payback period

Select from:

✓ 4-10 years

(7.55.2.8) Estimated lifetime of the initiative

Select from:

☑ 6-10 years

(7.55.2.9) Comment

No Comment

Row 4

(7.55.2.1) Initiative category & Initiative type

Energy efficiency in production processes

✓ Compressed air

(7.55.2.2) Estimated annual CO2e savings (metric tonnes CO2e)

54

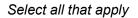
(7.55.2.3) Scope(s) or Scope 3 category(ies) where emissions savings occur

Select all that apply

✓ Scope 2 (location-based)

(7.55.2.4) Voluntary/Mandatory

Select from:


Mandatory

(7.55.2.5) Annual monetary savings (unit currency – as specified in 1.2) 500000 (7.55.2.6) Investment required (unit currency – as specified in 1.2) 100000 (7.55.2.7) Payback period Select from: **✓** 1-3 years (7.55.2.8) Estimated lifetime of the initiative Select from: **✓** 3-5 years (7.55.2.9) Comment No Comment Row 5 (7.55.2.1) Initiative category & Initiative type Low-carbon energy consumption **✓** Solar PV

(7.55.2.2) Estimated annual CO2e savings (metric tonnes CO2e)

7

(7.55.2.3) Scope(s) or Scope 3 category(ies) where emissions savings occur

- ✓ Scope 2 (location-based)
- ✓ Scope 2 (market-based)

(7.55.2.4) Voluntary/Mandatory

Select from:

✓ Voluntary

(7.55.2.5) Annual monetary savings (unit currency – as specified in 1.2)

350000

(7.55.2.6) Investment required (unit currency – as specified in 1.2)

2178880

(7.55.2.7) Payback period

Select from:

✓ 4-10 years

(7.55.2.8) Estimated lifetime of the initiative

Select from:

✓ 11-15 years

(7.55.2.9) Comment

No Comment [Add row]

(7.55.3) What methods do you use to drive investment in emissions reduction activities?

Row 1

(7.55.3.1) Method

Select from:

✓ Dedicated budget for energy efficiency

(7.55.3.2) Comment

Aptar sites integrated the energy efficiency budget in the standard budget, so, these projects must go through the same approval process as all others requiring capital investment.

Row 2

(7.55.3.1) Method

Select from:

✓ Other :Rebates

(7.55.3.2) Comment

Aptar sites often use rebates or capital investment incentives to drive investment in their emission reduction initiatives. Aptar tax department surveys potential rebates for our locations on an ongoing basis to encourage projects.

Row 3

(7.55.3.1) Method

Select from:

✓ Employee engagement

(7.55.3.2) Comment

Aptar sites integrated energy team as part of EHS&S team. In particular the sites that achieved certification ISO 50001 appointed an energy team dedicated to the management of energy efficiency actions to reduce the main energy uses and consumption.

Row 4

(7.55.3.1) Method

Select from:

☑ Lower return on investment (ROI) specification

(7.55.3.2) Comment

Aptar finance department identified appropriate requirements (based on the Capex amount and payback time) in order to approve energy efficiency actions and projects at site level. It's preferable, for the actions that require large investment, to respect a payback of 3 years. That said, however, the EHS and Global Sustainability Team leaders are involved in the project selection when the project involves energy/emissions reduction, and first evaluate a project proposal to be sure it aligns with our science based targets. If projects have a significant effect on our ability to make improvements toward achieving our SBTs, but have a longer return on investment period, they are still considered for funding approval. In this case, a payback of 3 years is not a firm requirement.

Row 5

(7.55.3.1) Method

Select from:

✓ Internal incentives/recognition programs

(7.55.3.2) Comment

As sustainability is integrated into our business model, we do not have a dedicated sustainability budget and therefore these projects must go through the same approval process as all others requiring capital investment. Our business leaders must identify the projects that will best align to the overall sustainability strategy and present the business case accordingly. As we have so many internal recognition programs, projects are approved and executed as part of our operating plan.

Row 6

(7.55.3.1) Method

Select from:

✓ Compliance with regulatory requirements/standards

(7.55.3.2) Comment

Aptar sites identified working and environmental regulations applicable to their activities. When it comes to identifying projects for investment, regulatory related items take priority.
[Add row]

(7.73) Are you providing product level data for your organization's goods or services?

Select from:

✓ Yes, I will provide data through the CDP questionnaire

(7.73.1) Give the overall percentage of total emissions, for all Scopes, that are covered by these products.

6

(7.73.2) Complete the following table for the goods/services for which you want to provide data.

Row 1

(7.73.2.1) Requesting member

Select from:

(7.73.2.2) Name of good/ service

Entire customer product portfolio

(7.73.2.3) Description of good/ service

Entire customer product portfolio

(7.73.2.4) Type of product

Select from:

✓ Final

(7.73.2.5) Unique product identifier

Entire customer product portfolio

(7.73.2.6) Total emissions in kg CO2e per unit

9.13

(7.73.2.7) ±% change from previous figure supplied

0

(7.73.2.8) Date of previous figure supplied

12/30/2024

(7.73.2.9) Explanation of change

First year evaluation with new calculation method update. Please note that the CO2 is expressed per 1000 pieces.

(7.73.2.10) Methods used to estimate lifecycle emissions

Select from:

☑ ISO 14040 & 14044

Row 2

(7.73.2.1) Requesting member

Select from:

(7.73.2.2) Name of good/ service

Entire customer product portfolio

(7.73.2.3) Description of good/ service

Entire customer product portfolio

(7.73.2.4) **Type of product**

Select from:

✓ Final

(7.73.2.5) Unique product identifier

Entire customer product portfolio

(7.73.2.6) Total emissions in kg CO2e per unit

9.17

$(7.73.2.7) \pm \%$ change from previous figure supplied

0

(7.73.2.8) Date of previous figure supplied

12/29/2024

(7.73.2.9) Explanation of change

First year evaluation with new calculation method update. Please note that the CO2 is expressed per 1000 pieces.

(7.73.2.10) Methods used to estimate lifecycle emissions

Select from:

☑ ISO 14040 & 14044

Row 3

(7.73.2.1) Requesting member

Select from:

(7.73.2.2) Name of good/ service

Entire customer product portfolio

(7.73.2.3) Description of good/ service

Entire customer product portfolio

(7.73.2.4) **Type of product**

Select from:

✓ Final

(7.73.2.5) Unique product identifier

Entire customer product portfolio

(7.73.2.6) Total emissions in kg CO2e per unit

11.04

$(7.73.2.7) \pm \%$ change from previous figure supplied

0

(7.73.2.8) Date of previous figure supplied

12/29/2024

(7.73.2.9) Explanation of change

First year evaluation with new calculation method update. Please note that the CO2 is expressed per 1000 pieces.

(7.73.2.10) Methods used to estimate lifecycle emissions

Select from:

☑ ISO 14040 & 14044

Row 4

(7.73.2.1) Requesting member

Select from:

(7.73.2.2) Name of good/ service

Entire customer product portfolio

(7.73.2.3) Description of good/ service

Entire customer product portfolio

(7.73.2.4) Type of product

Select from:

✓ Final

(7.73.2.5) Unique product identifier

Entire customer product portfolio

(7.73.2.6) Total emissions in kg CO2e per unit

13.65

$(7.73.2.7) \pm \%$ change from previous figure supplied

0

(7.73.2.8) Date of previous figure supplied

12/29/2024

(7.73.2.9) Explanation of change

First year evaluation with new calculation method update. Please note that the CO2 is expressed per 1000 pieces.

(7.73.2.10) Methods used to estimate lifecycle emissions

Select from:

✓ ISO 14040 & 14044

Row 5

(7.73.2.1) Requesting member

Select from:

(7.73.2.2) Name of good/ service

Entire customer product portfolio

(7.73.2.3) Description of good/ service

Entire customer product portfolio

(7.73.2.4) Type of product

Select from:

✓ Final

(7.73.2.5) Unique product identifier

Entire customer product portfolio

(7.73.2.6) Total emissions in kg CO2e per unit

20.37

$(7.73.2.7) \pm \%$ change from previous figure supplied

0

(7.73.2.8) Date of previous figure supplied

12/29/2024

(7.73.2.9) Explanation of change

First year evaluation with new calculation method update. Please note that the CO2 is expressed per 1000 pieces.

(7.73.2.10) Methods used to estimate lifecycle emissions

Select from:

✓ ISO 14040 & 14044

Row 6

(7.73.2.1) Requesting member

Select from:

(7.73.2.2) Name of good/ service

Entire customer product portfolio

(7.73.2.3) Description of good/ service

Entire customer product portfolio

(7.73.2.4) **Type of product**

Select from:

✓ Final

(7.73.2.5) Unique product identifier

Entire customer product portfolio

(7.73.2.6) Total emissions in kg CO2e per unit

24.5

(7.73.2.7) ±% change from previous figure supplied

0

(7.73.2.8) Date of previous figure supplied

12/29/2024

(7.73.2.9) Explanation of change

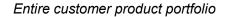
First year evaluation with new calculation method update. Please note that the CO2 is expressed per 1000 pieces.

(7.73.2.10) Methods used to estimate lifecycle emissions

Select from:

☑ ISO 14040 & 14044

Row 7


(7.73.2.1) Requesting member

Select from:

(7.73.2.2) Name of good/ service

Entire customer product portfolio

(7.73.2.3) Description of good/ service

(7.73.2.4) **Type of product**

Select from:

✓ Final

(7.73.2.5) Unique product identifier

Entire customer product portfolio

(7.73.2.6) Total emissions in kg CO2e per unit

9.11

$(7.73.2.7) \pm \%$ change from previous figure supplied

0

(7.73.2.8) Date of previous figure supplied

12/29/2024

(7.73.2.9) Explanation of change

First year evaluation with new calculation method update. Please note that the CO2 is expressed per 1000 pieces.

(7.73.2.10) Methods used to estimate lifecycle emissions

Select from:

☑ ISO 14040 & 14044

Row 8

(7.73.2.1) Requesting member

Select from:

(7.73.2.2) Name of good/ service

Entire customer product portfolio

(7.73.2.3) Description of good/ service

Entire customer product portfolio

(7.73.2.4) Type of product

Select from:

✓ Final

(7.73.2.5) Unique product identifier

Entire customer product portfolio

(7.73.2.6) Total emissions in kg CO2e per unit

17.43

$(7.73.2.7) \pm \%$ change from previous figure supplied

0

(7.73.2.8) Date of previous figure supplied

12/29/2024

(7.73.2.9) Explanation of change

First year evaluation with new calculation method update. Please note that the CO2 is expressed per 1000 pieces.

(7.73.2.10) Methods used to estimate lifecycle emissions

Select from:
☑ ISO 14040 & 14044
Row 9
(7.73.2.1) Requesting member
Select from:
(7.73.2.2) Name of good/ service
Entire customer product portfolio
(7.73.2.3) Description of good/ service
Entire customer product portfolio
(7.73.2.4) Type of product
Select from:

(7.73.2.5) Unique product identifier

Entire customer product portfolio

(7.73.2.6) Total emissions in kg CO2e per unit

10.53

 $(7.73.2.7) \pm \%$ change from previous figure supplied

n

(7.73.2.8) Date of previous figure supplied

(7.73.2.9) Explanation of change

First year evaluation with new calculation method update. Please note that the CO2 is expressed per 1000 pieces.

(7.73.2.10) Methods used to estimate lifecycle emissions

Select from:

✓ ISO 14040 & 14044

Row 10

(7.73.2.1) Requesting member

Select from:

(7.73.2.2) Name of good/ service

Entire customer product portfolio

(7.73.2.3) Description of good/ service

Entire customer product portfolio

(7.73.2.4) **Type of product**

Select from:

✓ Final

(7.73.2.5) Unique product identifier

Entire customer product portfolio

(7.73.2.6) Total emissions in kg CO2e per unit

$(7.73.2.7) \pm \%$ change from previous figure supplied

0

(7.73.2.8) Date of previous figure supplied

12/29/2024

(7.73.2.9) Explanation of change

First year evaluation with new calculation method update. Please note that the CO2 is expressed per 1000 pieces.

(7.73.2.10) Methods used to estimate lifecycle emissions

Select from:

✓ ISO 14040 & 14044

Row 11

(7.73.2.1) Requesting member

Select from:

(7.73.2.2) Name of good/ service

Entire customer product portfolio

(7.73.2.3) Description of good/ service

Entire customer product portfolio

(7.73.2.4) **Type of product**

Select from:

V Final

(7.73.2.5) Unique product identifier

Entire customer product portfolio

(7.73.2.6) Total emissions in kg CO2e per unit

15.26

$(7.73.2.7) \pm \%$ change from previous figure supplied

0

(7.73.2.8) Date of previous figure supplied

12/29/2024

(7.73.2.9) Explanation of change

First year evaluation with new calculation method update. Please note that the CO2 is expressed per 1000 pieces.

(7.73.2.10) Methods used to estimate lifecycle emissions

Select from:

☑ ISO 14040 & 14044

Row 12

(7.73.2.1) Requesting member

Select from:

(7.73.2.2) Name of good/ service

Entire customer product portfolio

(7.73.2.3) Description of good/ service

Entire customer product portfolio

(7.73.2.4) Type of product

Select from:

✓ Final

(7.73.2.5) Unique product identifier

Entire customer product portfolio

(7.73.2.6) Total emissions in kg CO2e per unit

12.83

$(7.73.2.7) \pm \%$ change from previous figure supplied

0

(7.73.2.8) Date of previous figure supplied

12/29/2024

(7.73.2.9) Explanation of change

First year evaluation with new calculation method update. Please note that the CO2 is expressed per 1000 pieces.

(7.73.2.10) Methods used to estimate lifecycle emissions

Select from:

☑ ISO 14040 & 14044

[Add row]

(7.73.3) Complete the following table with data for lifecycle stages of your goods and/or services.

Row 1

(7.73.3.1) Requesting member

Select from:

(7.73.3.2) Name of good/ service

Entire customer product portfolio

(7.73.3.3) Scope

Select from:

✓ Scope 1, 2 & 3

(7.73.3.4) Lifecycle stage

Select from:

✓ Cradle to gate

(7.73.3.5) Emissions at the lifecycle stage in kg CO2e per unit

9.13

(7.73.3.6) Lifecycle stage under your ownership or control

Select from:

✓ No

(7.73.3.7) **Type of data used**

Select from:

✓ Primary and secondary

(7.73.3.8) **Data quality**

Data quality has been evaluated as good. Please note that CO2 impact is not per single unit but for 1000 pieces.

(7.73.3.9) If applicable, describe the verification/assurance of the product emissions data

not applicable - data not assured by third party

Row 2

(7.73.3.1) Requesting member

Select from:

(7.73.3.2) Name of good/ service

Entire customer product portfolio

(7.73.3.3) Scope

Select from:

✓ Scope 1, 2 & 3

(7.73.3.4) Lifecycle stage

Select from:

✓ Cradle to gate

(7.73.3.5) Emissions at the lifecycle stage in kg CO2e per unit

9.17

(7.73.3.6) Lifecycle stage under your ownership or control

Select from:

✓ No

(7.73.3.7) **Type of data used**

Select from:

✓ Primary and secondary

(7.73.3.8) Data quality

Data quality has been evaluated as good. Please note that CO2 impact is not per single unit but for 1000 pieces.

(7.73.3.9) If applicable, describe the verification/assurance of the product emissions data

not applicable - data not assured by third party

Row 3

(7.73.3.1) Requesting member

Select from:

(7.73.3.2) Name of good/ service

Entire customer product portfolio

(7.73.3.3) Scope

Select from:

✓ Scope 1, 2 & 3

(7.73.3.4) Lifecycle stage

Select from:

✓ Cradle to gate

(7.73.3.5) Emissions at the lifecycle stage in kg CO2e per unit

11.04

(7.73.3.6) Lifecycle stage under your ownership or control

Select from:

✓ No

(7.73.3.7) **Type of data used**

Select from:

✓ Primary and secondary

(7.73.3.8) Data quality

Data quality has been evaluated as good. Please note that CO2 impact is not per single unit but for 1000 pieces.

(7.73.3.9) If applicable, describe the verification/assurance of the product emissions data

not applicable - data not assured by third party

Row 4

(7.73.3.1) Requesting member

Select from:

(7.73.3.2) Name of good/ service

Entire customer product portfolio

(7.73.3.3) Scope

Select from:

✓ Scope 1, 2 & 3

(7.73.3.4) Lifecycle stage

Select from:

✓ Cradle to gate

(7.73.3.5) Emissions at the lifecycle stage in kg CO2e per unit

13.65

(7.73.3.6) Lifecycle stage under your ownership or control

Select from:

✓ No

(7.73.3.7) **Type of data used**

Select from:

✓ Primary and secondary

(7.73.3.8) Data quality

Data quality has been evaluated as good. Please note that CO2 impact is not per single unit but for 1000 pieces.

(7.73.3.9) If applicable, describe the verification/assurance of the product emissions data

not applicable - data not assured by third party

Row 5

(7.73.3.1) Requesting member

Select from:

(7.73.3.2) Name of good/ service

Entire customer product portfolio

(7.73.3.3) Scope

✓ Scope 1, 2 & 3

(7.73.3.4) Lifecycle stage

Select from:

✓ Cradle to gate

(7.73.3.5) Emissions at the lifecycle stage in kg CO2e per unit

20.37

(7.73.3.6) Lifecycle stage under your ownership or control

Select from:

✓ No

(7.73.3.7) **Type of data used**

Select from:

✓ Primary and secondary

(7.73.3.8) **Data quality**

Data quality has been evaluated as good. Please note that CO2 impact is not per single unit but for 1000 pieces.

(7.73.3.9) If applicable, describe the verification/assurance of the product emissions data

not applicable - data not assured by third party

Row 6

(7.73.3.1) Requesting member

Select from:

(7.73.3.2) Name of good/ service

Entire customer product portfolio

(7.73.3.3) Scope

Select from:

✓ Scope 1, 2 & 3

(7.73.3.4) Lifecycle stage

Select from:

✓ Cradle to gate

(7.73.3.5) Emissions at the lifecycle stage in kg CO2e per unit

24.5

(7.73.3.6) Lifecycle stage under your ownership or control

Select from:

✓ No

(7.73.3.7) **Type of data used**

Select from:

✓ Primary and secondary

(7.73.3.8) Data quality

Data quality has been evaluated as good. Please note that CO2 impact is not per single unit but for 1000 pieces.

(7.73.3.9) If applicable, describe the verification/assurance of the product emissions data

not applicable - data not assured by third party

Row 7

(7.73.3.1) Requesting member

Select from:

(7.73.3.2) Name of good/ service

Entire customer product portfolio

(7.73.3.3) Scope

Select from:

✓ Scope 1, 2 & 3

(7.73.3.4) Lifecycle stage

Select from:

✓ Cradle to gate

(7.73.3.5) Emissions at the lifecycle stage in kg CO2e per unit

9.11

(7.73.3.6) Lifecycle stage under your ownership or control

Select from:

✓ No

(7.73.3.7) **Type of data used**

Select from:

✓ Primary and secondary

(7.73.3.8) Data quality

Data quality has been evaluated as good. Please note that CO2 impact is not per single unit but for 1000 pieces.

(7.73.3.9) If applicable, describe the verification/assurance of the product emissions data

not applicable - data not assured by third party

Row 8

(7.73.3.1) Requesting member

Select from:

(7.73.3.2) Name of good/ service

Entire customer product portfolio

(7.73.3.3) Scope

Select from:

✓ Scope 1, 2 & 3

(7.73.3.4) Lifecycle stage

Select from:

✓ Cradle to gate

(7.73.3.5) Emissions at the lifecycle stage in kg CO2e per unit

17.43

(7.73.3.6) Lifecycle stage under your ownership or control

Select from:

✓ No

(7.73.3.7) **Type of data used**

✓ Primary and secondary

(7.73.3.8) Data quality

Data quality has been evaluated as good. Please note that CO2 impact is not per single unit but for 1000 pieces.

(7.73.3.9) If applicable, describe the verification/assurance of the product emissions data

not applicable - data not assured by third party

Row 9

(7.73.3.1) Requesting member

Select from:

(7.73.3.2) Name of good/ service

Entire customer product portfolio

(7.73.3.3) Scope

Select from:

✓ Scope 1, 2 & 3

(7.73.3.4) Lifecycle stage

Select from:

✓ Cradle to gate

(7.73.3.5) Emissions at the lifecycle stage in kg CO2e per unit

10.53

(7.73.3.6) Lifecycle stage under your ownership or control

✓ No

(7.73.3.7) **Type of data used**

Select from:

✓ Primary and secondary

(7.73.3.8) Data quality

Data quality has been evaluated as good. Please note that CO2 impact is not per single unit but for 1000 pieces.

(7.73.3.9) If applicable, describe the verification/assurance of the product emissions data

not applicable - data not assured by third party

Row 10

(7.73.3.1) Requesting member

Select from:

(7.73.3.2) Name of good/ service

Entire customer product portfolio

(7.73.3.3) Scope

Select from:

✓ Scope 1, 2 & 3

(7.73.3.4) Lifecycle stage

Select from:

✓ Cradle to gate

(7.73.3.5) Emissions at the lifecycle stage in kg CO2e per unit

16.69

(7.73.3.6) Lifecycle stage under your ownership or control

Select from:

✓ No

(7.73.3.7) **Type of data used**

Select from:

✓ Primary and secondary

(7.73.3.8) **Data quality**

Data quality has been evaluated as good. Please note that CO2 impact is not per single unit but for 1000 pieces.

(7.73.3.9) If applicable, describe the verification/assurance of the product emissions data

not applicable - data not assured by third party

Row 11

(7.73.3.1) Requesting member

Select from:

(7.73.3.2) Name of good/ service

Entire customer product portfolio

(7.73.3.3) Scope

Select from:

✓ Scope 1, 2 & 3

(7.73.3.4) Lifecycle stage

Select from:

✓ Cradle to gate

(7.73.3.5) Emissions at the lifecycle stage in kg CO2e per unit

15.26

(7.73.3.6) Lifecycle stage under your ownership or control

Select from:

✓ No

(7.73.3.7) **Type of data used**

Select from:

✓ Primary and secondary

(7.73.3.8) Data quality

Data quality has been evaluated as good. Please note that CO2 impact is not per single unit but for 1000 pieces.

(7.73.3.9) If applicable, describe the verification/assurance of the product emissions data

not applicable - data not assured by third party

Row 12

(7.73.3.1) Requesting member

Select from:

(7.73.3.2) Name of good/ service

Entire customer product portfolio

(7.73.3.3) Scope

Select from:

✓ Scope 1, 2 & 3

(7.73.3.4) Lifecycle stage

Select from:

✓ Cradle to gate

(7.73.3.5) Emissions at the lifecycle stage in kg CO2e per unit

12.83

(7.73.3.6) Lifecycle stage under your ownership or control

Select from:

✓ No

(7.73.3.7) **Type of data used**

Select from:

✓ Primary and secondary

(7.73.3.8) Data quality

Data quality has been evaluated as good. Please note that CO2 impact is not per single unit but for 1000 pieces.

(7.73.3.9) If applicable, describe the verification/assurance of the product emissions data

not applicable - data not assured by third party [Add row]

(7.73.4) Please detail emissions reduction initiatives completed or planned for this product.

Row 1

(7.73.4.1) Name of good/ service

Product dispensing systems (closures and pump)

(7.73.4.2) **Initiative ID**

Select from:

✓ Initiative 1

(7.73.4.3) Description of initiative

Climate-related projects are referred to the increase of recycled content into the finished product. Our conversion plan can support the reduction of GHG emissions and the promotion of circular economy business model. In addition, thanks to the use of post consumer resin recycled, we can contribute to the reduction of resources depletion (non renewable fossil based). The potential financial impact of this project in terms of costs VS savings is neutral. The strategy related to the use of PCR in our finished product, can support customer's goals and targets to reduce their indirect GHG emissions from purchased goods and services.

(7.73.4.4) Completed or planned

Select from:

Ongoing

(7.73.4.5) Emission reductions in kg CO2e per unit

0.02

[Add row]

(7.73.5) Have any of the initiatives described in 7.73.4 been driven by requesting CDP Supply Chain members?

Select from:

✓ Yes

(7.73.6) Explain which initiatives have been driven by requesting members.

Row 1

(7.73.6.1) Requesting member

Select from:

(7.73.6.2) Name of good/service

Product Portfolio family EDEN Pump

(7.73.6.3) Initiative ID

Select from:

☑ Initiative 1

[Add row]

(7.74) Do you classify any of your existing goods and/or services as low-carbon products?

Select from:

✓ Yes

(7.74.1) Provide details of your products and/or services that you classify as low-carbon products.

Row 1

(7.74.1.1) Level of aggregation

Select from:

☑ Group of products or services

(7.74.1.2) Taxonomy used to classify product(s) or service(s) as low-carbon

Select from:

☑ No taxonomy used to classify product(s) or service(s) as low carbon

(7.74.1.3) Type of product(s) or service(s)

Other

☑ Other, please specify: Use of low carbon raw materials like post consumer recycled resin and bio-feedstock

(7.74.1.4) Description of product(s) or service(s)

Aptar Product Sustainability Team support the investigation and application of sustainable materials to the entire Aptar product portfolio. The use of post consumer recycled materials and bio-feedstock is leading our conversion plan to the transition to low carbon products. Our customers are constantly in contact with our Expert Centers looking for the best solution that can reduce the environmental impact of the full packaging. These products can be classified as low-carbon products because manufacturing of them requires less conventional raw materials and therefore less GHG emissions are embedded in the products. During the reporting year we have converted 974 tons of conventional resins to recycled resin.

(7.74.1.5) Have you estimated the avoided emissions of this low-carbon product(s) or service(s)

Select from:

Yes

(7.74.1.6) Methodology used to calculate avoided emissions

Select from:

☑ Other, please specify :ISO 14040 and 14044 for product LCA

(7.74.1.7) Life cycle stage(s) covered for the low-carbon product(s) or services(s)

Select from:

✓ Cradle-to-gate

(7.74.1.8) Functional unit used

1 ml of finished product dispensed with PCR materials

(7.74.1.9) Reference product/service or baseline scenario used

Product solutions produced 100% with conventional plastics.

(7.74.1.10) Life cycle stage(s) covered for the reference product/service or baseline scenario

Select from:

✓ Cradle-to-gate

(7.74.1.11) Estimated avoided emissions (metric tons CO2e per functional unit) compared to reference product/service or baseline scenario

0.00106

(7.74.1.12) Explain your calculation of avoided emissions, including any assumptions

We followed an consequential approach to our LCA and measured the difference in total cradle-to Aptar gate emissions between our product with PCR and conventional. We used the following Global Warming Potential 100 (GWP100) factors from the IPCC 5th assessment report: Carbon Dioxide (CO2): 1,Methane (CH4): 102,Nitrous Oxide (N2O): 264,Sulfur Hexafluoride (SF6): 17,500,HFC-134a: 3,710,Nitrogen Trifluoride (NF3): 12,800,Black Carbon: 3,385,Organic Carbon: -128,Sulfur Dioxide (SO2): -274,Nitrogen Oxide (NOx) 122We used a mass-based allocation for energy and resource inputs where multiple products were being produced. To allocate the impacts from the recycled material we followed the most common 100-0 cut-off approach, where the environmental impacts are only included for one lifecycle of the product. In other words, recycled material is not allocated to any of the impacts associated with the conventional plastic sourcing or processing, but only the impacts of the mechanical plastic recycling process. We identified a representative set of mechanical plastic recycling across our region for which recycling level data is available. Our data is then averaged across all the plastic recycling producing the same PCR grade in the region. We also used environmental data from government to calculate some of the environmental impacts. We then compared these averages to our data to calculate avoided emissions. The estimation of avoided emissions is based on the differences that arise from our higher content of recycled material:PP emission factors \rightarrow 1.76 kg CO2e/kg PCR emission factors \rightarrow 0.73 kg CO2e/kg CO2 avoided emissions \rightarrow (1.76 kg CO2e/kg - 0.73 kg CO2e/kg) x 974 t =1003 t CO2e

(7.74.1.13) Revenue generated from low-carbon product(s) or service(s) as % of total revenue in the reporting year

0.6 [Add row]

(7.79) Has your organization retired any project-based carbon credits within the reporting year?

Select from:

✓ No

- C9. Environmental performance Water security
- (9.1) Are there any exclusions from your disclosure of water-related data?

✓ No

(9.2) Across all your operations, what proportion of the following water aspects are regularly measured and monitored?

Water withdrawals – total volumes

(9.2.1) % of sites/facilities/operations

Select from:

✓ 100%

(9.2.2) Frequency of measurement

Select from:

Monthly

(9.2.3) Method of measurement

The method of water data collection is based on primary data check from the water meter in our operations.

(9.2.4) Please explain

Our response in this row relates to our different geographic operations. Aptar monitors total volumes of water withdrawals from operations, sales offices, warehouses and corporate offices. The frequency of water data collection is monthly based on water invoices from water supplier. Each user upload data in internal software that calculate KPIs for water consumed. The method of water data collection is based on primary data check from the water meter in our operations.

Water withdrawals – volumes by source

(9.2.1) % of sites/facilities/operations

✓ 100%

(9.2.2) Frequency of measurement

Select from:

✓ Monthly

(9.2.3) Method of measurement

The method of water data collection is based on primary data check from the water meter in our operations.

(9.2.4) Please explain

Aptar monitors volumes by source in all operations, sales offices, warehouses and corporate offices. The frequency of water data collection is monthly based on water invoices from water supplier. Each user upload data in internal software that calculate KPIs for water consumed. The method of water data collection is based on primary data check from the water meter in our operations.

Water withdrawals quality

(9.2.1) % of sites/facilities/operations

Select from:

✓ Not relevant

(9.2.4) Please explain

For the use of water in our core processes (cooling moulds) the quality of water (physical, chemical, biological and organoleptic) is not relevant or it can't generate problem to the quality of our finished product. For the majority of our operations, water is not directly in contact with Aptar's products and it is not an ingredient for our processes but considering anodizing process (only 2/59 Aptar sites) by the nature of the process the water withdrawal quality is not vital and we do not anticipate changes into processes for the next 0-3 years.

Water discharges – total volumes

(9.2.1) % of sites/facilities/operations

✓ 100%

(9.2.2) Frequency of measurement

Select from:

Monthly

(9.2.3) Method of measurement

The method of water data collection is based on primary data check from the water meter in our operations.

(9.2.4) Please explain

Aptar monitors total volumes of water discharged in all operations, sales offices, warehouses and corporate offices. The frequency of water data collection is quarterly based on water invoices from water supplier. Each user upload data in internal software that calculate KPIs for water consumed.

Water discharges – volumes by destination

(9.2.1) % of sites/facilities/operations

Select from:

✓ 100%

(9.2.2) Frequency of measurement

Select from:

Monthly

(9.2.3) Method of measurement

The method of water data collection is based on primary data check from the water meter in our operations.

(9.2.4) Please explain

Aptar monitors total volumes of water discharged by destination in all operations, sales offices, warehouses and corporate offices. The frequency of water data collection is quarterly based on water invoices from water supplier. Each user upload data in internal software that calculate KPIs for water consumed.

Water discharges – volumes by treatment method

(9.2.1) % of sites/facilities/operations

Select from:

✓ 100%

(9.2.2) Frequency of measurement

Select from:

Monthly

(9.2.3) Method of measurement

The method of water data collection is based on primary data check from the water meter in our operations.

(9.2.4) Please explain

Aptar monitors total volumes of water discharged by destination in all operations, sales offices, warehouses and corporate offices. The frequency of water data collection is quarterly based on water invoices from water supplier. Each user upload data in internal software that calculate KPIs for water consumed.

Water discharge quality – by standard effluent parameters

(9.2.1) % of sites/facilities/operations

Select from:

✓ 100%

(9.2.2) Frequency of measurement

Select from:

✓ Yearly

(9.2.3) Method of measurement

The method of sample is in compliance with ISO standard in order to analyze thresholds for PH, BOD, TSS and other pollutants as defined in the local permissions and licenses.

(9.2.4) Please explain

Our plants are closing monitoring about the water discharged quality in alignment with operating permits. The frequency of data collection is at least yearly (in compliance with local regulation).

Water discharge quality – emissions to water (nitrates, phosphates, pesticides, and/or other priority substances)

(9.2.1) % of sites/facilities/operations

Select from:

✓ 100%

(9.2.2) Frequency of measurement

Select from:

✓ Yearly

(9.2.3) Method of measurement

The method of sample is in compliance with ISO standard in order to analyze thresholds for PH, BOD, TSS and other pollutants as defined in the local permissions and licenses.

(9.2.4) Please explain

Our plants are closing monitoring about the water discharged quality in alignment with operating permits. The frequency of data collection is at least yearly (in compliance with local regulation). Please note that only few sites are monitoring nitrates, the major part of the sites are monitoring parameters in compliance with regulatory aspects that are not considering phosphates, pesticides and other EU substances listed because our process is not generating these type of substances.

Water discharge quality – temperature

(9.2.1) % of sites/facilities/operations

✓ 100%

(9.2.2) Frequency of measurement

Select from:

✓ Yearly

(9.2.3) Method of measurement

The method of sample is in compliance with ISO standard in order to analyze thresholds for temperature as defined in the local permissions and licenses.

(9.2.4) Please explain

Our plants are closing monitoring about the water discharged quality (temperature) in alignment with operating permits. The frequency of data collection is at least yearly (in compliance with local regulation).

Water consumption – total volume

(9.2.1) % of sites/facilities/operations

Select from:

✓ 100%

(9.2.2) Frequency of measurement

Select from:

Monthly

(9.2.3) Method of measurement

The method of water data collection is based on primary data check from the water meter in our operations.

(9.2.4) Please explain

Aptar monitors total volumes of water consumed in all operations, sales offices, warehouses and corporate offices. Each user upload data in internal software that calculate KPIs for water consumed. The frequency of water data collection is monthly based on water invoices from water supplier.

[Fixed row]

(9.2.2) What are the total volumes of water withdrawn, discharged, and consumed across all your operations, how do they compare to the previous reporting year, and how are they forecasted to change?

Total withdrawals

(9.2.2.1) Volume (megaliters/year)

4458

(9.2.2.2) Comparison with previous reporting year

Select from:

✓ Higher

(9.2.2.3) Primary reason for comparison with previous reporting year

Select from:

✓ Increase/decrease in business activity

(9.2.2.4) Five-year forecast

Select from:

✓ Lower

(9.2.2.5) Primary reason for forecast

Select from:

✓ Investment in water-smart technology/process

(9.2.2.6) Please explain

Our water withdrawals are decreasing due to the implementation of our water stewardship programs and training. In the next five years, Aptar expects our water withdrawals to continue decrease as we implement more water saving measures and training. Annual water risk assessments aid in short and long-term business planning, and support our Water Roadmap to ensure an effective water stewardship strategy. Through our water risk assessment, we identified four sites we found to be at high physical risk. These water-scarce sites are developing contingency plans in case local water supplies fall below the level needed to maintain operations. We have provided training with examples of actions site leaders can take to reduce water consumption, to help reduce water risks at all of our sites, and to help measure, monitor, and report on their water use. We believe that now is the time to act and plan to address potential water risks and stay ahead of risk and potential legislation in this area.

Total discharges

(9.2.2.1) Volume (megaliters/year)

4109

(9.2.2.2) Comparison with previous reporting year

Select from:

✓ Higher

(9.2.2.3) Primary reason for comparison with previous reporting year

Select from:

✓ Increase/decrease in business activity

(9.2.2.4) Five-year forecast

Select from:

✓ Lower

(9.2.2.5) Primary reason for forecast

Select from:

✓ Investment in water-smart technology/process

(9.2.2.6) Please explain

Water discharge is expected to decrease as consumption and withdrawal is expected to decrease. Our risk assessment has identified water-scarce sites that are developing contingency plans in case local water supplies fall below the level needed to maintain operations. We have provided training with examples of actions site leaders can take to reduce water consumption, to help reduce water risks at all of our sites, and to help measure, monitor, and report on their water use.

Total consumption

(9.2.2.1) Volume (megaliters/year)

349

(9.2.2.2) Comparison with previous reporting year

Select from:

✓ Higher

(9.2.2.3) Primary reason for comparison with previous reporting year

Select from:

✓ Increase/decrease in business activity

(9.2.2.4) Five-year forecast

Select from:

✓ Lower

(9.2.2.5) Primary reason for forecast

Select from:

✓ Investment in water-smart technology/process

(9.2.2.6) Please explain

Water consumption is calculated by subtracting water discharged from water withdrawn, as reported by all Aptar sites on a monthly basis into our EHStar system. In 2024 we have increased our focus on water risk by improving the training we provide to site leaders as well as the information we are tracking per each site. [Fixed row]

(9.2.4) Indicate whether water is withdrawn from areas with water stress, provide the volume, how it compares with the previous reporting year, and how it is forecasted to change.

(9.2.4.1) Withdrawals are from areas with water stress

Select from:

✓ Yes

(9.2.4.2) Volume withdrawn from areas with water stress (megaliters)

143.14

(9.2.4.3) Comparison with previous reporting year

Select from:

✓ Lower

(9.2.4.4) Primary reason for comparison with previous reporting year

Select from:

✓ Increase/decrease in business activity

(9.2.4.5) Five-year forecast

Select from:

✓ Lower

(9.2.4.6) Primary reason for forecast

Select from:

✓ Investment in water-smart technology/process

(9.2.4.7) % of total withdrawals that are withdrawn from areas with water stress

(9.2.4.8) Identification tool

Select all that apply

✓ WWF Water Risk Filter

(9.2.4.9) Please explain

We applied WWF Water Risk Filter Tool and CDP recommendation to use this tool to identify water stressed areas. According to CDP, 'water stressed' areas are the basins where their risk score for "Water Scarcity" risk category is equal to/greater than 3 (the risk scores range from 1 to 5). The risk category "Water Scarcity" refers to the physical abundance or lack of freshwater resources. It is a comprehensive and robust metric as it integrates a total of 7 best available and peer-reviewed datasets covering different aspects of water scarcity as well as different modelling approaches: aridity index, water depletion, baseline water stress, blue water scarcity, available water remaining, drought frequency probability, and projected change in drought occurrence. Aptar operates 58 sites of which 56 manufacturing facilities in 18 countries (all included in WWF Water Risk Filter Tool). We checked all facilities worldwide by location and address. We have 9 facilities out of total 58 facilities (8% from total water withdrawal) identified as water stressed areas since they were scored as equal to/greater than 3 for "Water Scarcity" risk category. In 2025, our water withdrawn from areas with water stress is higher compared to last year (2024)

(9.2.7) Provide total water withdrawal data by source.

Fresh surface water, including rainwater, water from wetlands, rivers, and lakes

(9.2.7.1) Relevance

Select from:

✓ Relevant

(9.2.7.2) Volume (megaliters/year)

3397.88

(9.2.7.3) Comparison with previous reporting year

Select from:

✓ Higher

(9.2.7.4) Primary reason for comparison with previous reporting year

Select from:

✓ Increase/decrease in business activity

(9.2.7.5) Please explain

The fresh surface water source is relevant because in one of our Food and Beverage operation the cooling system for injection molding is strictly based on this water source (from rivers near the plants).

Brackish surface water/Seawater

(9.2.7.1) **Relevance**

Select from:

✓ Not relevant

(9.2.7.5) Please explain

The brackish surface water / seawater is not relevant for our operations because our sites are not located near sea cost and even if we'll have sites near seawater the salt concentration is too high and could generate problem for the quality of products.

Groundwater – renewable

(9.2.7.1) **Relevance**

Select from:

✓ Relevant

(9.2.7.2) Volume (megaliters/year)

13.78

(9.2.7.3) Comparison with previous reporting year

Select from:

✓ Higher

(9.2.7.4) Primary reason for comparison with previous reporting year

Select from:

✓ Increase/decrease in business activity

(9.2.7.5) Please explain

The groundwater renewable source is relevant because in some of our Beauty and Home operation the cooling system for injection molding is strictly based on this water source

Groundwater – non-renewable

(9.2.7.1) **Relevance**

Select from:

✓ Relevant

(9.2.7.2) Volume (megaliters/year)

95.89

(9.2.7.3) Comparison with previous reporting year

Select from:

✓ Higher

(9.2.7.4) Primary reason for comparison with previous reporting year

Select from:

✓ Increase/decrease in business activity

(9.2.7.5) Please explain

The groundwater non-renewable source is relevant because in some of our Beauty and Home operation the cooling system for injection molding is strictly based on this water source. For reporting year 2024 the value is higher due to business activity fluctuations.

Produced/Entrained water

(9.2.7.1) **Relevance**

Select from:

✓ Not relevant

(9.2.7.5) **Please explain**

The produced water is not relevant for our operations because our sites does not have processes on which we can obtain water as result of the extraction, processing, or use of any raw material

Third party sources

(9.2.7.1) **Relevance**

Select from:

✓ Relevant

(9.2.7.2) Volume (megaliters/year)

953.54

(9.2.7.3) Comparison with previous reporting year

Select from:

✓ Higher

(9.2.7.4) Primary reason for comparison with previous reporting year

Select from:

✓ Increase/decrease in business activity

(9.2.7.5) Please explain

The third-party sources withdrawn is relevant because in a major part of our operations we have water withdrawn from municipal source. It is used not only for the processes but also for the employees. In this reporting year, due to the business activity fluctuation, we increased the total amount of water withdrawal from third party source compared to the previous year. Third party sources are based on municipal supplier [Fixed row]

(9.2.8) Provide total water discharge data by destination.

Fresh surface water

(9.2.8.1) **Relevance**

Select from:

✓ Relevant

(9.2.8.2) Volume (megaliters/year)

3397

(9.2.8.3) Comparison with previous reporting year

Select from:

✓ Higher

(9.2.8.4) Primary reason for comparison with previous reporting year

Select from:

✓ Increase/decrease in business activity

(9.2.8.5) Please explain

The fresh surface water discharged is relevant because our plant monitors concentration dissolved to be in compliance with local regulations. Future trends for this type of water discharged are expected to be the same considering market demands for molded components. In 2024 we increased discharge due to business activity fluctuations.

Brackish surface water/seawater

(9.2.8.1) **Relevance**

Select from:

✓ Not relevant

(9.2.8.5) Please explain

The brackish surface water / seawater is not relevant for our operations because our sites are not located near sea cost. Future trends are not expected to change.

Groundwater

(9.2.8.1) **Relevance**

Select from:

✓ Relevant

(9.2.8.2) Volume (megaliters/year)

28

(9.2.8.3) Comparison with previous reporting year

Select from:

✓ Higher

(9.2.8.4) Primary reason for comparison with previous reporting year

Select from:

✓ Increase/decrease in business activity

(9.2.8.5) **Please explain**

The groundwater discharged is relevant because our plant monitors concentration dissolved to be in compliance with local regulations. Future trends for this type of water discharged are expected be the same considering market demands for molded components. Volumes or water from this source is based on estimation and calculation model. In 2024 we increased discharge due to business activity fluctuations.

Third-party destinations

(9.2.8.1) Relevance

Select from:

✓ Relevant

(9.2.8.2) Volume (megaliters/year)

684

(9.2.8.3) Comparison with previous reporting year

Select from:

☑ Higher

(9.2.8.4) Primary reason for comparison with previous reporting year

Select from:

✓ Increase/decrease in business activity

(9.2.8.5) Please explain

The third party discharged is relevant because our plant monitors concentration dissolved to be in compliance with local regulations. Future trends for this type of water discharged are expected be the same considering market demands for molded components. In this reporting year water discharged third party destinations is lower respect previous reporting year due to business activity fluctuations. This type or water source is not considering other organizations for further use. Volumes or water from this source is based on estimation and calculation model [Fixed row]

(9.2.9) Within your direct operations, indicate the highest level(s) to which you treat your discharge.

Tertiary treatment

(9.2.9.1) Relevance of treatment level to discharge

Select from:

✓ Relevant

(9.2.9.2) Volume (megaliters/year)

163.28

(9.2.9.3) Comparison of treated volume with previous reporting year

Select from:

✓ Higher

(9.2.9.4) Primary reason for comparison with previous reporting year

Select from:

✓ Increase/decrease in business activity

(9.2.9.5) % of your sites/facilities/operations this volume applies to

Select from:

✓ 1-10

(9.2.9.6) **Please explain**

Aptar, during reporting year 2022, launched a water questionnaire focused on the mapping of water uses and water treatments. From this questionnaire we have identified 5% of sites with tertiary treatment of discharged water. The treatment is necessary for some of our injection molding and anodizing sites. In the workshop area we have wastewater (includind acids and chemical agents) produced by washing molds activities. In addition, also in our anodizing sites we have wastewater produced by special chemical treatments into the washing tanks. To be compliance with local regulatory aspects (e.g. to preserve marine biodiversity, quality of water etc...) we have implemented equipment for water treatment to remove suspended, colloidal and dissolved constituents (nutrients, heavy metals, inorganic and other contaminants). Our sites are respecting specific water regulatory standard (local environmental law by authorities). The future trends of these volumes will be very similar, so, no significant increase or decrease are expected. The thresholds much higher and much lower are based on the gap /- 30%

Secondary treatment

(9.2.9.1) Relevance of treatment level to discharge

Select from:

✓ Relevant

(9.2.9.2) Volume (megaliters/year)

2.28

(9.2.9.3) Comparison of treated volume with previous reporting year

Select from:

✓ Higher

(9.2.9.4) Primary reason for comparison with previous reporting year

Select from:

✓ Increase/decrease in business activity

(9.2.9.5) % of your sites/facilities/operations this volume applies to

Select from:

✓ 1-10

(9.2.9.6) **Please explain**

Aptar, during reporting year 2022, launched a water questionnaire focused on the mapping of water uses and water treatments. From this questionnaire we have identified 5% of sites with secondary treatment of discharged water. The treatment is necessary for some of our injection molding and anodizing sites. In the workshop area we have wastewater (includind acids and chemical agents) produced by washing molds activities. In addition, also in our anodizing sites we have wastewater produced by special chemical treatments into the washing tanks. To be compliance with local regulatory aspects (e.g. to preserve marine biodiversity, quality of water etc...) we have implemented equipment for water treatment to remove suspended, colloidal and dissolved constituents (nutrients, heavy metals, inorganic and other contaminants). Our sites are respecting specific water regulatory standard (local environmental law by authorities). The future trends of these volumes will be very similar, so, no significant increase or decrease are expected. The thresholds much higher and much lower are based on the gap /- 30%

Primary treatment only

(9.2.9.1) Relevance of treatment level to discharge

Select from:

✓ Relevant

(9.2.9.2) Volume (megaliters/year)

119.44

(9.2.9.3) Comparison of treated volume with previous reporting year

Select from:

✓ Lower

(9.2.9.4) Primary reason for comparison with previous reporting year

Select from:

✓ Increase/decrease in business activity

(9.2.9.5) % of your sites/facilities/operations this volume applies to

Select from:

✓ 1-10

(9.2.9.6) **Please explain**

Aptar, during reporting year 2022, launched a water questionnaire focused on the mapping of water uses and water treatments. From this questionnaire we have identified 5% of sites with secondary treatment of discharged water. The treatment is necessary for some of our injection molding and anodizing sites. In the workshop area we have wastewater (includind acids and chemical agents) produced by washing molds activities. In addition, also in our anodizing sites we have wastewater produced by special chemical treatments into the washing tanks. To be compliance with local regulatory aspects (e.g. to preserve marine biodiversity, quality of water etc...) we have implemented equipment for water treatment to remove suspended, colloidal and dissolved constituents (nutrients, heavy metals, inorganic and other contaminants). Our sites are respecting specific water regulatory standard (local environmental law by authorities). The future trends of these volumes will be very similar, so, no significant increase or decrease are expected. The thresholds much higher and much lower are based on the gap /- 30%

Discharge to the natural environment without treatment

(9.2.9.1) Relevance of treatment level to discharge

Select from:

✓ Relevant

(9.2.9.2) Volume (megaliters/year)

3018.61

(9.2.9.3) Comparison of treated volume with previous reporting year

Select from:

✓ Higher

(9.2.9.4) Primary reason for comparison with previous reporting year

Select from:

✓ Increase/decrease in business activity

(9.2.9.5) % of your sites/facilities/operations this volume applies to

Select from:

✓ 1-10

(9.2.9.6) **Please explain**

Aptar, during reporting year 2022, launched a water questionnaire focused on the mapping of water uses and water treatments. From this questionnaire we have identified 5% of sites with secondary treatment of discharged water. The treatment is necessary for some of our injection molding and anodizing sites. In the workshop area we have wastewater (includind acids and chemical agents) produced by washing molds activities. In addition, also in our anodizing sites we have wastewater produced by special chemical treatments into the washing tanks. To be compliance with local regulatory aspects (e.g. to preserve marine biodiversity, quality of water etc...) we have implemented equipment for water treatment to remove suspended, colloidal and dissolved constituents (nutrients, heavy metals, inorganic and other contaminants). Our sites are respecting specific water regulatory standard (local environmental law by authorities). The future trends of these volumes will be very similar, so, no significant increase or decrease are expected. The thresholds much higher and much lower are based on the gap /- 30%

Discharge to a third party without treatment

(9.2.9.1) Relevance of treatment level to discharge

Select from:

✓ Relevant

(9.2.9.2) Volume (megaliters/year)

620

(9.2.9.3) Comparison of treated volume with previous reporting year

Select from:

✓ Higher

(9.2.9.4) Primary reason for comparison with previous reporting year

Select from:

✓ Increase/decrease in business activity

(9.2.9.5) % of your sites/facilities/operations this volume applies to

Select from:

✓ 81-90

(9.2.9.6) **Please explain**

Aptar, during reporting year 2022, launched a water questionnaire focused on the mapping of water uses and water treatments. From this questionnaire we have identified 5% of sites with secondary treatment of discharged water. The treatment is necessary for some of our injection molding and anodizing sites. In the workshop area we have wastewater (includind acids and chemical agents) produced by washing molds activities. In addition, also in our anodizing sites we have wastewater produced by special chemical treatments into the washing tanks. To be compliance with local regulatory aspects (e.g. to preserve marine biodiversity, quality of water etc...) we have implemented equipment for water treatment to remove suspended, colloidal and dissolved constituents (nutrients, heavy metals, inorganic and other contaminants). Our sites are respecting specific water regulatory standard (local environmental law by authorities). The future trends of these volumes will be very similar, so, no significant increase or decrease are expected. The thresholds much higher and much lower are based on the gap /- 30%

Other

(9.2.9.1) Relevance of treatment level to discharge

Select from:

✓ Not relevant

(9.2.9.6) Please explain

No Comment [Fixed row]

(9.2.10) Provide details of your organization's emissions of nitrates, phosphates, pesticides, and other priority substances to water in the reporting year.

(9.2.10.1) Emissions to water in the reporting year (metric tons)

0

(9.2.10.2) Categories of substances included

Select all that apply

☑ Priority substances listed under the EU Water Framework Directive

(9.2.10.3) List the specific substances included

Cadmium, Nickel, Lead

(9.2.10.4) Please explain

The total amount of pollutants mapped are 0.000464 tons, emitted from the auxiliaries process in one of our site located in France (no water stressed areas or vulnerable communities).

(9.3) In your direct operations and upstream value chain, what is the number of facilities where you have identified substantive water-related dependencies, impacts, risks, and opportunities?

Direct operations

(9.3.1) Identification of facilities in the value chain stage

Select from:

✓ Yes, we have assessed this value chain stage and identified facilities with water-related dependencies, impacts, risks, and opportunities

(9.3.2) Total number of facilities identified

8

(9.3.3) % of facilities in direct operations that this represents

Select from:

✓ 1-25

(9.3.4) Please explain

We applied WWF Water Risk Filter Tool and CDP recommendation to use this tool to identify water stressed areas. According to CDP, 'water stressed' areas are the basins where their risk score for "Water Scarcity" risk category is equal to/greater than 3 (the risk scores range from 1 to 5). Percentage of facilities in direct operations that this represents is 16% which is calculated considering 56 sites of which 54 are manufacturing operations. (8/54)

Upstream value chain

(9.3.1) Identification of facilities in the value chain stage

Select from:

☑ No, we have not assessed this value chain stage for facilities with water-related dependencies, impacts, risks, and opportunities, and are not planning to do so in the next 2 years

(9.3.4) Please explain

Aptar during the current reporting year developed biodiversity road map, on which we have mapped upstream value chain nature pressures and dependencies about freshwater, in the next years we planned engage of our upstream value chain with more specific mapping on the water-related dependencies.

[Fixed row]

(9.3.1) For each facility referenced in 9.3, provide coordinates, water accounting data, and a comparison with the previous reporting year.

Row 1

(9.3.1.1) Facility reference number

Select from:

✓ Facility 1

(9.3.1.2) Facility name (optional)

Aptar Chieti

(9.3.1.3) Value chain stage

Select from:

✓ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility

Select all that apply

- Dependencies
- ✓ Impacts
- **✓** Risks
- Opportunities

(9.3.1.5) Withdrawals or discharges in the reporting year

Select from: ✓ Yes, withdrawals and discharges
(9.3.1.7) Country/Area & River basin
Spain ✓ Other, please specify :Mediterranean
(9.3.1.8) Latitude
42.304
(9.3.1.9) Longitude
14.052
(9.3.1.10) Located in area with water stress
Select from: ✓ Yes
(9.3.1.13) Total water withdrawals at this facility (megaliters)
5.46
(9.3.1.14) Comparison of total withdrawals with previous reporting year
Select from: ✓ Lower
(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

(9.3.1.16) Withdrawals from brackish surface water/seawater

(9.3.1.17) Withdrawals from groundwater - renewable
0
(9.3.1.18) Withdrawals from groundwater - non-renewable
0
(9.3.1.19) Withdrawals from produced/entrained water
0
(9.3.1.20) Withdrawals from third party sources
5.46
(9.3.1.21) Total water discharges at this facility (megaliters)
5.46
(9.3.1.22) Comparison of total discharges with previous reporting year
Select from: ✓ Lower
(9.3.1.23) Discharges to fresh surface water
0
(9.3.1.24) Discharges to brackish surface water/seawater
0
(9.3.1.25) Discharges to groundwater

(9.3.1.26) Discharges to third party destinations

5.46

(9.3.1.27) Total water consumption at this facility (megaliters)

0

(9.3.1.28) Comparison of total consumption with previous reporting year

Select from:

✓ Lower

(9.3.1.29) Please explain

Aptar Chieti has been confirmed for the reporting year into the list of water stressed areas emerged from the risk analysis with WWF Risk Filter Tool. The water consumption is neutral thanks to the use of closed loop system implemented to optimize the water consumption for the cooling of injection molding activities. Water withdrawn and water discharged was lower from last year due to market fluctuations.

Row 2

(9.3.1.1) Facility reference number

Select from:

✓ Facility 2

(9.3.1.2) Facility name (optional)

Aptar Hyderabad

(9.3.1.3) Value chain stage

Select from:

✓ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility
Select all that apply ✓ Dependencies ✓ Impacts ✓ Risks ✓ Opportunities
(9.3.1.5) Withdrawals or discharges in the reporting year
Select from: ✓ Yes, withdrawals and discharges
(9.3.1.7) Country/Area & River basin
Afghanistan ☑ Other, please specify :Bay of Bengal
(9.3.1.8) Latitude
17.566
(9.3.1.9) Longitude
-1.561877
(9.3.1.10) Located in area with water stress

✓ Yes

(9.3.1.13) Total water withdrawals at this facility (megaliters)

2.28

(9.3.1.14) Comparison of total withdrawals with previous reporting year
Select from: ✓ Higher
(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
o
(9.3.1.16) Withdrawals from brackish surface water/seawater
o
(9.3.1.17) Withdrawals from groundwater - renewable
o
(9.3.1.18) Withdrawals from groundwater - non-renewable
o
(9.3.1.19) Withdrawals from produced/entrained water
o
(9.3.1.20) Withdrawals from third party sources
2.28
(9.3.1.21) Total water discharges at this facility (megaliters)
2.28
(9.3.1.22) Comparison of total discharges with previous reporting year
Select from:

✓ Higher

(9.3.1.23) Discharges to fresh surface water

0

(9.3.1.24) Discharges to brackish surface water/seawater

0

(9.3.1.25) Discharges to groundwater

0

(9.3.1.26) Discharges to third party destinations

2.28

(9.3.1.27) Total water consumption at this facility (megaliters)

0

(9.3.1.28) Comparison of total consumption with previous reporting year

Select from:

✓ Higher

(9.3.1.29) Please explain

Aptar Hyderabad has been confirmed for the reporting year into the list of water stressed areas emerged from the risk analysis with WWF Risk Filter Tool. The water consumption is neutral thanks to the use of closed loop system implemented to optimize the water consumption for the cooling of injection molding activities. Water withdrawn and water discharged is higher due to similar market fluctuations

Row 3

(9.3.1.1) Facility reference number

✓ Facility 3

(9.3.1.2) Facility name (optional)

Aptar Queretaro

(9.3.1.3) Value chain stage

Select from:

☑ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility

Select all that apply

- Dependencies
- ✓ Impacts
- **✓** Risks
- Opportunities

(9.3.1.5) Withdrawals or discharges in the reporting year

Select from:

✓ Yes, withdrawals and discharges

(9.3.1.7) Country/Area & River basin

Afghanistan

✓ Other, please specify: North Pacific

(9.3.1.8) Latitude

20.561

(9.3.1.20) Withdrawals from third party sources
4.66
(9.3.1.21) Total water discharges at this facility (megaliters)
1.36
(9.3.1.22) Comparison of total discharges with previous reporting year
Select from: ✓ Higher
(9.3.1.23) Discharges to fresh surface water
0
(9.3.1.24) Discharges to brackish surface water/seawater
0
(9.3.1.25) Discharges to groundwater
0
(9.3.1.26) Discharges to third party destinations
1.36
(9.3.1.27) Total water consumption at this facility (megaliters)
3.3
(9.3.1.28) Comparison of total consumption with previous reporting year

Select from:

✓ About the same

(9.3.1.29) **Please explain**

Aptar Queretaro has been confirmed for the reporting year into the list of water stressed areas emerged from the risk analysis with WWF Risk Filter Tool. The water consumption increased compared to previous year. The site is using a closed loop system implemented to optimize the water consumption for the cooling of injection molding activities.

Row 4

(9.3.1.1) Facility reference number

Select from:

✓ Facility 4

(9.3.1.2) Facility name (optional)

Aptar Chonburi

(9.3.1.3) Value chain stage

Select from:

☑ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility

Select all that apply

- Dependencies
- **✓** Impacts
- **✓** Risks
- Opportunities

(9.3.1.5) Withdrawals or discharges in the reporting year

Select from: ✓ Yes, withdrawals and discharges
(9.3.1.7) Country/Area & River basin
Afghanistan ✓ Other, please specify :Gulf of Thailand
(9.3.1.8) Latitude
13.458
(9.3.1.9) Longitude
101.046
(9.3.1.10) Located in area with water stress
Select from: ✓ Yes
(9.3.1.13) Total water withdrawals at this facility (megaliters)
7.07
(9.3.1.14) Comparison of total withdrawals with previous reporting year
Select from: ✓ Lower
(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

(9.3.1.17) Withdrawals from groundwater - renewable
0
(9.3.1.18) Withdrawals from groundwater - non-renewable
0
(9.3.1.19) Withdrawals from produced/entrained water
0
(9.3.1.20) Withdrawals from third party sources
7.07
(9.3.1.21) Total water discharges at this facility (megaliters)
6.92
(9.3.1.22) Comparison of total discharges with previous reporting year
Select from: ✓ Lower
(9.3.1.23) Discharges to fresh surface water
o
(9.3.1.24) Discharges to brackish surface water/seawater
o
(9.3.1.25) Discharges to groundwater

(9.3.1.26) Discharges to third party destinations

6.92

(9.3.1.27) Total water consumption at this facility (megaliters)

0.15

(9.3.1.28) Comparison of total consumption with previous reporting year

Select from:

✓ About the same

(9.3.1.29) Please explain

Aptar Chonburi, as into the previous reporting year, is part of the list of water stressed areas emerged from the risk analysis with WWF Risk Filter Tool. The water consumption is about the same, the site is using a closed loop system implemented to optimize the water consumption for the cooling of injection molding activities. The absolute quantity of water withdrawal is about the same respect the previous reporting year due to no big market fluctuations.

Row 5

(9.3.1.1) Facility reference number

Select from:

✓ Facility 5

(9.3.1.2) Facility name (optional)

Aptar Pescara

(9.3.1.3) Value chain stage

Select from:

✓ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility
Select all that apply ☑ Dependencies ☑ Impacts ☑ Risks ☑ Opportunities
(9.3.1.5) Withdrawals or discharges in the reporting year
Select from: ✓ Yes, withdrawals and discharges
(9.3.1.7) Country/Area & River basin
Zimbabwe ☑ Other, please specify
(9.3.1.8) Latitude
42.304
(9.3.1.9) Longitude
14.052
(9.3.1.10) Located in area with water stress
Select from: ✓ Yes

3.64

(9.3.1.13) Total water withdrawals at this facility (megaliters)

(9.3.1.14) Comparison of total withdrawals with previous reporting year
Select from: ✓ Lower
(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
o
(9.3.1.16) Withdrawals from brackish surface water/seawater
0
(9.3.1.17) Withdrawals from groundwater - renewable
0
(9.3.1.18) Withdrawals from groundwater - non-renewable
o
(9.3.1.19) Withdrawals from produced/entrained water
o
(9.3.1.20) Withdrawals from third party sources
3.64
(9.3.1.21) Total water discharges at this facility (megaliters)
3.64
(9.3.1.22) Comparison of total discharges with previous reporting year
Select from:

✓ Lower

(9.3.1.23) Discharges to fresh surface water

0

(9.3.1.24) Discharges to brackish surface water/seawater

0

(9.3.1.25) Discharges to groundwater

0

(9.3.1.26) Discharges to third party destinations

3.64

(9.3.1.27) Total water consumption at this facility (megaliters)

0

(9.3.1.28) Comparison of total consumption with previous reporting year

Select from:

✓ Lower

(9.3.1.29) Please explain

Aptar Pescara, as into the previous reporting year, is part of the list of water stressed areas emerged from the risk analysis with WWF Risk Filter Tool. The water consumption is about the same, the site is using a closed loop system implemented to optimize the water consumption for the cooling of injection molding activities. The absolute quantity of water withdrawal is about the same respect the previous reporting year due to no big market fluctuations.

Row 6

(9.3.1.1) Facility reference number

✓ Facility 6

(9.3.1.2) Facility name (optional)

Aptar Camacari

(9.3.1.3) Value chain stage

Select from:

✓ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility

Select all that apply

- Dependencies
- ✓ Impacts
- **✓** Risks
- Opportunities

(9.3.1.5) Withdrawals or discharges in the reporting year

Select from:

✓ Yes, withdrawals and discharges

(9.3.1.7) Country/Area & River basin

Zimbabwe

✓ Other, please specify

(9.3.1.8) Latitude

-12.733

(9.3.1.9) Longitude
-38.311
(9.3.1.10) Located in area with water stress
Select from: ✓ Yes
(9.3.1.13) Total water withdrawals at this facility (megaliters)
0.63
(9.3.1.14) Comparison of total withdrawals with previous reporting year
Select from: ✓ Higher
(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
(9.3.1.16) Withdrawals from brackish surface water/seawater
o
(9.3.1.17) Withdrawals from groundwater - renewable
0
(9.3.1.18) Withdrawals from groundwater - non-renewable
o
(9.3.1.19) Withdrawals from produced/entrained water

0
(9.3.1.20) Withdrawals from third party sources
0.63
(9.3.1.21) Total water discharges at this facility (megaliters)
0.12
(9.3.1.22) Comparison of total discharges with previous reporting year
Select from: ✓ About the same
(9.3.1.23) Discharges to fresh surface water
0
(9.3.1.24) Discharges to brackish surface water/seawater
0
(9.3.1.25) Discharges to groundwater
0
(9.3.1.26) Discharges to third party destinations
0.12
(9.3.1.27) Total water consumption at this facility (megaliters)
0.51
(9.3.1.28) Comparison of total consumption with previous reporting year

Select from:

✓ Higher

(9.3.1.29) **Please explain**

Aptar Camacari, as into the previous reporting year, is part of the list of water stressed areas emerged from the risk analysis with WWF Risk Filter Tool. The water consumption is about the same, the site is using a closed loop system implemented to optimize the water consumption for the cooling of injection molding activities. The absolute quantity of water withdrawal is about the same respect the previous reporting year due to no big market fluctuations.

Row 7

(9.3.1.1) Facility reference number

Select from:

✓ Facility 7

(9.3.1.2) Facility name (optional)

Aptar Suzhou

(9.3.1.3) Value chain stage

Select from:

☑ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility

Select all that apply

- Dependencies
- ✓ Impacts
- **✓** Risks
- Opportunities

(9.3.1.5) Withdrawals or discharges in the reporting year

Select from: ✓ Yes, withdrawals and discharges
(9.3.1.7) Country/Area & River basin
Zimbabwe ☑ Other, please specify
(9.3.1.8) Latitude
31.283
(9.3.1.9) Longitude
120.769
(9.3.1.10) Located in area with water stress
Select from: ✓ Yes
(9.3.1.13) Total water withdrawals at this facility (megaliters)
118.74
(9.3.1.14) Comparison of total withdrawals with previous reporting year
Select from: ☑ Higher
(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
o

(9.3.1.16) Withdrawals from brackish surface water/seawater

(9.3.1.17) Withdrawals from groundwater - renewable
0
(9.3.1.18) Withdrawals from groundwater - non-renewable
0
(9.3.1.19) Withdrawals from produced/entrained water
0
(9.3.1.20) Withdrawals from third party sources
118.74
(9.3.1.21) Total water discharges at this facility (megaliters)
118.74
(9.3.1.22) Comparison of total discharges with previous reporting year
Select from: ✓ Higher
(9.3.1.23) Discharges to fresh surface water
0
(9.3.1.24) Discharges to brackish surface water/seawater
0
(9.3.1.25) Discharges to groundwater

(9.3.1.26) Discharges to third party destinations

118.74

(9.3.1.27) Total water consumption at this facility (megaliters)

0

(9.3.1.28) Comparison of total consumption with previous reporting year

Select from:

✓ Higher

(9.3.1.29) Please explain

Aptar Suzhou, as into the previous reporting year, is part of the list of water stressed areas emerged from the risk analysis with WWF Risk Filter Tool. The water consumption is about the same, the site is using a closed loop system implemented to optimize the water consumption for the cooling of injection molding activities. The absolute quantity of water withdrawal is about the same respect the previous reporting year due to no big market fluctuations.

Row 8

(9.3.1.1) Facility reference number

Select from:

✓ Facility 8

(9.3.1.2) Facility name (optional)

Aptar Torello

(9.3.1.3) Value chain stage

Select from:

✓ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility Select all that apply Dependencies **✓** Impacts **✓** Risks Opportunities (9.3.1.5) Withdrawals or discharges in the reporting year Select from: ✓ Yes, withdrawals and discharges (9.3.1.7) Country/Area & River basin Spain ✓ Other, please specify: Cataluna (9.3.1.8) Latitude 13.443 (9.3.1.9) Longitude 101.019 (9.3.1.10) Located in area with water stress Select from: ✓ Yes

(9.3.1.13) Total water withdrawals at this facility (megaliters)

(9.3.1.14) Comparison of total withdrawals with previous reporting year
Select from: ✓ Higher
(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
o
(9.3.1.16) Withdrawals from brackish surface water/seawater
o
(9.3.1.17) Withdrawals from groundwater - renewable
o
(9.3.1.18) Withdrawals from groundwater - non-renewable
o
(9.3.1.19) Withdrawals from produced/entrained water
o
(9.3.1.20) Withdrawals from third party sources
0.65
(9.3.1.21) Total water discharges at this facility (megaliters)
0.65
(9.3.1.22) Comparison of total discharges with previous reporting year
Select from:

✓ Higher

(9.3.1.23) Discharges to fresh surface water

0

(9.3.1.24) Discharges to brackish surface water/seawater

0

(9.3.1.25) Discharges to groundwater

0

(9.3.1.26) Discharges to third party destinations

0.65

(9.3.1.27) Total water consumption at this facility (megaliters)

0

(9.3.1.28) Comparison of total consumption with previous reporting year

Select from:

✓ Higher

(9.3.1.29) Please explain

Aptar Torello has been confirmed for the reporting year into the list of water stressed areas emerged from the risk analysis with WWF Risk Filter Tool. The water consumption is neutral thanks to the use of closed loop system implemented to optimize the water consumption for the cooling of injection molding activities. Water withdrawn and water discharged has been lower respect previous year due to market fluctuations.

[Add row]

(9.3.2) For the facilities in your direct operations referenced in 9.3.1, what proportion of water accounting data has been third party verified?

Water withdrawals – total volumes

(9.3.2.1) % verified

Select from:

✓ 76-100

(9.3.2.2) Verification standard used

ISO 14064-1

Water withdrawals – volume by source

(9.3.2.1) % verified

Select from:

☑ 76-100

(9.3.2.2) Verification standard used

ISO 14064-1

Water withdrawals – quality by standard water quality parameters

(9.3.2.1) % verified

Select from:

✓ 76-100

(9.3.2.2) Verification standard used

ISO 14064-1

Water discharges – total volumes

(9.3.2.1) % verified

Select from:

✓ 76-100

(9.3.2.2) Verification standard used

ISO 14064-1

Water discharges – volume by destination

(9.3.2.1) % verified

Select from:

✓ 76-100

(9.3.2.2) Verification standard used

ISO 14064-1

Water discharges – volume by final treatment level

(9.3.2.1) % verified

Select from:

✓ 76-100

(9.3.2.2) Verification standard used

ISO 14064-1

Water discharges – quality by standard water quality parameters

(9.3.2.1) % verified

Select from:

✓ 76-100

(9.3.2.2) Verification standard used

ISO 14064-1

Water consumption – total volume

(9.3.2.1) % verified

Select from:

✓ 76-100

(9.3.2.2) Verification standard used

ISO 14064-1

[Fixed row]

(9.4) Could any of your facilities reported in 9.3.1 have an impact on a requesting CDP supply chain member?

Select from:

✓ Yes, CDP supply chain members buy goods or services from facilities listed in 9.3.1

(9.4.1) Indicate which of the facilities referenced in 9.3.1 could impact a requesting CDP supply chain member.

Row 1

(9.4.1.1) Facility reference number

Select from:

✓ Facility 1

(9.4.1.2) **Facility name**

Aptar Chieti

(9.4.1.3) Requesting member

Select from:

(9.4.1.4) Description of potential impact on member

Aptar site implemented water contingency plan in order to minimize as much as possible the risk of the business interruption due to water scarcity and drought. No particular impact has been identified for the customer.

(9.4.1.5) Comment

Aptar process is not a water intensive process, but at the same time in our operations we implemented water conservation measures and circular solutions to reuse of water in our processes.

Row 2

(9.4.1.1) Facility reference number

Select from:

✓ Facility 1

(9.4.1.2) **Facility name**

Aptar Chieti

(9.4.1.3) Requesting member

Select from:

(9.4.1.4) Description of potential impact on member

Aptar site implemented water contingency plan in order to minimize as much as possible the risk of the business interruption due to water scarcity and drought. No particular impact has been identified for the customer.

(9.4.1.5) Comment

Aptar process is not a water intensive process, but at the same time in our operations we implemented water conservation measures and circular solutions to reuse of water in our processes.

Row 3

(9.4.1.1) Facility reference number

Select from:

✓ Facility 5

(9.4.1.2) **Facility name**

Aptar Pescara

(9.4.1.3) Requesting member

Select from:

(9.4.1.4) Description of potential impact on member

Aptar site implemented water contingency plan in order to minimize as much as possible the risk of the business interruption due to water scarcity and drought. No particular impact has been identified for the customer.

(9.4.1.5) Comment

Aptar process is not a water intensive process, but at the same time in our operations we implemented water conservation measures and circular solutions to reuse of water in our processes.

Row 4

(9.4.1.1) Facility reference number

Select from:

✓ Facility 7

(9.4.1.2) **Facility name**

Aptar Suzhou

(9.4.1.3) Requesting member

Select from:

(9.4.1.4) Description of potential impact on member

Aptar site implemented water contingency plan in order to minimize as much as possible the risk of the business interruption due to water scarcity and drought. No particular impact has been identified for the customer.

(9.4.1.5) Comment

Aptar process is not a water intensive process, but at the same time in our operations we implemented water conservation measures and circular solutions to reuse of water in our processes.

Row 5

(9.4.1.1) Facility reference number

Select from:

✓ Facility 1

(9.4.1.2) **Facility name**

Aptar Chieti

(9.4.1.3) Requesting member

Select from:

(9.4.1.4) Description of potential impact on member

Aptar site implemented water contingency plan in order to minimize as much as possible the risk of the business interruption due to water scarcity and drought. No particular impact has been identified for the customer.

(9.4.1.5) Comment

Aptar process is not a water intensive process, but at the same time in our operations we implemented water conservation measures and circular solutions to reuse of water in our processes.

Row 6

(9.4.1.1) Facility reference number

Select from:

✓ Facility 8

(9.4.1.2) **Facility name**

Aptar Torello

(9.4.1.3) Requesting member

Select from:

(9.4.1.4) Description of potential impact on member

Aptar site implemented water contingency plan in order to minimize as much as possible the risk of the business interruption due to water scarcity and drought. No particular impact has been identified for the customer.

(9.4.1.5) Comment

Aptar process is not a water intensive process, but at the same time in our operations we implemented water conservation measures and circular solutions to reuse of water in our processes.

Row 7

(9.4.1.1) Facility reference number

Select from:

✓ Facility 8

(9.4.1.2) **Facility name**

Aptar Torello

(9.4.1.3) Requesting member

Select from:

(9.4.1.4) Description of potential impact on member

Aptar site implemented water contingency plan in order to minimize as much as possible the risk of the business interruption due to water scarcity and drought. No particular impact has been identified for the customer.

(9.4.1.5) Comment

Aptar process is not a water intensive process, but at the same time in our operations we implemented water conservation measures and circular solutions to reuse of water in our processes.

Row 8

(9.4.1.1) Facility reference number

Select from:

✓ Facility 5

(9.4.1.2) **Facility name**

Aptar Pescara

(9.4.1.3) Requesting member

Select from:

(9.4.1.4) Description of potential impact on member

Aptar site implemented water contingency plan in order to minimize as much as possible the risk of the business interruption due to water scarcity and drought. No particular impact has been identified for the customer.

(9.4.1.5) Comment

Aptar process is not a water intensive process, but at the same time in our operations we implemented water conservation measures and circular solutions to reuse of water in our processes.

Row 9

(9.4.1.1) Facility reference number

Select from:

✓ Facility 1

(9.4.1.2) **Facility name**

Aptar Chieti

(9.4.1.3) Requesting member

Select from:

(9.4.1.4) Description of potential impact on member

Aptar site implemented water contingency plan in order to minimize as much as possible the risk of the business interruption due to water scarcity and drought. No particular impact has been identified for the customer.

(9.4.1.5) Comment

Aptar process is not a water intensive process, but at the same time in our operations we implemented water conservation measures and circular solutions to reuse of water in our processes.

Row 10

(9.4.1.1) Facility reference number

Select from:

✓ Facility 5

(9.4.1.2) **Facility name**

Aptar Pescara

(9.4.1.3) Requesting member

Select from:

(9.4.1.4) Description of potential impact on member

Aptar site implemented water contingency plan in order to minimize as much as possible the risk of the business interruption due to water scarcity and drought. No particular impact has been identified for the customer.

(9.4.1.5) Comment

Aptar process is not a water intensive process, but at the same time in our operations we implemented water conservation measures and circular solutions to reuse of water in our processes.

Row 11

(9.4.1.1) Facility reference number

Select from:

✓ Facility 8

(9.4.1.2) **Facility name**

Aptar Torello

(9.4.1.3) Requesting member

Select from:

(9.4.1.4) Description of potential impact on member

Aptar site implemented water contingency plan in order to minimize as much as possible the risk of the business interruption due to water scarcity and drought. No particular impact has been identified for the customer.

(9.4.1.5) Comment

Aptar process is not a water intensive process, but at the same time in our operations we implemented water conservation measures and circular solutions to reuse of water in our processes.

Row 12

(9.4.1.1) Facility reference number

Select from:

✓ Facility 8

(9.4.1.2) **Facility name**

Aptar Torello

(9.4.1.3) Requesting member

Select from:

(9.4.1.4) Description of potential impact on member

Aptar site implemented water contingency plan in order to minimize as much as possible the risk of the business interruption due to water scarcity and drought. No particular impact has been identified for the customer.

(9.4.1.5) Comment

Aptar process is not a water intensive process, but at the same time in our operations we implemented water conservation measures and circular solutions to reuse of water in our processes.

Row 13

(9.4.1.1) Facility reference number

Select from:

✓ Facility 1

(9.4.1.2) **Facility name**

Aptar Chieti

(9.4.1.3) Requesting member

Select from:

(9.4.1.4) Description of potential impact on member

Aptar site implemented water contingency plan in order to minimize as much as possible the risk of the business interruption due to water scarcity and drought. No particular impact has been identified for the customer.

(9.4.1.5) Comment

Aptar process is not a water intensive process, but at the same time in our operations we implemented water conservation measures and circular solutions to reuse of water in our processes.

Row 14

(9.4.1.1) Facility reference number

Select from:

✓ Facility 5

(9.4.1.2) **Facility name**

Aptar Pescara

(9.4.1.3) Requesting member

Select from:

(9.4.1.4) Description of potential impact on member

Aptar site implemented water contingency plan in order to minimize as much as possible the risk of the business interruption due to water scarcity and drought. No particular impact has been identified for the customer.

(9.4.1.5) Comment

Aptar process is not a water intensive process, but at the same time in our operations we implemented water conservation measures and circular solutions to reuse of water in our processes.
[Add row]

(9.5) Provide a figure for your organization's total water withdrawal efficiency.

(9.5.1) Revenue (currency)

3582890000

(9.5.2) Total water withdrawal efficiency

803698.97

(9.5.3) Anticipated forward trend

Forward trend is under investigation, but the expectation is that our withdrawal efficiency will increase thanks to the water conservation measures at our sites. [Fixed row]

(9.12) Provide any available water intensity values for your organization's products or services.

Row 1

(9.12.1) **Product name**

The finished products are dispensing systems produced in Aptar sites for CDP customer SC Johnson & Johnson

(9.12.2) Water intensity value

0.05

(9.12.3) Numerator: Water aspect

Select from:

✓ Water consumed

(9.12.4) Denominator

Total number of finished products produced as invoiced quantities from Aptar sites listed

(9.12.5) Comment

The water intensity indicator is based on the calculation mass based for water consumed by plants. The total water consumed has been allocated considering the tons of total finished products produced by the plant and tons of finished products produced for CDP customer. The water intensity indicator is expressed as m3 per single tons of invoiced quantities. Note: the water intensity indicator is calculated only for the Aptar sites located in the water stressed areas and where we identified water consumption.

Row 2

(9.12.1) **Product name**

The finished products are dispensing systems produced in Aptar sites for CDP customer Unilever

(9.12.2) Water intensity value

0.64

(9.12.3) Numerator: Water aspect

Select from:

✓ Water consumed

(9.12.4) Denominator

Total number of finished products produced as invoiced quantities from Aptar sites listed

(9.12.5) Comment

The water intensity indicator is based on the calculation mass based for water consumed by plants. The total water consumed has been allocated considering the tons of total finished products produced by the plant and tons of finished products produced for CDP customer. The water intensity indicator is expressed as m3 per single tons of invoiced quantities. Note: the water intensity indicator is calculated only for the Aptar sites located in the water stressed areas and where we identified water consumption.

Row 3

(9.12.1) Product name

The finished products are dispensing systems produced in Aptar sites for CDP customer L'Oréal

(9.12.2) Water intensity value

0.25

(9.12.3) Numerator: Water aspect

Select from:

✓ Water consumed

(9.12.4) Denominator

Total number of finished products produced as invoiced quantities from Aptar sites listed

(9.12.5) Comment

The water intensity indicator is based on the calculation mass based for water consumed by plants. The total water consumed has been allocated considering the tons of total finished products produced by the plant and tons of finished products produced for CDP customer. The water intensity indicator is expressed as m3 per single tons of invoiced quantities. Note: the water intensity indicator is calculated only for the Aptar sites located in the water stressed areas and where we identified water consumption.

Row 4

(9.12.1) **Product name**

The finished products are dispensing systems produced in Aptar sites for CDP customer Kenvue INC

(9.12.2) Water intensity value

0.63

(9.12.3) Numerator: Water aspect

Select from:

✓ Water consumed

(9.12.4) Denominator

Total number of finished products produced as invoiced quantities from Aptar sites listed

(9.12.5) Comment

The water intensity indicator is based on the calculation mass based for water consumed by plants. The total water consumed has been allocated considering the tons of total finished products produced by the plant and tons of finished products produced for CDP customer. The water intensity indicator is expressed as m3 per single tons of invoiced quantities. Note: the water intensity indicator is calculated only for the Aptar sites located in the water stressed areas and where we identified water consumption.

Row 5

(9.12.1) **Product name**

The finished products are dispensing systems produced in Aptar sites for CDP customer Coca Cola

(9.12.2) Water intensity value

1.38

(9.12.3) Numerator: Water aspect

Select from:

✓ Water consumed

(9.12.4) Denominator

Total number of finished products produced as invoiced quantities from Aptar sites listed

(9.12.5) **Comment**

The water intensity indicator is based on the calculation mass based for water consumed by plants. The total water consumed has been allocated considering the tons of total finished products produced by the plant and tons of finished products produced for CDP customer. The water intensity indicator is expressed as m3 per single tons of invoiced quantities. Note: the water intensity indicator is calculated only for the Aptar sites located in the water stressed areas and where we identified water consumption.

Row 6

(9.12.1) **Product name**

The finished products are dispensing systems produced in Aptar sites for CDP customer Shisheido

(9.12.2) Water intensity value

1.27

(9.12.3) Numerator: Water aspect

Select from:

✓ Water consumed

(9.12.4) Denominator

Total number of finished products produced as invoiced quantities from Aptar sites listed

(9.12.5) Comment

The water intensity indicator is based on the calculation mass based for water consumed by plants. The total water consumed has been allocated considering the tons of total finished products produced by the plant and tons of finished products produced for CDP customer. The water intensity indicator is expressed as m3 per single tons of invoiced quantities. Note: the water intensity indicator is calculated only for the Aptar sites located in the water stressed areas and where we identified water consumption.

Row 7

(9.12.1) **Product name**

The finished products are dispensing systems produced in Aptar sites for CDP customer EsteeLauder

(9.12.2) Water intensity value

0.2

(9.12.3) Numerator: Water aspect

Select from:

✓ Water consumed

(9.12.4) Denominator

Total number of finished products produced as invoiced quantities from Aptar sites listed

(9.12.5) Comment

The water intensity indicator is based on the calculation mass based for water consumed by plants. The total water consumed has been allocated considering the tons of total finished products produced by the plant and tons of finished products produced for CDP customer. The water intensity indicator is expressed as m3 per single tons of invoiced quantities. Note: the water intensity indicator is calculated only for the Aptar sites located in the water stressed areas and where we identified water consumption.

Row 8

(9.12.1) Product name

The finished products are dispensing systems produced in Aptar sites for CDP customer Puig Brand

(9.12.2) Water intensity value

0.01

(9.12.3) Numerator: Water aspect

Select from:

✓ Water consumed

(9.12.4) Denominator

Total number of finished products produced as invoiced quantities from Aptar sites listed

(9.12.5) Comment

The water intensity indicator is based on the calculation mass based for water consumed by plants. The total water consumed has been allocated considering the tons of total finished products produced by the plant and tons of finished products produced for CDP customer. The water intensity indicator is expressed as m3 per single tons of invoiced quantities. Note: the water intensity indicator is calculated only for the Aptar sites located in the water stressed areas and where we identified water consumption.

Row 9

(9.12.1) **Product name**

The finished products are dispensing systems produced in Aptar sites for CDP customer Novartis

(9.12.2) Water intensity value

4.54

(9.12.3) Numerator: Water aspect

Select from:

✓ Water consumed

(9.12.4) Denominator

Total number of finished products produced as invoiced quantities from Aptar sites listed

(9.12.5) Comment

The water intensity indicator is based on the calculation mass based for water consumed by plants. The total water consumed has been allocated considering the tons of total finished products produced by the plant and tons of finished produced for CDP customer. The water intensity indicator is expressed as m3 per

single tons of invoiced quantities. Note: the water intensity indicator is calculated only for the Aptar sites located in the water stressed areas and where we identified water consumption.

Row 10

(9.12.1) Product name

The finished products are dispensing systems produced in Aptar sites for CDP customer Grupo Boticario

(9.12.2) Water intensity value

0.42

(9.12.3) Numerator: Water aspect

Select from:

✓ Water consumed

(9.12.4) Denominator

Total number of finished products produced as invoiced quantities from Aptar sites listed

(9.12.5) Comment

The water intensity indicator is based on the calculation mass based for water consumed by plants. The total water consumed has been allocated considering the tons of total finished products produced by the plant and tons of finished products produced for CDP customer. The water intensity indicator is expressed as m3 per single tons of invoiced quantities. Note: the water intensity indicator is calculated only for the Aptar sites located in the water stressed areas and where we identified water consumption.

Row 11

(9.12.1) **Product name**

The finished products are dispensing systems produced in Aptar sites for CDP customer Teva Pharmaceuticals

(9.12.2) Water intensity value

(9.12.3) Numerator: Water aspect

Select from:

✓ Water consumed

(9.12.4) Denominator

Total number of finished products produced as invoiced quantities from Aptar sites listed

(9.12.5) Comment

The water intensity indicator is based on the calculation mass based for water consumed by plants. The total water consumed has been allocated considering the tons of total finished products produced by the plant and tons of finished products produced for CDP customer. The water intensity indicator is expressed as m3 per single tons of invoiced quantities. Note: the water intensity indicator is calculated only for the Aptar sites located in the water stressed areas and where we identified water consumption.

Row 12

(9.12.1) **Product name**

The finished products are dispensing systems produced in Aptar sites for CDP customer Coty Inc.

(9.12.2) Water intensity value

0.25

(9.12.3) Numerator: Water aspect

Select from:

✓ Water consumed

(9.12.4) Denominator

Total number of finished products produced as invoiced quantities from Aptar sites listed

(9.12.5) Comment

The water intensity indicator is based on the calculation mass based for water consumed by plants. The total water consumed has been allocated considering the tons of total finished products produced by the plant and tons of finished products produced for CDP customer. The water intensity indicator is expressed as m3 per single tons of invoiced quantities. Note: the water intensity indicator is calculated only for the Aptar sites located in the water stressed areas and where we identified water consumption.

[Add row]

(9.13) Do any of your products contain substances classified as hazardous by a regulatory authority?

(9.13.1) Products contain hazardous substances

Select from:

✓ No

(9.13.2) Comment

Aptar produces plastic packaging, the raw materials used in our processes are not classified as compounds exhibiting intrinsically negative properties such as being persistent, bioaccumulative and toxic (PBT), very persistent and very bioaccumulative (vPvB), carcinogenic, mutagenic and toxic for reproduction (CMR), or endocrine disruptors (ED) (ZDHC, 2022).

[Fixed row]

(9.14) Do you classify any of your current products and/or services as low water impact?

(9.14.1) Products and/or services classified as low water impact

Select from:

✓ Yes

(9.14.2) Definition used to classify low water impact

Our Product Sustainability Team is promoting a conversion plan on which our efforts are focused on the use of recycled content material (mostly based on the mechanical recycling). This aspect allow to produce finished products that we can consider "low water impact" at upstream value chain because the fact that we are not using conventional materials can demonstrate a lower use and consumption of water to produce plastics, metals etc.... In addition, our GMI and Marketing are investigating also the reusability of our products, so, in this case we have water saving always into the upstream value chain thanks to the reuse and refilling of products. Further investigation is also focused on the use phase of product from end user perspective. Our definition used to classify low water impact is "Lifecycle water use for the new material or new product is lower than the conventional product or material. This criteria applies to our upstream value chain and intensity is considered."

(9.14.4) Please explain

Our Product Sustainability Team is promoting conversion plan on which our efforts are focused on the use of recycled content material (mostly based on the mechanical recycling). This aspect allow to produce finished products that we can consider "low water impact" at upstream value chain becasue the fact that we are not using conventional materials can demonstrate a lower use and consumption of water to produce plastics, metals etc.... In addition, our GMI and Marketing are investigating also the reusability of our products, so, in this case we have water saving always into the upstream value chain thanks to the reuse and refilling of products. Further investigation is also focused on the use phase of product from end user perspective.

[Fixed row]

(9.15) Do you have any water-related targets?

Select from:

✓ Yes

(9.15.1) Indicate whether you have targets relating to water pollution, water withdrawals, WASH, or other water-related categories.

Water pollution

(9.15.1.1) Target set in this category

Select from:

☑ No, but we plan to within the next two years

(9.15.1.2) Please explain

Water pollution target will be defined during next reporting years and it is evaluated for regulatory compliance and SBTN after materiality assessment about pressure on nature due to wastewater pollution.

Water withdrawals

Select from:

water withdrawais
(9.15.1.1) Target set in this category
Select from: ✓ Yes
Water, Sanitation, and Hygiene (WASH) services
(9.15.1.1) Target set in this category
Select from: ✓ Yes
Other
(9.15.1.1) Target set in this category
Select from: ✓ Yes [Fixed row]
(9.15.2) Provide details of your water-related targets and the progress made.
Row 1
(9.15.2.1) Target reference number
Select from: ✓ Target 1
(9.15.2.2) Target coverage

✓ Organization-wide (direct operations only)				
(9.15.2.3) Category of target & Quantitative metric				
Monitoring of water use ✓ Increase in the proportion of sites monitoring water discharge total volumes				
(9.15.2.4) Date target was set				
12/31/2021				
(9.15.2.5) End date of base year				
12/30/2022				
(9.15.2.6) Base year figure				
0				
(9.15.2.7) End date of target year				
12/30/2030				
(9.15.2.8) Target year figure				
50				
(9.15.2.9) Reporting year figure				
0				
(9.15.2.10) Target status in reporting year				

Select from:

✓ Underway

(9.15.2.11) % of target achieved relative to base year

0

(9.15.2.12) Global environmental treaties/initiatives/ frameworks aligned with or supported by this target

Select all that apply

✓ Science Based Targets for Nature

(9.15.2.13) Explain target coverage and identify any exclusions

During reporting year 2022, our organization set a target to increase the proportion of sites monitoring water discharges volumes by 50% by 2027. Progress is monitored using the number of water metering installed in our operations to track megaliters as the unit of measurement for the water discharged. This target applies company-wide with no exclusions in our direct operations, and is expected to extend to our new acquisitions during next years. The motivation for the target stemmed from a corporate objective on increase reliability of water data that will drive future water conservation measures in our sites, while the target is also in alignment with our water policy commitment to increase process efficiency from reliable baseline data. As we have just started it, we are underway to meet this target by 2030

(9.15.2.14) Plan for achieving target, and progress made to the end of the reporting year

The plan for achieving target is to identify dedicated capex for the water management supporting the new Aptar road map for the biodiversity, especially for the SBTN target related to the freshwater. At the end of this reporting year we have not made progress to this target due to the fact that we are still working on the road map implementation,.

(9.15.2.16) Further details of target

The target will be achieved once sites installed water monitoring systems connected into the internal management system tool that will allow real time monitoring of parameters.

Row 2

(9.15.2.1) Target reference number

Select from:

✓ Target 2

(9.15.2.2) Target coverage

✓ Organization-wide (direct operations only)

(9.15.2.3) Category of target & Quantitative metric

Other

☑ Other, please specify :Number of water audit completed in our operations

(9.15.2.4) Date target was set

12/31/2021

(9.15.2.5) End date of base year

08/11/2022

(9.15.2.6) Base year figure

0

(9.15.2.7) End date of target year

12/30/2025

(9.15.2.8) Target year figure

8

(9.15.2.9) Reporting year figure

3

(9.15.2.10) Target status in reporting year

Select from:

✓ Underway

(9.15.2.11) % of target achieved relative to base year

38

(9.15.2.12) Global environmental treaties/initiatives/ frameworks aligned with or supported by this target

Select all that apply

✓ Sustainable Development Goal 6

(9.15.2.13) Explain target coverage and identify any exclusions

During reporting year, our organization revised a target to complete water audit (secondary part) in operations located in water stressed areas (8 sites identified and listed by 2025). Progress is monitored using the number of water audit report released in our operations to track opportunities and water conservation measures at local site. This target applies only to the sites located in water stressed areas (scarcity) from water-related risk assessment and is expected to extend to new sites if risk analysis will be updated during next years. The motivation for the target stemmed from a corporate objective on the identification of water conservation measures and opportunities in our sites that can drive the reduction of consumptions, process efficiency and water quality. As we have just started it, we are underway to meet this target by 2025. Has been excluded offices where we do not have intensive water consumption.

(9.15.2.14) Plan for achieving target, and progress made to the end of the reporting year

The plan for achieving target is to identify dedicated capex for the water management supporting the new Aptar road map for the biodiversity, especially for the SBTN target related to the freshwater. At the end of this reporting year we have not made progress to this target due to the fact that we are still working on the road map implementation,.

(9.15.2.16) Further details of target

The target will be achieved once sites completed water audit that will allow the monitoring of current water management situation in water stressed areas. [Add row]

C10. Environmental performance - Plastics

(10.1) Do you have plastics-related targets, and if so what type?

(10.1.1) Targets in place

Select from:

✓ Yes

(10.1.2) Target type and metric

Plastic packaging

- ☑ Eliminate single-use plastic packaging
- ☑ Reduce or eliminate the use of hazardous substances
- ☑ Eliminate problematic and unnecessary plastic packaging
- ☑ Increase the proportion of plastic packaging that is reusable
- ☑ Reduce the total weight of virgin content in plastic packaging
- ☑ Reduce the total weight of plastic packaging used and/or produced
- ☑ Increase the proportion of post-consumer recycled content in plastic packaging
- ☑ Increase the proportion of plastic packaging that is recyclable in practice and at scale
- ☑ Increase the proportion of renewable content from responsibly managed sources in plastic packaging

(10.1.3) Please explain

Aptar believes the packaging industry must move beyond the "make, use, dispose" behaviors of the past and actively work toward a circular economy. To this end, our approach to improving product sustainability is built on four foundational pillars. Aptar's near-term product sustainability goals for 2025 include: achieve 10% recycled resin content in personal care, beauty, home care and food/beverage solutions; reach 100% recyclable, reusable or compostable solutions in personal care, beauty, home care, and food/beverage solutions, eliminate 100% of formaldehyde (POM), styrene (ABS, SAN), vinyl chloride (PVC) and Bisphenol (PC, epoxy) in personal care, beauty, home care, and food/beverage solutions. We completed more than 170 lifecycle analysis studies during the year, further evidence that sustainability, as a key to circular design, is being considered more and more during product development across all three segments of Aptar's business. In addition,

our Material Science and Innovation Excellence teams have evaluated dozens of new and emerging materials that could give greater choice to Aptar customers, enabling them to move closer to their ambitions for more sustainable packaging. In 2023, Aptar continued the conversion to recycled resin content in our personal care, beauty, home care, food and beverage solutions, ending the year with 1.64% of our total resin volume sales being recycled resin content*. Increasing the volume of recycled materials in the future is a key priority across our entire product portfolio. Currently, the biggest challenge is the lack of food-grade, post-consumer recycled resin on the market. Greater availability is expected in the coming years, which will support our progress. In 2023, 69.2% of our solutions in personal care, beauty, home care, and food/beverage were recyclable, reusable or compostable according to the Ellen MacArthur Foundation guidelines. We remain on track with an increasing number of our products being recyclable in these categories. Due to report timing and sales volumes, the introduction of products like the Future monomaterial pump and the SimpliCycle™, recyclable valve, is not yet visible within this indicator but will soon be a part of our reporting aligned to the Ellen MacArthur Foundation's New Plastics Economy Global Commitment. [Fixed row]

(10.2) Indicate whether your organization engages in the following activities.

Production/commercialization of plastic polymers (including plastic converters)

(10.2.1) Activity applies

Select from:

✓ No

(10.2.2) Comment

Aptar is not a producer of plastic polymers.

Production/commercialization of durable plastic goods and/or components (including mixed materials)

(10.2.1) Activity applies

Select from:

✓ No

(10.2.2) Comment

Aptar is not a producer of durable plastic goods

Usage of durable plastics goods and/or components (including mixed materials)

(10.2.1) Activity applies

Select from:

✓ No

(10.2.2) Comment

Aptar is not usage of plastic polymers.

Production/commercialization of plastic packaging

(10.2.1) Activity applies

Select from:

✓ Yes

(10.2.2) Comment

Aptar is a global leader in drug and consumer product dosing, dispensing and protection technologies. Aptar serves a number of attractive end markets including pharmaceutical, beauty, food, beverage, personal care and home care

Production/commercialization of goods/products packaged in plastics

(10.2.1) Activity applies

Select from:

✓ No

(10.2.2) Comment

Aptar is a global leader in drug and consumer product dosing, dispensing and protection technologies. Aptar serves a number of attractive end markets including pharmaceutical, beauty, food, beverage, personal care and home care

Provision/commercialization of services that use plastic packaging (e.g., food services)

(10.2.1) Activity applies

Select from:

✓ No

(10.2.2) Comment

Aptar is a global leader in drug and consumer product dosing, dispensing and protection technologies. Aptar serves a number of attractive end markets including pharmaceutical, beauty, food, beverage, personal care and home care

Provision of waste management and/or water management services

(10.2.1) Activity applies

Select from:

✓ No

(10.2.2) **Comment**

Aptar is a global leader in drug and consumer product dosing, dispensing and protection technologies. Aptar serves a number of attractive end markets including pharmaceutical, beauty, food, beverage, personal care and home care

Provision of financial products and/or services for plastics-related activities

(10.2.1) Activity applies

Select from:

✓ No

(10.2.2) Comment

Aptar is a global leader in drug and consumer product dosing, dispensing and protection technologies. Aptar serves a number of attractive end markets including pharmaceutical, beauty, food, beverage, personal care and home care

Other activities not specified

(10.2.1) Activity applies

Select from:

✓ No

(10.2.2) Comment

Aptar is a global leader in drug and consumer product dosing, dispensing and protection technologies. Aptar serves a number of attractive end markets including pharmaceutical, beauty, food, beverage, personal care and home care [Fixed row]

(10.5) Provide the total weight of plastic packaging sold and/or used and indicate the raw material content.

Plastic packaging sold

(10.5.1) Total weight during the reporting year (Metric tons)

92387

(10.5.2) Raw material content percentages available to report

Select all that apply

✓ % virgin fossil-based content

✓ % post-consumer recycled content

(10.5.3) % virgin fossil-based content

98.4

(10.5.6) % post-consumer recycled content

1.6

(10.5.7) Please explain

Aptar Product Sustainability Team is leading the calculation of the total plastic packaging weight reported in different reporting tools and public commitments. More in accuracy the calculation is based on the total packaging weight produced and sold to the market (pharma excluded). At the moment we do not have third-party

verification, but, we are planning to have it in the next 2 years. The % is based on the market requests and trends, so, we can expect fluctuations of the recyclable percentage and total amount of renewables and non-renewable materials. The Product Sustainability Team promote ecodesign solutions and tool for the maximization of the recycled content. At the moment Aptar is not subject to the plastic tax.

[Fixed row]

(10.5.1) Indicate the circularity potential of the plastic packaging you sold and/or used.

Plastic packaging sold

(10.5.1.1) Percentages available to report for circularity potential

Select all that apply

✓ % reusable

✓ % technically recyclable

✓ % recyclable in practice and at scale

(10.5.1.2) % of plastic packaging that is reusable

0.8

(10.5.1.3) % of plastic packaging that is technically recyclable

69.2

(10.5.1.4) % of plastic packaging that is recyclable in practice at scale

68.4

(10.5.1.5) Please explain

The percentage calculated is based on the Ellen MacArthur Foundation methodology [Fixed row]

(10.6) Provide the total weight of waste generated by the plastic you produce, commercialize, use and/or process and indicate the end-of-life management pathways.

Production of plastic

(10.6.1) Total weight of waste generated during the reporting year (Metric tons)

50658

(10.6.2) End-of-life management pathways available to report

Select all that apply

- Recycling
- ✓ Waste to Energy
- **✓** Incineration
- **✓** Landfill

(10.6.4) % recycling

42

(10.6.6) % waste to energy

7

(10.6.7) % incineration

1

(10.6.8) % landfill

6

(10.6.12) Please explain

The total amount of waste generated by the plastic produced has been calculated from internal mapping site by site, the residual percentage of 44% is based on other waste treatment scenarios.

Commercialization of plastic

(10.6.1) Total weight of waste generated during the reporting year (Metric tons)

92387

(10.6.2) End-of-life management pathways available to report

Select all that apply

Recycling

(10.6.4) % recycling

68.4

(10.6.12) Please explain

The total amount of plastic commercialized has been calculated starting from the Ellen MacArthur Foundation report on which we have calculated the total amount of plastic sold to the market and end of life scenarios to recycle in practice and at scale [Fixed row]

C11. Environmental performance - Biodiversity

(11.2) What actions has your organization taken in the reporting year to progress your biodiversity-related commitments?

(11.2.1) Actions taken in the reporting period to progress your biodiversity-related commitments

Select from:

☑ Yes, we are taking actions to progress our biodiversity-related commitments

(11.2.2) Type of action taken to progress biodiversity-related commitments

Select all that apply

- ✓ Land/water management
- ✓ Education & awareness
- ☑ Other, please specify: Materiality assessment and Value Chain Mapping and State of Nature description [Fixed row]

(11.3) Does your organization use biodiversity indicators to monitor performance across its activities?

Does your organization use indicators to monitor biodiversity performance?	Indicators used to monitor biodiversity performance
Select from:	Select all that apply
✓ Yes, we use indicators	✓ Pressure indicators
	✓ Response indicators

	Does your organization use indicators to monitor biodiversity performance?	Indicators used to monitor biodiversity performance
		☑ Other, please specify: We identified and quantified nature-related risks in compliance with TNFD methodology.

[Fixed row]

(11.4) Does your organization have activities located in or near to areas important for biodiversity in the reporting year?

Legally protected areas

(11.4.1) Indicate whether any of your organization's activities are located in or near to this type of area important for biodiversity

Select from:

✓ Yes

(11.4.2) Comment

From nature-related risk assessment in compliance with TNFD methodology and using WWF Biodiversity Risk Filter, we have identified operations located in legally protected areas.

UNESCO World Heritage sites

(11.4.1) Indicate whether any of your organization's activities are located in or near to this type of area important for biodiversity

Select from:

✓ No

(11.4.2) Comment

UNESCO Man and the Biosphere Reserves

(11.4.1) Indicate whether any of your organization's activities are located in or near to this type of area important for biodiversity

Select from:

✓ No

(11.4.2) Comment

not present

Ramsar sites

(11.4.1) Indicate whether any of your organization's activities are located in or near to this type of area important for biodiversity

Select from:

✓ Yes

(11.4.2) Comment

From nature-related risk assessment in compliance with TNFD methodology and using WWF Biodiversity Risk Filter, we have identified operations located in Ramsar sites.

Key Biodiversity Areas

(11.4.1) Indicate whether any of your organization's activities are located in or near to this type of area important for biodiversity

Select from:

✓ Yes

(11.4.2) Comment

From nature-related risk assessment in compliance with TNFD methodology and using WWF Biodiversity Risk Filter, we have identified operations located in key biodiversity areas.

Other areas important for biodiversity

(11.4.1) Indicate whether any of your organization's activities are located in or near to this type of area important for biodiversity

Select from:

✓ No

(11.4.2) Comment

not present [Fixed row]

(11.4.1) Provide details of your organization's activities in the reporting year located in or near to areas important for biodiversity.

Row 1

(11.4.1.2) Types of area important for biodiversity

Select all that apply

✓ Legally protected areas

(11.4.1.3) Protected area category (IUCN classification)

Select from:

✓ Category IV-VI

(11.4.1.4) Country/area

Select	from:
--------	-------

✓ Brazil

(11.4.1.5) Name of the area important for biodiversity

Apa Cajamar

(11.4.1.6) **Proximity**

Select from:

✓ Adjacent

(11.4.1.8) Briefly describe your organization's activities in the reporting year located in or near to the selected area

Aptar Cajamar production processes are based on the injection molding and assembling of plastic components for packaging products. The main inputs are electrical energy, raw materials plastics, and water used for cooling molds activities. Please note that the process adopt closed loop water system, so, the water withdrawn and consumption is very limited, in addition, about wastewater management process, the site is under control of local regulatory aspects about discharges pollutants (with internal EHS management system).

(11.4.1.9) Indicate whether any of your organization's activities located in or near to the selected area could negatively affect biodiversity

Select from:

✓ Not assessed

Row 2

(11.4.1.2) Types of area important for biodiversity

Select all that apply

✓ Legally protected areas

(11.4.1.3) Protected area category (IUCN classification)

Select from:

✓ Category IV-VI

(11.4.1.4) Country/area

Select from:

✓ France

(11.4.1.5) Name of the area important for biodiversity

Vosges Des Nord Areas

(11.4.1.6) **Proximity**

Select from:

✓ Adjacent

(11.4.1.8) Briefly describe your organization's activities in the reporting year located in or near to the selected area

Aptar CSP Niederbronne production processes are based on the injection molding and assembling of plastic components for packaging products. The main inputs are electrical energy, raw materials plastics, and water used for cooling molds activities. Please note that the process adopt closed loop water system, so, the water withdrawn and consumption is very limited, in addition, about wastewater management process, the site is under control of local regulatory aspects about discharges pollutants (with internal EHS management system).

(11.4.1.9) Indicate whether any of your organization's activities located in or near to the selected area could negatively affect biodiversity

Select from:

✓ Not assessed

Row 3

(11.4.1.2) Types of area important for biodiversity

Select all that apply

✓ Ramsar sites

(11.4.1.4) Country/area

Select from:

✓ France

(11.4.1.5) Name of the area important for biodiversity

Baie du Mont Saint-Michel

(11.4.1.6) **Proximity**

Select from:

☑ Up to 5 km

(11.4.1.8) Briefly describe your organization's activities in the reporting year located in or near to the selected area

Aptar Granville production processes are based on the injection molding and assembling of plastic components for packaging products. The main inputs are electrical energy, raw materials plastics, and water used for cooling molds activities. Please note that the process adopt closed loop water system, so, the water withdrawn and consumption is very limited, in addition, about wastewater management process, the site is under control of local regulatory aspects about discharges pollutants (with internal EHS management system).

(11.4.1.9) Indicate whether any of your organization's activities located in or near to the selected area could negatively affect biodiversity

Select from:

✓ Not assessed

Row 4

(11.4.1.2) Types of area important for biodiversity

Select all that apply

✓ Ramsar sites

(11.4.1.4) Country/area

Select from:

✓ Germany

(11.4.1.5) Name of the area important for biodiversity

Wollmatinger Ried, Giehrenmoos & Mindelsee

(11.4.1.6) **Proximity**

Select from:

✓ Up to 5 km

(11.4.1.8) Briefly describe your organization's activities in the reporting year located in or near to the selected area

Aptar Radolfzell production processes are based on the injection molding and assembling of plastic components for packaging products. The main inputs are electrical energy, raw materials plastics, and water used for cooling molds activities. Please note that the process adopt closed loop water system, so, the water withdrawn and consumption is very limited, in addition, about wastewater management process, the site is under control of local regulatory aspects about discharges pollutants (with internal EHS management system).

(11.4.1.9) Indicate whether any of your organization's activities located in or near to the selected area could negatively affect biodiversity

Select from:

✓ Not assessed

Row 5

(11.4.1.2) Types of area important for biodiversity

Select all that apply

✓ Key Biodiversity Areas

(11.4.1.4) Country/area

Select from:

✓ Czechia

(11.4.1.5) Name of the area important for biodiversity

Onšovice - Mlýny

(11.4.1.6) **Proximity**

Select from:

✓ Data not available

(11.4.1.8) Briefly describe your organization's activities in the reporting year located in or near to the selected area

Aptar Ckyne production processes are based on the injection molding and assembling of plastic components for packaging products. The main inputs are electrical energy, raw materials plastics, and water used for cooling molds activities. Please note that the process adopt closed loop water system, so, the water withdrawn and consumption is very limited, in addition, about wastewater management process, the site is under control of local regulatory aspects about discharges pollutants (with internal EHS management system).

(11.4.1.9) Indicate whether any of your organization's activities located in or near to the selected area could negatively affect biodiversity

Select from:

✓ Not assessed

Row 6

(11.4.1.2) Types of area important for biodiversity

Select all that apply

✓ Key Biodiversity Areas

(11.4.1.4) Country/area

Select from:

✓ Germany

(11.4.1.5) Name of the area important for biodiversity

LSG-Massen, LSG Wickeder Feld, LSG Fleier - Brackel - Asseln - Wickede, LSG-Afferde-Niedermassen

(11.4.1.6) **Proximity**

Select from:

✓ Up to 5 km

(11.4.1.8) Briefly describe your organization's activities in the reporting year located in or near to the selected area

Aptar Dortmund production processes are based on the injection molding and assembling of plastic components for packaging products. The main inputs are electrical energy, raw materials plastics, and water used for cooling molds activities. Please note that the process adopt closed loop water system, so, the water withdrawn and consumption is very limited, in addition, about wastewater management process, the site is under control of local regulatory aspects about discharges pollutants (with internal EHS management system).

(11.4.1.9) Indicate whether any of your organization's activities located in or near to the selected area could negatively affect biodiversity

Select from:

✓ Not assessed

Row 7

(11.4.1.2) Types of area important for biodiversity

Select all that apply

✓ Key Biodiversity Areas

(11.4.1.4) Country/area

Select from:

☑ United Kingdom of Great Britain and Northern Ireland

(11.4.1.5) Name of the area important for biodiversity

(11.4.1.6) **Proximity**

Select from:

✓ Data not available

(11.4.1.8) Briefly describe your organization's activities in the reporting year located in or near to the selected area

Aptar Leeds production processes are based on the injection molding and assembling of plastic components for packaging products. The main inputs are electrical energy, raw materials plastics, and water used for cooling molds activities. Please note that the process adopt closed loop water system, so, the water withdrawn and consumption is very limited, in addition, about wastewater management process, the site is under control of local regulatory aspects about discharges pollutants (with internal EHS management system).

(11.4.1.9) Indicate whether any of your organization's activities located in or near to the selected area could negatively affect biodiversity

Select from:

✓ Not assessed

Row 8

(11.4.1.2) Types of area important for biodiversity

Select all that apply

✓ Key Biodiversity Areas

(11.4.1.4) Country/area

Select from:

✓ Italy

(11.4.1.5) Name of the area important for biodiversity

Natura 2000: Calanchi di Bucchianico (Ripe dello Spagnolo) IUCN Cat V: Riserva naturale di interesse provinciale Pineta Dannunziana

(11.4.1.6) **Proximity**

Select from:

✓ Up to 25 km

(11.4.1.8) Briefly describe your organization's activities in the reporting year located in or near to the selected area

Aptar Chieti production processes are based on the injection molding and assembling of plastic components for packaging products. The main inputs are electrical energy, raw materials plastics, and water used for cooling molds activities. Please note that the process adopt closed loop water system, so, the water withdrawn and consumption is very limited, in addition, about wastewater management process, the site is under control of local regulatory aspects about discharges pollutants (with internal EHS management system).

(11.4.1.9) Indicate whether any of your organization's activities located in or near to the selected area could negatively affect biodiversity

Select from:

✓ Not assessed

Row 9

(11.4.1.2) Types of area important for biodiversity

Select all that apply

✓ Key Biodiversity Areas

(11.4.1.4) Country/area

Select from:

Italy

(11.4.1.5) Name of the area important for biodiversity

Natura 2000: Rupe di Turrivalignani e Fiume Pescara

(11.4.1.6) **Proximity**

Select from:

☑ Up to 5 km

(11.4.1.8) Briefly describe your organization's activities in the reporting year located in or near to the selected area

Aptar Pescara production processes are based on the injection molding and assembling of plastic components for packaging products. The main inputs are electrical energy, raw materials plastics, and water used for cooling molds activities. Please note that the process adopt closed loop water system, so, the water withdrawn and consumption is very limited, in addition, about wastewater management process, the site is under control of local regulatory aspects about discharges pollutants (with internal EHS management system).

(11.4.1.9) Indicate whether any of your organization's activities located in or near to the selected area could negatively affect biodiversity

Select from:

✓ Not assessed

Row 10

(11.4.1.2) Types of area important for biodiversity

Select all that apply

✓ Key Biodiversity Areas

(11.4.1.4) Country/area

Select from:

✓ France

(11.4.1.5) Name of the area important for biodiversity

Natura 2000: Vallée de la Sée

(11.4.1.6) **Proximity**

Select from:

✓ Data not available

(11.4.1.8) Briefly describe your organization's activities in the reporting year located in or near to the selected area

Aptar Brecey production processes are based on the injection molding and assembling of plastic components for packaging products. The main inputs are electrical energy, raw materials plastics, and water used for cooling molds activities. Please note that the process adopt closed loop water system, so, the water withdrawn and consumption is very limited, in addition, about wastewater management process, the site is under control of local regulatory aspects about discharges pollutants (with internal EHS management system).

(11.4.1.9) Indicate whether any of your organization's activities located in or near to the selected area could negatively affect biodiversity

Select from:

✓ Not assessed

Row 11

(11.4.1.2) Types of area important for biodiversity

Select all that apply

☑ Key Biodiversity Areas

(11.4.1.4) Country/area

Select from:

✓ Germany

(11.4.1.5) Name of the area important for biodiversity

EU Habitats Directive: Östlicher Hegau und Linzgau, Westlicher Hegau IUCN Cat IV: Langensteiner Durchbruchstal, Weitenried

(11.4.1.6) **Proximity**

Select from:

☑ Up to 5 km

(11.4.1.8) Briefly describe your organization's activities in the reporting year located in or near to the selected area

Aptar Eigeltinghen production processes are based on the injection molding and assembling of plastic components for packaging products. The main inputs are electrical energy, raw materials plastics, and water used for cooling molds activities. Please note that the process adopt closed loop water system, so, the water withdrawn and consumption is very limited, in addition, about wastewater management process, the site is under control of local regulatory aspects about discharges pollutants (with internal EHS management system).

(11.4.1.9) Indicate whether any of your organization's activities located in or near to the selected area could negatively affect biodiversity

Select from:

✓ Not assessed

Row 12

(11.4.1.2) Types of area important for biodiversity

Select all that apply

✓ Key Biodiversity Areas

(11.4.1.4) Country/area

Select from:

✓ Germany

(11.4.1.5) Name of the area important for biodiversity

IUCN Cat V: LSG 'Bayerischer Wald'

(11.4.1.6) **Proximity**

Select from:

☑ Up to 5 km

(11.4.1.8) Briefly describe your organization's activities in the reporting year located in or near to the selected area

Aptar Freyung production processes are based on the injection molding and assembling of plastic components for packaging products. The main inputs are electrical energy, raw materials plastics, and water used for cooling molds activities. Please note that the process adopt closed loop water system, so, the water withdrawn and consumption is very limited, in addition, about wastewater management process, the site is under control of local regulatory aspects about discharges pollutants (with internal EHS management system).

(11.4.1.9) Indicate whether any of your organization's activities located in or near to the selected area could negatively affect biodiversity

Select from:

✓ Not assessed

Row 13

(11.4.1.2) Types of area important for biodiversity

Select all that apply

✓ Key Biodiversity Areas

(11.4.1.4) Country/area

Select from:

✓ Germany

(11.4.1.5) Name of the area important for biodiversity

IUCN Cat V: LSG-Maerkischer Kreis, LSG-Froendenberg-Ost

(11.4.1.6) **Proximity**

Select from:

☑ Up to 5 km

(11.4.1.8) Briefly describe your organization's activities in the reporting year located in or near to the selected area

Aptar Menden production processes are based on the injection molding and assembling of plastic components for packaging products. The main inputs are electrical energy, raw materials plastics, and water used for cooling molds activities. Please note that the process adopt closed loop water system, so, the water withdrawn and

consumption is very limited, in addition, about wastewater management process, the site is under control of local regulatory aspects about discharges pollutants (with internal EHS management system).

(11.4.1.9) Indicate whether any of your organization's activities located in or near to the selected area could negatively affect biodiversity

Select from:

✓ Not assessed

Row 14

(11.4.1.2) Types of area important for biodiversity

Select all that apply

✓ Key Biodiversity Areas

(11.4.1.4) Country/area

Select from:

✓ Switzerland

(11.4.1.5) Name of the area important for biodiversity

IUCN Cat IV: Gola di Lago, M. Tamaro, Stagno Motto della Costa, Bolle di Magadino (TI)

(11.4.1.6) **Proximity**

Select from:

✓ Data not available

(11.4.1.8) Briefly describe your organization's activities in the reporting year located in or near to the selected area

Aptar Mezzovico production processes are based on the injection molding and assembling of plastic components for packaging products. The main inputs are electrical energy, raw materials plastics, and water used for cooling molds activities. Please note that the process adopt closed loop water system, so, the water withdrawn and consumption is very limited, in addition, about wastewater management process, the site is under control of local regulatory aspects about discharges pollutants (with internal EHS management system).

(11.4.1.9) Indicate whether any of your organization's activities located in or near to the selected area could negatively affect biodiversity

Select from:

✓ Not assessed

Row 15

(11.4.1.2) Types of area important for biodiversity

Select all that apply

✓ Key Biodiversity Areas

(11.4.1.4) Country/area

Select from:

✓ France

(11.4.1.5) Name of the area important for biodiversity

IUCN Cat IV: Protection Des Oiseaux Rupestres, Marais tuffeux de la belloire IUCN Cat V: Haut-Jura

(11.4.1.6) **Proximity**

Select from:

✓ Data not available

(11.4.1.8) Briefly describe your organization's activities in the reporting year located in or near to the selected area

Aptar Oyonnax production processes are based on the injection molding and assembling of plastic components for packaging products. The main inputs are electrical energy, raw materials plastics, and water used for cooling molds activities. Please note that the process adopt closed loop water system, so, the water withdrawn and consumption is very limited, in addition, about wastewater management process, the site is under control of local regulatory aspects about discharges pollutants (with internal EHS management system).

(11.4.1.9) Indicate whether any of your organization's activities located in or near to the selected area could negatively affect biodiversity

Select from:

✓ Not assessed

Row 16

(11.4.1.2) Types of area important for biodiversity

Select all that apply

✓ Key Biodiversity Areas

(11.4.1.4) Country/area

Select from:

✓ Argentina

(11.4.1.5) Name of the area important for biodiversity

Unesco Biosphere reserve: Pereyra Iraola

(11.4.1.6) **Proximity**

Select from:

✓ Data not available

(11.4.1.8) Briefly describe your organization's activities in the reporting year located in or near to the selected area

Aptar Berazategui production processes are based on the injection molding and assembling of plastic components for packaging products. The main inputs are electrical energy, raw materials plastics, and water used for cooling molds activities. Please note that the process adopt closed loop water system, so, the water withdrawn and consumption is very limited, in addition, about wastewater management process, the site is under control of local regulatory aspects about discharges pollutants (with internal EHS management system).

(11.4.1.9) Indicate whether any of your organization's activities located in or near to the selected area could negatively affect biodiversity

Select from:

✓ Not assessed

Row 17

(11.4.1.2) Types of area important for biodiversity

Select all that apply

✓ Key Biodiversity Areas

(11.4.1.4) Country/area

Select from:

✓ United States of America

(11.4.1.5) Name of the area important for biodiversity

IUCN Cat V: Whale Pond Brook, Swimming River

(11.4.1.6) **Proximity**

Select from:

✓ Data not available

(11.4.1.8) Briefly describe your organization's activities in the reporting year located in or near to the selected area

Aptar Eatontown production processes are based on the injection molding and assembling of plastic components for packaging products. The main inputs are electrical energy, raw materials plastics, and water used for cooling molds activities. Please note that the process adopt closed loop water system, so, the water withdrawn and consumption is very limited, in addition, about wastewater management process, the site is under control of local regulatory aspects about discharges pollutants (with internal EHS management system).

(11.4.1.9) Indicate whether any of your organization's activities located in or near to the selected area could negatively affect biodiversity

Select from:

✓ Not assessed [Add row]

C13.	Further	inforn	nation	&	sign	off
C10.	I WI CIICI			•	O-5-1	

(13.1) Indicate if any environmental information included in your CDP response (not already reported in 7.9.1/2/3, 8.9.1/2/3/4, and 9.3.2) is verified and/or assured by a third party?

Other environmental information included in your CDP response is verified and/or assured by a third party
Select from: ✓ Yes

[Fixed row]

(13.1.1) Which data points within your CDP response are verified and/or assured by a third party, and which standards were used?

Row 1

(13.1.1.1) Environmental issue for which data has been verified and/or assured

Select all that apply

- ✓ Climate change
- **✓** Water
- **✓** Plastics

(13.1.1.2) Disclosure module and data verified and/or assured

Environmental performance – Plastics

☑ Raw material content - plastic packaging

- ☑ Raw material content plastic polymers
- ✓ Waste generated

(13.1.1.3) Verification/assurance standard

Water-related standards

☑ Other water verification standard, please specify :ISO 14064-1

Climate change-related standards

✓ ISO 14064-1

(13.1.1.4) Further details of the third-party verification/assurance process

We have received reasonable approach audit for Scope1 and 2 emissions and limited approach for Scope 3 emissions.

(13.1.1.5) Attach verification/assurance evidence/report (optional)

APTAR-Group-Inc_VER-627709_USESG_000000218-final.pdf [Add row]

(13.2) Use this field to provide any additional information or context that you feel is relevant to your organization's response. Please note that this field is optional and is not scored.

Additional information	Attachment (optional)
Please find our latest Corporate Sustainability Report 2024 for additional details and info about Aptar performance for environmental aspects.	2025-05-29_Aptar-CSR- 24_FINAL.pdf

[Fixed row]

(13.3) Provide the following information for the person that has signed off (approved) your CDP response.

(13.3.1) Job title

Chief Executive Officer

(13.3.2) Corresponding job category

Select from:

✓ Chief Executive Officer (CEO)

[Fixed row]

(13.4) Please indicate your consent for CDP to share contact details with the Pacific Institute to support content for its Water Action Hub website.

Select from:

☑ Yes, CDP may share our Disclosure Submission Lead contact details with the Pacific Institute