

AptarGroup

2024 CDP Corporate Questionnaire 2024

Word version

Important: this export excludes unanswered questions

This document is an export of your organization's CDP questionnaire response. It contains all data points for questions that are answered or in progress. There may be questions or data points that you have been requested to provide, which are missing from this document because they are currently unanswered. Please note that it is your responsibility to verify that your questionnaire response is complete prior to submission. CDP will not be liable for any failure to do so.

Terms of disclosure for corporate questionnaire 2024 - CDP

÷

Contents

C1. Introduction

(1.3) Provide an overview and introduction to your organization.

(1.3.2) Organization type

Select from:

✓ Publicly traded organization

(1.3.3) Description of organization

Aptar is a global leader in the design and manufacturing of drug and consumer product dosing, dispensing and protection technologies. Aptar serves a number of attractive end markets including pharmaceutical, beauty, food, beverage, personal care, and home care. Using market expertise, proprietary design, engineering and science to create innovative solutions for many of the world's leading brands, Aptar in turn makes a meaningful difference in the lives, looks, health and homes of millions of patients and consumers around the world. Aptar is headquartered in Crystal Lake, Illinois and has approximately 13,800 dedicated employees in 20 different countries. For more information, visit www.aptar.com. We have manufacturing facilities located throughout the world including North America, Europe, Asia and Latin America. We have approximately 5,000 customers with no single customer or group of affiliated customers accounting for greater than 5% of our net sales. The main direct emissions sources are focused on processing raw materials, assembling, use of electricity and energy fuels, refrigerants and transportations. Consumers' preference for convenience and product differentiation through drug delivery and packaging design and function are important to our customers and they have converted many of their packages from non-dispensing formats to dispensing systems that offer enhanced shelf appeal, convenience, cleanliness and accuracy of dosage. We design our products with both people and the environment in mind. Many of our product solutions for the beauty, personal care, homecare, food and beverage markets are recyclable, reusable or made with recycled content. We partner with our customers by providing innovative delivery systems and a suite of comprehensive services to help them succeed. While we offer a wide variety of services and products, our primary products are dispensing pumps, closures, aerosol valves, elastomeric primary packaging components, active material science solutions and digital health solutions. Dispensing pumps are finger-actuated dispensing systems that dispense a spray or lotion from non-pressurized containers. The style of pump used depends largely on the nature of the product being dispensed, from small, fine mist pumps used with pharmaceutical products and perfume to lotion pumps for more viscous formulas. Closures are primarily dispensing closures but to a lesser degree can include non-dispensing closures. Dispensing closures are plastic caps that allow a product to be dispensed without removing the cap. Aerosol valves dispense product from pressurized containers. The majority of the aerosol valves that we sell are metered dose valves, with the balance being bag-on valve and continuous spray valves. We also manufacture and sell elastomeric primary packaging components. These components are used in the injectables market. Products include stoppers for infusion, antibiotic, lyophilization and diagnostic vials. Our elastomeric components also include pre-filled syringe components, such as plungers, needle shields, tip caps and cartridges. We provide active material science solutions using our platform technology to maintain container closure integrity, extend shelf-life, control moisture and protect drug products from overall environmental exposures and degradations. The digital health solutions aim to improve patients' treatment experience and outcomes. We leverage connected devices, diagnostic and digital therapeutics tools that support patients to manage their disease as well as enabling care teams to remotely monitor the health of the patients when needed. Available as standalone or as a fully integrated offering in our existing range of drug delivery solutions, we have digital health solutions covering a wide range of therapeutic areas including, but not limited to, pulmonary, oncology, diabetes, immunology, and neurology. During 2023 and 2022, we acquired several companies to strengthen and broaden our portfolio, including the following

business combinations: – March 2023 - We acquired 100% of the outstanding capital stock of iD SCENT, which offers more sustainable sampling solutions for perfume and cosmetics. – March 2023 - We acquired 80% of the equity interests in Gulf Closures W.L.L. ("Gulf Closures"). The acquisition of Gulf Closures allows us to transfer some production to the Middle East and free up capacity in Germany while helping us to establish a foothold in emerging markets. – August 2022 - We acquired 100% of the outstanding capital stock of Metaphase Design Group Inc. Metaphase provides us with human factor expertise primarily in pharma but this can also be leveraged in beauty and closures. We seek to enhance our position as a leading global provider in drug and consumer dosing, dispensing and protection technologies to deliver increased value to our customers and stockholders through strategic focus, as facilitated by our core values.

[Fixed row]

(1.4) State the end date of the year for which you are reporting data. For emissions data, indicate whether you will be providing emissions data for past reporting years.

End date of reporting year	Alignment of this reporting period with your financial reporting period	Indicate if you are providing emissions data for past reporting years
12/31/2023	Select from: ✓ Yes	Select from: ✓ No

[Fixed row]

(1.5) Provide details on your reporting boundary.

Is your reporting boundary for your CDP disclosure the same as that used in your financial statements?
Select from: ✓ Yes

[Fixed row]

(1.6) Does your organization have an ISIN code or another unique identifier (e.g., Ticker, CUSIP, etc.)?

ISIN code - bond

(1.6.1) Does your organization use this unique identifier?	
--	--

Select from:

✓ No

ISIN code - equity

(1.6.1) Does your organization use this unique identifier?

Select from:

✓ No

CUSIP number

(1.6.1) Does your organization use this unique identifier?

Select from:

✓ Yes

(1.6.2) Provide your unique identifier

US0383361039

Ticker symbol

(1.6.1) Does your organization use this unique identifier?

Select from:

✓ No

SEDOL code

(1.6.1) Does your organization use this unique identifier?
Select from:
☑ No
LEI number
(1.6.1) Does your organization use this unique identifier?
Select from:
☑ No
D-U-N-S number
(1.6.1) Does your organization use this unique identifier?
Select from:
✓ No
Other unique identifier
(1.6.1) Does your organization use this unique identifier?
Select from:
☑ No
[Add row]
(1.8) Are you able to provide geolocation data for your facilities?

Are you able to provide geolocation data for your facilities?	Comment
Select from: ✓ Yes, for all facilities	Data based on Google Maps system

[Fixed row]

(1.8.1) Please provide all available geolocation data for your facilities.

Row 1

(1.8.1.1) Identifier

Bahrain

(1.8.1.2) Latitude

26.174

(1.8.1.3) Longitude

50.599

(1.8.1.4) Comment

Data based on Google Maps system

Row 2

(1.8.1.1) Identifier

Guangzhou

23.393

(1.8.1.3) Longitude

113.494

(1.8.1.4) Comment

Data based on Google Maps system

Row 3

(1.8.1.1) Identifier

CSP Atlanta

(1.8.1.2) Latitude

30.125

(1.8.1.3) Longitude

-87.256

(1.8.1.4) Comment

Data based on Google Maps system

Row 4

(1.8.1.1) Identifier

Gateway Analytical

40.617

(1.8.1.3) Longitude

-79.947

(1.8.1.4) Comment

Data based on Google Maps system

Row 5

(1.8.1.1) Identifier

Mumbai

(1.8.1.2) Latitude

19.114

(1.8.1.3) Longitude

73.009

(1.8.1.4) Comment

Data based on Google Maps system

Row 6

(1.8.1.1) Identifier

Midland

43.618

(1.8.1.3) Longitude

-84.184

(1.8.1.4) Comment

Data based on Google Maps system

Row 7

(1.8.1.1) Identifier

Maringa

(1.8.1.2) Latitude

-23.451

(1.8.1.3) Longitude

-51.991

(1.8.1.4) Comment

Data based on Google Maps system

Row 8

(1.8.1.1) Identifier

Louviciennes

48.863

(1.8.1.3) Longitude

2.124

(1.8.1.4) Comment

Data based on Google Maps system

Row 9

(1.8.1.1) Identifier

Fusion Dallas

(1.8.1.2) Latitude

32.822

(1.8.1.3) Longitude

-96.834

(1.8.1.4) Comment

Data based on Google Maps system

Row 10

(1.8.1.1) Identifier

Fusion Los Angeles

32.822

(1.8.1.3) Longitude

-96.834

(1.8.1.4) Comment

Data based on Google Maps system

Row 11

(1.8.1.1) Identifier

Cajamar

(1.8.1.2) Latitude

-23.346

(1.8.1.3) Longitude

-46.854

(1.8.1.4) Comment

Data based on Google Maps system

Row 12

(1.8.1.1) Identifier

Chieti

42.304

(1.8.1.3) Longitude

14.052

(1.8.1.4) Comment

Data based on Google Maps system

Row 13

(1.8.1.1) Identifier

Eigeltingen

(1.8.1.2) Latitude

47.854

(1.8.1.3) Longitude

8.902

(1.8.1.4) Comment

Data based on Google Maps system

Row 14

(1.8.1.1) Identifier

Fusion Paramus

32.822

(1.8.1.3) Longitude

-96.834

(1.8.1.4) Comment

Data based on Google Maps system

Row 15

(1.8.1.1) Identifier

Philson

(1.8.1.2) Latitude

41.59

(1.8.1.3) Longitude

-73.1

(1.8.1.4) Comment

Data based on Google Maps system

Row 16

(1.8.1.1) Identifier

Eatontown

40.272

(1.8.1.3) Longitude

-74.07

(1.8.1.4) Comment

Data based on Google Maps system

Row 17

(1.8.1.1) Identifier

Chonburi

(1.8.1.2) Latitude

13.443

(1.8.1.3) Longitude

101.019

(1.8.1.4) Comment

Data based on Google Maps system

Row 18

(1.8.1.1) Identifier

Mezzovico

46.094

(1.8.1.3) Longitude

8.924

(1.8.1.4) Comment

Data based on Google Maps system

Row 19

(1.8.1.1) Identifier

Vladimir

(1.8.1.2) Latitude

56.097

(1.8.1.3) Longitude

40.353

(1.8.1.4) Comment

Data based on Google Maps system

Row 20

(1.8.1.1) Identifier

Cary Campus (North, South, McHenry)

42.226

(1.8.1.3) Longitude

-88.249

(1.8.1.4) Comment

Data based on Google Maps system

Row 21

(1.8.1.1) Identifier

Oyonnax

(1.8.1.2) Latitude

46.247

(1.8.1.3) Longitude

5.645

(1.8.1.4) Comment

Data based on Google Maps system

Row 22

(1.8.1.1) Identifier

Mukwonago

42.869

(1.8.1.3) Longitude

-88.32

(1.8.1.4) Comment

Data based on Google Maps system

Row 23

(1.8.1.1) Identifier

Ckyne

(1.8.1.2) Latitude

49.113

(1.8.1.3) Longitude

13.837

(1.8.1.4) Comment

Data based on Google Maps system

Row 24

(1.8.1.1) Identifier

Menden

51.451

(1.8.1.3) Longitude

7.786

(1.8.1.4) Comment

Data based on Google Maps system

Row 25

(1.8.1.1) Identifier

Crystal Lake 265

(1.8.1.2) Latitude

42.234

(1.8.1.3) Longitude

-88.3

(1.8.1.4) Comment

Data based on Google Maps system

Row 26

(1.8.1.1) Identifier

Jundiai

-23.221

(1.8.1.3) Longitude

-46.877

(1.8.1.4) Comment

Data based on Google Maps system

Row 27

(1.8.1.1) Identifier

Verneuil

(1.8.1.2) Latitude

48.746

(1.8.1.3) Longitude

0.927

(1.8.1.4) Comment

Data based on Google Maps system

Row 28

(1.8.1.1) Identifier

Suzhou

42.046

(1.8.1.3) Longitude

2.275

(1.8.1.4) Comment

Data based on Google Maps system

Row 29

(1.8.1.1) Identifier

Barcelona

(1.8.1.2) Latitude

41.475

(1.8.1.3) Longitude

2.095

(1.8.1.4) Comment

Data based on Google Maps system

Row 30

(1.8.1.1) Identifier

CSP Tech Niederbronn

48.929916

(1.8.1.3) Longitude

7.646492

(1.8.1.4) Comment

Data based on Google Maps system

Row 31

(1.8.1.1) Identifier

Camacari

(1.8.1.2) Latitude

-12.733

(1.8.1.3) Longitude

-38.311

(1.8.1.4) Comment

Data based on Google Maps system

Row 32

(1.8.1.1) Identifier

Elgin Distribution Center

42.234

(1.8.1.3) Longitude

-88.3

(1.8.1.4) Comment

Data based on Google Maps system

Row 33

(1.8.1.1) Identifier

Queretaro

(1.8.1.2) Latitude

20.564

(1.8.1.3) Longitude

-100.259

(1.8.1.4) Comment

Data based on Google Maps system

Row 34

(1.8.1.1) Identifier

Granville

48.838

(1.8.1.3) Longitude

-1.562

(1.8.1.4) Comment

Data based on Google Maps system

Row 35

(1.8.1.1) Identifier

Brecey

(1.8.1.2) Latitude

48.727

(1.8.1.3) Longitude

-1.163

(1.8.1.4) Comment

Data based on Google Maps system

Row 36

(1.8.1.1) Identifier

Freyung

48.822

(1.8.1.3) Longitude

13.57

(1.8.1.4) Comment

Data based on Google Maps system

Row 37

(1.8.1.1) Identifier

Hyderabad

(1.8.1.2) Latitude

17.623

(1.8.1.3) Longitude

78.511

(1.8.1.4) Comment

Data based on Google Maps system

Row 38

(1.8.1.1) Identifier

Chavanod/Reboul

45.893

(1.8.1.3) Longitude

6.077

(1.8.1.4) Comment

Data based on Google Maps system

Row 39

(1.8.1.1) Identifier

Villingen

(1.8.1.2) Latitude

48.083

(1.8.1.3) Longitude

8.505

(1.8.1.4) Comment

Data based on Google Maps system

Row 40

(1.8.1.1) Identifier

Pescara

42.304

(1.8.1.3) Longitude

14.052

(1.8.1.4) Comment

Data based on Google Maps system

Row 41

(1.8.1.1) Identifier

Congers

(1.8.1.2) Latitude

41.165

(1.8.1.3) Longitude

-73.936

(1.8.1.4) Comment

Data based on Google Maps system

Row 42

(1.8.1.1) Identifier

Radolfzell

47.75

(1.8.1.3) Longitude

8.944

(1.8.1.4) Comment

Data based on Google Maps system

Row 43

(1.8.1.1) Identifier

Villepinte

(1.8.1.2) Latitude

48.968

(1.8.1.3) Longitude

2.51

(1.8.1.4) Comment

Data based on Google Maps system

Row 44

(1.8.1.1) Identifier

Charleval

49.374

(1.8.1.3) Longitude

1.371

(1.8.1.4) Comment

Data based on Google Maps system

Row 45

(1.8.1.1) Identifier

Le Neubourg

(1.8.1.2) Latitude

49.158

(1.8.1.3) Longitude

0.907

(1.8.1.4) Comment

Data based on Google Maps system

Row 46

(1.8.1.1) Identifier

Milano

47.256

(1.8.1.3) Longitude

1.266

(1.8.1.4) Comment

Data based on Google Maps system

Row 47

(1.8.1.1) Identifier

Poincy

(1.8.1.2) Latitude

48.967

(1.8.1.3) Longitude

2.921

(1.8.1.4) Comment

Data based on Google Maps system

Row 48

(1.8.1.1) Identifier

Lincolnton

35.546

(1.8.1.3) Longitude

-81.219

(1.8.1.4) Comment

Data based on Google Maps system

Row 49

(1.8.1.1) Identifier

Torello

(1.8.1.2) Latitude

42.046

(1.8.1.3) Longitude

2.275

(1.8.1.4) Comment

Data based on Google Maps system

Row 50

(1.8.1.1) Identifier

Dortmund

51.529

(1.8.1.3) Longitude

7.628

(1.8.1.4) Comment

Data based on Google Maps system

Row 51

(1.8.1.1) Identifier

Berazategui

(1.8.1.2) Latitude

-34.811

(1.8.1.3) Longitude

-58.242

(1.8.1.4) Comment

Data based on Google Maps system

Row 52

(1.8.1.1) Identifier

Cali

3.562

(1.8.1.3) Longitude

-76.45

(1.8.1.4) Comment

Data based on Google Maps system

Row 53

(1.8.1.1) Identifier

Le Vaudreuil

(1.8.1.2) Latitude

49.26

(1.8.1.3) Longitude

1.198

(1.8.1.4) Comment

Data based on Google Maps system

Row 54

(1.8.1.1) Identifier

CSP Techn Auburn

32.558021

(1.8.1.3) Longitude

-85.521392

(1.8.1.4) Comment

Data based on Google Maps system

Row 55

(1.8.1.1) Identifier

Leeds

(1.8.1.2) Latitude

53.745

(1.8.1.3) Longitude

-1.598

(1.8.1.4) Comment

Data based on Google Maps system

Row 56

(1.8.1.1) Identifier

Annecy

45.886

(1.8.1.3) Longitude

6.112

(1.8.1.4) Comment

Data based on Google Maps system [Add row]

(1.24) Has your organization mapped its value chain?

(1.24.1) Value chain mapped

Select from:

✓ Yes, we have mapped or are currently in the process of mapping our value chain

(1.24.2) Value chain stages covered in mapping

Select all that apply

✓ Upstream value chain

(1.24.3) Highest supplier tier mapped

Select from:

✓ Tier 1 suppliers

(1.24.4) Highest supplier tier known but not mapped

Select from:

✓ Tier 2 suppliers

(1.24.7) Description of mapping process and coverage

The scope of the plastic mapping is based on the upstream value chain that are producing plastic resin, our suppliers that are producing plastic sub-assembly and our operations that are molding thermopolymers for the finished products. Aptar product is made 80% of different plastic polymers fossil fuel based (please note that we are using also recycled content and bioplastic). Our mapping is based on the New Plastic Economy Global Commitment defined by Ellen MacArthur Foundation regarding the recyclability in practice and at scale and recycled content ratio.

[Fixed row]

(1.24.1) Have you mapped where in your direct operations or elsewhere in your value chain plastics are produced, commercialized, used, and/or disposed of?

(1.24.1.1) Plastics mapping

Select from:

☑ Yes, we have mapped or are currently in the process of mapping plastics in our value chain

(1.24.1.2) Value chain stages covered in mapping

Select all that apply

- ✓ Upstream value chain
- ✓ Downstream value chain
- ☑ End-of-life management

(1.24.1.4) End-of-life management pathways mapped

Select all that apply

- ✓ Preparation for reuse
- Recycling
- ✓ Waste to Energy
- ✓ Incineration
- Landfill

[Fixed row]

- C2. Identification, assessment, and management of dependencies, impacts, risks, and opportunities
- (2.1) How does your organization define short-, medium-, and long-term time horizons in relation to the identification, assessment, and management of your environmental dependencies, impacts, risks, and opportunities?

Short-term

(2.1.1) From (years)

1

(2.1.3) To (years)

5

(2.1.4) How this time horizon is linked to strategic and/or financial planning

Aptar defined short-term time horizon until 5 years for operational and financial planning that can have limited impact on the environmental sustainability topics (such as climate, water and nature).

Medium-term

(2.1.1) From (years)

6

(2.1.3) To (years)

10

(2.1.4) How this time horizon is linked to strategic and/or financial planning

Aptar defined mid-term time horizon until 10 years for operational and financial planning that can have medium impact on the environmental sustainability topics (suc
as climate, water and nature).

Long-term

(2.1.1) From (years)

11

(2.1.2) Is your long-term time horizon open ended?

Select from:

✓ No

(2.1.3) To (years)

20

(2.1.4) How this time horizon is linked to strategic and/or financial planning

Aptar defined long-term time horizon until 20 years for operational and financial planning that can have a big and long impact on the environmental sustainability topics (such as climate, water and nature).

[Fixed row]

(2.2) Does your organization have a process for identifying, assessing, and managing environmental dependencies and/or impacts?

Process in place	Dependencies and/or impacts evaluated in this process
Select from:	Select from:

Process in place	Dependencies and/or impacts evaluated in this process
✓ Yes	☑ Both dependencies and impacts

[Fixed row]

(2.2.1) Does your organization have a process for identifying, assessing, and managing environmental risks and/or opportunities?

Process in place	Risks and/or opportunities evaluated in this process	Is this process informed by the dependencies and/or impacts process?
Select from: ✓ Yes	Select from: ✓ Both risks and opportunities	Select from: ✓ Yes

[Fixed row]

(2.2.2) Provide details of your organization's process for identifying, assessing, and managing environmental dependencies, impacts, risks, and/or opportunities.

Row 1

(2.2.2.1) Environmental issue

Select all that apply

✓ Water

(2.2.2.2) Indicate which of dependencies, impacts, risks, and opportunities are covered by the process for this environmental issue

Select all that apply

- Dependencies
- Impacts
- ✓ Risks
- Opportunities

(2.2.2.3) Value chain stages covered

Select all that apply

- ✓ Direct operations
- ✓ Upstream value chain
- ✓ Downstream value chain

(2.2.2.4) Coverage

Select from:

✓ Full

(2.2.2.5) Supplier tiers covered

Select all that apply

✓ Tier 1 suppliers

(2.2.2.7) Type of assessment

Select from:

✓ Qualitative and quantitative

(2.2.2.8) Frequency of assessment

Select from:

Annually

(2.2.2.9) Time horizons covered

Select all that apply

- ✓ Short-term
- ✓ Medium-term
- ✓ Long-term

(2.2.2.10) Integration of risk management process

Select from:

✓ Integrated into multi-disciplinary organization-wide risk management process

(2.2.2.11) Location-specificity used

Select all that apply

✓ Site-specific

(2.2.2.12) Tools and methods used

Commercially/publicly available tools

- ☑ LEAP (Locate, Evaluate, Assess and Prepare) approach, TNFD
- ✓ TNFD Taskforce on Nature-related Financial Disclosures
- ✓ WWF Water Risk Filter

Other

✓ Scenario analysis

(2.2.2.13) Risk types and criteria considered

Acute physical

✓ Drought

Chronic physical

- ✓ Water availability at a basin/catchment level
- ✓ Water stress
- ☑ Water quality at a basin/catchment level

Policy

- ☑ Changes to national legislation
- ✓ Increased difficulty in obtaining operations permits

Market

☑ Changing customer behavior

Reputation

✓ Negative press coverage related to support of projects or activities with negative impacts on the environment (e.g. GHG emissions, deforestation & conversion, water stress)

Technology

✓ Data access/availability or monitoring systems

Liability

✓ Non-compliance with regulations

(2.2.2.14) Partners and stakeholders considered

Select all that apply

✓ NGOs

✓ Regulators

Customers

✓ Local communities

☑ Employees

✓ Water utilities at a local level

- ✓ Investors
- Suppliers

(2.2.2.15) Has this process changed since the previous reporting year?

Select from:

Yes

(2.2.2.16) Further details of process

Aptar identifies and assesses water-related risks and opportunities at a company and upstream level considering the main risk and opportunity drivers that could affect our business, markets and customer's expectations. Internally we classified water related risks into the three internal categories as macroeconomic, strategic and operational. Regarding the identification and assessment of risks and opportunities at company level, as part of the Aptar Production System, we measure and track each facility along a progression path, each facility is responsible to determine aspects and impacts of the business and then to prioritize these aspects and impacts, risks and opportunities, and dependencies. The process for the evaluation of risks is defined by the VP of Treasury and Risk Management. The potential size and scope of identified risks are based on the screening process considering the severity of the impact to cash flow and earnings and to strategic business objectives. We currently have integrated water related risks in our risk model to define when risks have strategic impact and they are evaluated more than once a year through active management plans. The organization's dependencies and impacts are the starting point of the risk assessment, for example assuming info from the main impacts of operations and main dependencies like water uses. In addition, the main data sources for the assessment are based on the internal primary data, but, where it is not possible, we can have support from databases scientific approved (for example Encore database). Once a water-related risk and opportunity is identified to have a substantive financial or strategic impact on Aptar's business, Aptar ensures to develop KPIs and a governance process in line with the respective time horizon(s) to address the risk/opportunity and drive initiatives to manage the respective risk/opportunities. These initiatives are specified depending on if the risk/opportunity occurs/affects upstream (supply chain engagement), direct operations (site-specific initiatives) or downstream (product/market/sales). The methodology used to assess the nature, likelihood and magnitude of the effects of dependencies, impacts, risks and opportunities, takes into consideration qualitative factors about the ability to meet strategic business objectives and stakeholders involvement, and quantitative thresholds based on the loss of profits in a range between 2-10 million (rating scale from 1 to 9). During the assessment, Aptar explored a variety of water-related scenarios consisting of transition scenarios focusing on policy and technology influencing pathways for GHG emissions. We applied WWF Water Risk Filter Tool and CDP recommendation to use this tool to identify water stressed areas. According to CDP, 'water stressed' areas are the basins where their risk score for "Water Scarcity" risk category is equal to/greater than 3 (the risk scores range from 1 to 5). The risk category "Water Scarcity" refers to the physical abundance or lack of freshwater resources. It is a comprehensive and robust metric as it integrates a total of 7 best available and peer-reviewed datasets covering different aspects of water scarcity as well as different modelling approaches: aridity index, water depletion, baseline water stress, blue water scarcity, available water remaining, drought frequency probability, and projected change in drought occurrence.

Row 2

(2.2.2.1) Environmental issue

Select all that apply

✓ Climate change

(2.2.2.2) Indicate which of dependencies, impacts, risks, and opportunities are covered by the process for this environmental issue

Select all that apply

- ✓ Dependencies
- ✓ Impacts
- Risks
- Opportunities

(2.2.2.3) Value chain stages covered

Select all that apply

- ✓ Direct operations
- ✓ Upstream value chain
- ✓ Downstream value chain

(2.2.2.4) Coverage

Select from:

✓ Full

(2.2.2.5) Supplier tiers covered

Select all that apply

✓ Tier 1 suppliers

(2.2.2.7) Type of assessment

Select from:

✓ Qualitative and quantitative

(2.2.2.8) Frequency of assessment

Select from:

Annually

(2.2.2.9) Time horizons covered

Select all that apply

- ✓ Short-term
- ✓ Medium-term
- ✓ Long-term

(2.2.2.10) Integration of risk management process

Select from:

✓ Integrated into multi-disciplinary organization-wide risk management process

(2.2.2.11) Location-specificity used

Select all that apply

- ✓ Site-specific
- ✓ Local
- ✓ Sub-national
- National

(2.2.2.12) Tools and methods used

Commercially/publicly available tools

✓ Other commercially/publicly available tools, please specify :TCFD

Enterprise Risk Management

☑ Enterprise Risk Management

International methodologies and standards

✓ Life Cycle Assessment

Other

- ✓ Materiality assessment
- ✓ Partner and stakeholder consultation/analysis
- ✓ Scenario analysis

(2.2.2.13) Risk types and criteria considered

Acute physical

- ✓ Storm (including blizzards, dust, and sandstorms)
- ✓ Tornado

Chronic physical

▼ Temperature variability

Policy

- ✓ Carbon pricing mechanisms
- ✓ Changes to national legislation

Market

- ✓ Availability and/or increased cost of certified sustainable material
- ☑ Availability and/or increased cost of raw materials
- ☑ Changing customer behavior

Reputation

- ✓ Increased partner and stakeholder concern and partner and stakeholder negative feedback
- ✓ Negative press coverage related to support of projects or activities with negative impacts on the environment (e.g. GHG emissions, deforestation & conversion, water stress)

Technology

✓ Transition to lower emissions technology and products

Liability

- ✓ Exposure to litigation
- ✓ Non-compliance with regulations

(2.2.2.14) Partners and stakeholders considered

√	Customers	
----------	-----------	--

✓ Local communities

- Employees
- Investors
- Suppliers
- Regulators

(2.2.2.15) Has this process changed since the previous reporting year?

Select from:

✓ No

(2.2.2.16) Further details of process

Aptar identifies and assesses climate-related risks and opportunities at a company level considering the main risk and opportunity drivers that could affect our business, markets and customer's expectations. Internally we classified climate related risks into the three internal categories as macroeconomic, strategic and operational. Regarding the identification and assessment of risks and opportunities at company level, as part of the Aptar Production System, we measure and track each facility along a progression path, each facility is responsible to determine aspects and impacts of the business and then to prioritize these aspects and impacts, risks and opportunities, and dependencies. The process for the evaluation of risks is defined by the VP of Treasury and Risk Management. The potential size and scope of identified risks are based on the screening process considering the severity of the impact to cash flow and earnings and to strategic business objectives. We currently have integrated climate related risks in our risk model to define when risks have strategic impact and they are evaluated more than once a year through active management plans. The organization's dependencies and impacts are the starting point of the risk assessment, for example assuming info from the main impacts of operations and main dependencies like energy and raw materials uses. In addition, the main data sources for the assessment are based on the internal primary data, but, where it is not possible, we can have support from databases scientific approved. Once a climate-related risk and opportunity is identified to have a substantive financial or strategic impact on Aptar's business. Aptar ensures to develop KPIs and a governance process in line with the respective time horizon(s) to address the risk/opportunity and drive initiatives to manage the respective risk/opportunities. These initiatives are specified depending on if the risk/opportunity occurs/affects upstream (supply chain engagement), direct operations (site-specific initiatives) or downstream (product/market/sales). The methodology used to assess the nature, likelihood and magnitude of the effects of dependencies, impacts, risks and opportunities, takes into consideration qualitative factors about the ability to meet strategic business objectives and stakeholders involvement, and quantitative thresholds based on the loss of profits in a range between 2-10 million (rating scale from 1 to 9). During the assessment, Aptar explored a variety of climate-related scenarios consisting of transition scenarios focusing on policy and technology influencing pathways for GHG emissions. APTAR used the new IEA WEO NZE2050 scenario as an ambitious scenario in line with the Paris Agreement and in line with APTAR 's ambition to update and align their Science-based Target to 1.5C. The value chain involved into the risk assessment is focused on the upstream and core processes where Aptar can have influence about the reduction of risks and increase of opportunities thanks to the reassessment process that every year our internal team complete. In addition, we have completed a re-assessment of related risks (e.g. TCFD climate-related transition risks) and the results are based on the latest assessment.

Row 3

(2.2.2.1) Environmental issue

Select all that apply

✓ Plastics

(2.2.2.2) Indicate which of dependencies, impacts, risks, and opportunities are covered by the process for this environmental issue

Select all that apply

- ✓ Dependencies
- ✓ Impacts
- ✓ Risks

(2.2.2.3) Value chain stages covered

Select all that apply

- ✓ Direct operations
- ✓ Upstream value chain
- ✓ Downstream value chain

(2.2.2.4) Coverage

Select from:

✓ Full

(2.2.2.5) Supplier tiers covered

Select all that apply

☑ Tier 1 suppliers

(2.2.2.7) Type of assessment

Select from:

✓ Qualitative and quantitative

(2.2.2.8) Frequency of assessment

Select from:

Annually

(2.2.2.9) Time horizons covered

Select all that apply

- ✓ Short-term
- ✓ Medium-term

(2.2.2.10) Integration of risk management process

Select from:

✓ Integrated into multi-disciplinary organization-wide risk management process

(2.2.2.11) Location-specificity used

Select all that apply

National

(2.2.2.12) Tools and methods used

Commercially/publicly available tools

✓ Ellen MacArthur Foundation Recyclability Assessment Tool

Other

✓ Scenario analysis

(2.2.2.13) Risk types and criteria considered

Acute physical

✓ Pollution incident

Chronic physical

✓ Leaching of hazardous substances from plastics

Policy

☑ Changes to national legislation

Market

☑ Changing customer behavior

Reputation

✓ Impact on human health

Technology

- ✓ Transition to reusable products
- ✓ Transition to recyclable plastic products
- ✓ Transition to increasing recycled content

Liability

- ☑ Exposure to litigation
- ✓ Non-compliance with regulations

(2.2.2.14) Partners and stakeholders considered

Select all that apply

- Customers
- ✓ Regulators

(2.2.2.15) Has this process changed since the previous reporting year?

Select from:

✓ No

(2.2.2.16) Further details of process

Aptar identifies and assesses plastic recyclability-related risks and opportunity at a company level considering the main risk and opportunity drivers that could affect our business, markets and customer's expectations. Internally we classified the recyclability of plastics products portfolio in compliance with the Ellen MacArthur Foundation methodology. Regarding the identification and assessment of plastic recyclability risks and opportunities at company level, as part of the Product Sustainability Team task, we measure and track each plastic material use along a recyclability path, considering end of life scenarios and technology compatibility about the recyclability in practice and at scale. The process for the evaluation of plastic recyclability risks is defined by the Product Sustainability Team and Risk Management. The potential size and scope of identified risks are based on the screening process considering the severity of the impact to cash flow and earnings and to strategic business objectives assuming regulatory scenarios on which Aptar can be subject to tax (for example EPR scheme). We currently have integrated plastic recyclability-related risks in our risk model to define when risks have strategic impact and they are evaluated more than once a year through active management plans. The organization's dependencies and impacts are the starting point of the risk assessment, for example assuming info from the main impacts of non-recyclable plastic products and main dependencies like conventional materials uses. In addition, the main data sources for the assessment are based on the internal primary data, but, where it is not possible, we can have support from scientific databases approved. Once a plastic recyclability-related risk and opportunity is identified to have a substantive financial or strategic impact on Aptar's business, Aptar ensures to develop KPIs and a governance process in line with the respective time horizon(s) to address the risk/opportunity and drive initiatives to manage the respective risk/opportunities. These initiatives are specified depending on if the risk/opportunity occurs/affects upstream (supply chain engagement), direct operations (site-specific initiatives) or downstream end of life (product/market/sales). The methodology used to assess the plastic recyclability, likelihood and magnitude of the effects of dependencies, impacts, risks and opportunities, takes into consideration qualitative factors about the ability to meet strategic business objectives and stakeholders involvement, and quantitative thresholds based on the loss of profits due to regulatory tax in a range between 2-10 million (rating scale from 1 to 9). During the assessment, Aptar explored a variety of nature-related scenarios consisting of transition scenarios focusing on policy and technology influencing pathways for the GHG emissions related to plastic recyclability. APTAR used the latest IEA WEO NZE2050 scenario as an ambitious scenario in line with the Paris Agreement and in line with APTAR 's ambition to update and align their Sciencebased Target to 1.5C. The value chain involved into the risk assessment is focused on the upstream and core processes where Aptar can have influence about the reduction of risks and increase of opportunities. In addition, we have completed a re-assessment of related risks (e.g. TCFD climate-related transition risks) and the results are based on the latest assessment.

Row 4

(2.2.2.1) Environmental issue

Select all that apply

☑ Biodiversity

(2.2.2.2) Indicate which of dependencies, impacts, risks, and opportunities are covered by the process for this environmental issue

- ✓ Dependencies
- ✓ Impacts
- ✓ Risks

Opportunities

(2.2.2.3) Value chain stages covered

Select all that apply

- ✓ Direct operations
- ✓ Upstream value chain
- ✓ Downstream value chain

(2.2.2.4) Coverage

Select from:

✓ Full

(2.2.2.5) Supplier tiers covered

Select all that apply

☑ Tier 1 suppliers

(2.2.2.7) Type of assessment

Select from:

✓ Qualitative and quantitative

(2.2.2.8) Frequency of assessment

Select from:

Annually

(2.2.2.9) Time horizons covered

- ✓ Short-term
- ✓ Medium-term

✓ Long-term

(2.2.2.10) Integration of risk management process

Select from:

✓ Integrated into multi-disciplinary organization-wide risk management process

(2.2.2.11) Location-specificity used

Select all that apply

☑ Site-specific

(2.2.2.12) Tools and methods used

Commercially/publicly available tools

- Encore tool
- ☑ LEAP (Locate, Evaluate, Assess and Prepare) approach, TNFD
- ✓ TNFD Taskforce on Nature-related Financial Disclosures
- ✓ WWF Biodiversity Risk Filter

Other

✓ Scenario analysis

(2.2.2.13) Risk types and criteria considered

Acute physical

- ☑ Cyclones, hurricanes, typhoons
- ✓ Flood (coastal, fluvial, pluvial, ground water)

Chronic physical

- ✓ Increased severity of extreme weather events
- ✓ Water availability at a basin/catchment level

Policy

☑ Changes to national legislation

Market

- ✓ Availability and/or increased cost of raw materials
- ☑ Changing customer behavior

Reputation

✓ Negative press coverage related to support of projects or activities with negative impacts on the environment (e.g. GHG emissions, deforestation & conversion, water stress)

Technology

✓ Unsuccessful investment in new technologies

Liability

✓ Non-compliance with regulations

(2.2.2.14) Partners and stakeholders considered

Select all that apply

- Customers
- Regulators
- Suppliers

(2.2.2.15) Has this process changed since the previous reporting year?

Select from:

✓ No

(2.2.2.16) Further details of process

Aptar identifies and assesses nature-related risks and opportunities at a company level considering the main risk and opportunity drivers that could affect our business, markets and customer's expectations. Internally we classified nature-related risks into the three internal categories as macroeconomic, strategic and operational. Regarding the identification and assessment of risks and opportunities at company level, as part of the Aptar Production System, we measure and track

each facility along a progression path, each facility is responsible to determine aspects and impacts of the business and then to prioritize these aspects and impacts, risks and opportunities, and dependencies. The process for the evaluation of risks is defined by the VP of Treasury and Risk Management. The potential size and scope of identified risks are based on the screening process considering the severity of the impact to cash flow and earnings and to strategic business objectives. We currently have integrated nature-related risks in our risk model to define when risks have strategic impact and they are evaluated more than once a year through active management plans. The organization's dependencies and impacts are the starting point of the risk assessment, for example assuming info from the main impacts of operations and main dependencies like energy and raw materials uses. In addition, the main data sources for the assessment are based on the internal primary data, but, where it is not possible, we can have support from scientific databases approved. Once a nature-related risk and opportunity is identified to have a substantive financial or strategic impact on Aptar's business, Aptar ensures to develop KPIs and a governance process in line with the respective time horizon(s) to address the risk/opportunity and drive initiatives to manage the respective risk/opportunities. These initiatives are specified depending on if the risk/opportunity occurs/affects upstream (supply chain engagement), direct operations (site-specific initiatives) or downstream (product/market/sales). The methodology used to assess the nature, likelihood and magnitude of the effects of dependencies, impacts, risks and opportunities, takes into consideration qualitative factors about the ability to meet strategic business objectives and stakeholders involvement, and quantitative thresholds based on the loss of profits in a range between 2-10 million (rating scale from 1 to 9). During the assessment, Aptar explored a variety of nature-related scenarios consisting of transition scenarios focusing on policy and technology influencing pathways for GHG emissions. APTAR used the new IEA WEO NZE2050 scenario as an ambitious scenario in line with the Paris Agreement and in line with APTAR 's ambition to update and align their Science-based Target to 1.5C. The value chain involved into the risk assessment is focused on the upstream and core processes where Aptar can have influence about the reduction of risks and increase of opportunities. In addition, we have completed a reassessment of related risks (e.g. TNFD climate-related transition risks) and the results are based on the latest assessment. [Add row]

(2.2.7) Are the interconnections between environmental dependencies, impacts, risks and/or opportunities assessed?

(2.2.7.1) Interconnections between environmental dependencies, impacts, risks and/or opportunities assessed

Select from:

Yes

(2.2.7.2) Description of how interconnections are assessed

Aptar assesses different dependencies, impacts, risks and opportunities from climate, water, plastic and nature point of view using TCFD and TNFD methods, and Double-Materiality Assessment, that are all integrated internally into our enterprise risk management system. For example, when we consider the evaluation of climate change risks, we take into consideration also the indirect effect of this risk to the biodiversity and nature, and vice versa, so, the interconnections are evaluated from different points of view. We also involve various functional leaders including purchasing, risk, strategy, operations and finance in our assessments. [Fixed row]

(2.3) Have you identified priority locations across your value chain?

(2.3.1) Identification of priority locations

Select from:

✓ Yes, we have identified priority locations

(2.3.2) Value chain stages where priority locations have been identified

Select all that apply

✓ Direct operations

(2.3.3) Types of priority locations identified

Sensitive locations

✓ Areas of limited water availability, flooding, and/or poor quality of water

Locations with substantive dependencies, impacts, risks, and/or opportunities

✓ Locations with substantive dependencies, impacts, risks, and/or opportunities relating to water

(2.3.4) Description of process to identify priority locations

We applied WWF Water Risk Filter Tool and CDP recommendation to use this tool to identify water stressed areas. According to CDP, 'water stressed' areas are the basins where their risk score for "Water Scarcity" risk category is equal to/greater than 3 (the risk scores range from 1 to 5). The risk category "Water Scarcity" refers to the physical abundance or lack of freshwater resources. It is a comprehensive and robust metric as it integrates a total of seven best available and peer-reviewed datasets covering different aspects of water scarcity as well as different modelling approaches: aridity index, water depletion, baseline water stress, blue water scarcity, available water remaining, drought frequency probability, and projected change in drought occurrence.

(2.3.5) Will you be disclosing a list/spatial map of priority locations?

Select from:

☑ No, we have a list/geospatial map of priority locations, but we will not be disclosing it [Fixed row]

(2.4) How does your organization define substantive effects on your organization?

Risks

(2.4.1) Type of definition

Select all that apply

Qualitative

Quantitative

(2.4.2) Indicator used to define substantive effect

Select from:

Revenue

(2.4.3) Change to indicator

Select from:

✓ Absolute decrease

(2.4.5) Absolute increase/ decrease figure

10000000

(2.4.6) Metrics considered in definition

Select all that apply

✓ Other, please specify :revenue

(2.4.7) Application of definition

Aptar identifies the risk as substantive financial or strategic impact when it is related to the loss of profits and the proportion of business units affected potential decrease of market share in case of we are not able to meet the customers'/market requests or regulations and when the risk can directly impact Aptar's ability to meet strategic business objectives. Aptar defines a substantive financial or strategic impact with the internal terminology High Level of Severity which describes that the potential impact on cash flow and earnings is material and will directly impact Aptar's ability to meet strategic business objectives. A high level of severity means for Aptar that at least one of our three market segments Beauty, Closures and Pharma is affected. Furthermore high level of severity is quantified with a financial impact effect on revenue of 10 million or more but our internal risk management system identified also different scale of magnitude that are worthy of attention during

the screening process. In terms of frequency of effect occurring, our enterprise risk management system defined medium-high level of probability when event occur at least every 5-10 years' time horizon (probability likely - very likely, and short-medium term). Our TCFD and TNFD assessments align to and are integrated into our overall Enterprise Risk Management process. The process for the identification and definition of metrics and thresholds is reviewed at least every three years or when we have important changes to the business.

Opportunities

(2.4.1) Type of definition

Select all that apply

- Qualitative
- Quantitative

(2.4.2) Indicator used to define substantive effect

Select from:

✓ Revenue

(2.4.3) Change to indicator

Select from:

☑ Absolute increase

(2.4.5) Absolute increase/ decrease figure

1000000

(2.4.6) Metrics considered in definition

Select all that apply

✓ Other, please specify :revenue

(2.4.7) Application of definition

Aptar identifies the opportunity as substantive financial or strategic impact when it is related to the increase of profits and potential increase of market share when we can meet the customers' requests or regulations compliance and when the opportunity can directly impact Aptar's ability to meet strategic business objectives Aptar defines a substantive financial or strategic impact with the internal terminology High Level of Opportunity which describes that the potential impact on cash flow and earnings is material and will directly impact Aptar's ability to meet strategic customers business objectives. A high level of opportunity means for Aptar that our top customers in one of our three market segments Beauty, Closures and Pharma is affected Furthermore high level of opportunity is quantified with a financial impact effect on revenue from 1 million or more. In terms of frequency of occurrence, our enterprise risk management system defined medium-high level of probability when event occur at least every 5-10 years' time horizon (probability likely - very likely, and short-medium term). Our TCFD and TNFD assessments are aligned to and integrate with our overall Enterprise Risk Management process. The process for the identification and definition of metrics and thresholds is reviewed at least every three years or when we have important changes to the business. [Add row]

(2.5) Does your organization identify and classify potential water pollutants associated with its activities that could have a detrimental impact on water ecosystems or human health?

(2.5.1) Identification and classification of potential water pollutants

Select from:

✓ Yes, we identify and classify our potential water pollutants

(2.5.2) How potential water pollutants are identified and classified

Aptar generates water pollutants in discharged wastewater from direct processes related to the washing of molds, in the maintenance areas through the use of chemicals, in rainwater and industrial water from cooling towers and compressors. Each operation is monitoring pollutants in compliance with local regulatory standard and the classification is based on the local regulatory requirements. The frequency of monitoring is defined by operational permits, licenses and authorization for wastewater defined by regulatory framework and the sample methods are in alignment with national and international standard eg ISO 15705.2002 for the chemical oxygen request. The pollutants threshold is defined in each regulatory framework on which Aptar site is based. In addition, the internal EHS management system defined appropriate procedure for which each site needs to complete regulatory screening in compliance with local laws about the wastewater aspects, so, in terms of standard, ISO 14001 is voluntarily adopted and used for the mapping of water pollutants into the environmental analysis (about 40% of sites has ISO 14001 certified). In terms of pollutants identified, the screening starts with production processes mapping for the core processes, on which we identified the following main KPI pollutants such as chemical oxygen demand (COD), biological oxygen demand (BOD), and total suspended solids (TSS) [Fixed row]

(2.5.1) Describe how your organization minimizes the adverse impacts of potential water pollutants on water ecosystems or human health associated with your activities.

Row 1

(2.5.1.1) Water pollutant category

Select from:

✓ Inorganic pollutants

(2.5.1.2) Description of water pollutant and potential impacts

Wastewater discharged is produced by the molding cooling system and internal wastewater plant used for the washing molds activities. The water pollutant is based on the Total Suspended Solid (TSS). Total suspended solids (TSS for short) are particles larger than 2 microns that are found in water. Most suspended solids consist of inorganic materials, but bacteria and algae can also contribute to water quality. Water can contain sediment, silt and sand up to plankton and algae. Organic particles from decomposing materials can also contribute to SPT concentrations. When algae, plants and animals decompose, small organic particles are released in the decomposition process and enter the water column as suspended solids. The more solids in the water, the more cloudy the water. Some suspended matter may settle as sediment on the bottom of a body of water. This makes the water clear. High levels of suspended solids in drinking water or wastewater can have an impact on both the environment and human health: - Gastrointestinal problems or even death. - SPT can reduce the natural oxygen content dissolved in the water and increase the water temperature, making it impossible for small fish to survive. - SPT can also block sunlight, which affects plant survival. Please note that these pollutants are not candidate list of REACH regulation

(2.5.1.3) Value chain stage

Select all that apply

- ✓ Direct operations
- ✓ Upstream value chain

(2.5.1.4) Actions and procedures to minimize adverse impacts

- ☑ Reduction or phase out of hazardous substances
- ☑ Requirement for suppliers to comply with regulatory requirements
- ☑ Discharge treatment using sector-specific processes to ensure compliance with regulatory requirements
- ✓ Upgrading of process equipment/methods

✓ Procedure(s) under development/ R&D

(2.5.1.5) Please explain

Aptar operations implemented internal EHS procedures for the monitoring of water pollutants parameters in compliance with regulatory framework and regular wastewater analysis are planned with external laboratory. Dedicated maintenance activities are planned for the operations that are using wastewater treatment plant ensuring the proper functioning. In addition, thanks to the ISO 14001 internal audit, the local EHS team can measure and track the water pollutants parameters and report the status regularly, in compliance with local regulatory requirements. In terms of upstream value chain, our purchasing department, thanks to the vendors engagement on the water management, requires evidences about regulatory compliance with wastewater topic to local suppliers operations.

Row 2

(2.5.1.1) Water pollutant category

Select from:

☑ Other nutrients and oxygen demanding pollutants

(2.5.1.2) Description of water pollutant and potential impacts

Wastewater discharged is produced by the molding cooling system and internal wastewater plant used for the washing molds activities. The water pollutant is based on the Biochemical Oxigen Demand (BOD) and Chemical Oxigen Demand (COD), both estimates the total quantity of organic material non-biodegradable in a certain amount of wastewater. When the concentration of pollutants becomes too high and prevents water-air exchanges, the oxygen demand is excessive and the amount of this gas decreases until it disappears. There is a progressive destruction of aquatic fauna and flora, and self-purification is no longer possible. Aerobic bacteria are replaced by anaerobic bacteria, which do not need oxygen, but produce harmful substances such as methane, ammonia and hydrogen sulfide, which give water very unpleasant odors. Pollution can occur in surface water (streams, rivers, lakes, lagoons, the sea, etc.) or in groundwater (surface and deep aquifers). Please note that these pollutants are not candidate list of REACH regulation

(2.5.1.3) Value chain stage

Select all that apply

- Direct operations
- ✓ Upstream value chain

(2.5.1.4) Actions and procedures to minimize adverse impacts

- ☑ Reduction or phase out of hazardous substances
- ☑ Requirement for suppliers to comply with regulatory requirements
- ☑ Discharge treatment using sector-specific processes to ensure compliance with regulatory requirements
- ☑ Upgrading of process equipment/methods
- ✓ Procedure(s) under development/ R&D

(2.5.1.5) Please explain

Aptar operations implemented internal EHS procedures for the monitoring of water pollutants parameters in compliance with regulatory framework and regular wastewater analysis are planned with external laboratory. Dedicated maintenance activities are planned for the operations that are using wastewater treatment plant ensuring the proper functioning. In addition, thanks to the ISO 14001 internal audit, the local EHS team can measure and track the water pollutants parameters and report the status regularly, in compliance with local regulatory requirements. In terms of upstream value chain, our purchasing department, thanks to the vendors engagement on the water management, requires evidences about regulatory compliance with wastewater topic to local suppliers operations.

Row 3

(2.5.1.1) Water pollutant category

Select from:

✓ Inorganic pollutants

(2.5.1.2) Description of water pollutant and potential impacts

Wastewater discharged is produced by the molding cooling system and internal wastewater plant used for the washing molds activities. The water pollutant is based on the Total Suspended Solid (TSS). Total suspended solids (TSS for short) are particles larger than 2 microns that are found in water. Most suspended solids consist of inorganic materials, but bacteria and algae can also contribute to water quality. Water can contain sediment, silt and sand up to plankton and algae. Organic particles from decomposing materials can also contribute to SPT concentrations. When algae, plants and animals decompose, small organic particles are released in the decomposition process and enter the water column as suspended solids. The more solids in the water, the more cloudy the water. Some suspended matter may settle as sediment on the bottom of a body of water. This makes the water clear. High levels of suspended solids in drinking water or wastewater can have an impact on both the environment and human health:- Gastrointestinal problems or even death.- SPT can reduce the natural oxygen content dissolved in the water and increase the water temperature, making it impossible for small fish to survive.- SPT can also block sunlight, which affects plant survival. Please note that these pollutants are not candidate list of REACH regulation

(2.5.1.3) Value chain stage

- ✓ Direct operations
- ✓ Upstream value chain

(2.5.1.4) Actions and procedures to minimize adverse impacts

Select all that apply

- ☑ Reduction or phase out of hazardous substances
- ☑ Requirement for suppliers to comply with regulatory requirements
- ☑ Discharge treatment using sector-specific processes to ensure compliance with regulatory requirements
- ✓ Upgrading of process equipment/methods
- ✓ Procedure(s) under development/ R&D

(2.5.1.5) Please explain

Aptar operations implemented internal EHS procedures for the monitoring of water pollutants parameters in compliance with regulatory framework and regular wastewater analysis are planned with external laboratory. Dedicated maintenance activities are planned for the operations that are using wastewater treatment plant ensuring the proper functioning. In addition, thanks to the ISO 14001 internal audit, the local EHS team can measure and track the water pollutants parameters and report the status regularly, in compliance with local regulatory requirements. In terms of upstream value chain, our purchasing department, thanks to the vendors engagement on the water management, requires evidences about regulatory compliance with wastewater topic to local suppliers operations.

[Add row]

C3. Disclosure of risks and opportunities

(3.1) Have you identified any environmental risks which have had a substantive effect on your organization in the reporting year, or are anticipated to have a substantive effect on your organization in the future?

	Environmental risks identified
Climate change	Select from: ✓ Yes, both in direct operations and upstream/downstream value chain
Water	Select from: ✓ Yes, both in direct operations and upstream/downstream value chain
Plastics [Fixed row]	Select from: ✓ Yes, both in direct operations and upstream/downstream value chain

[Fixed row]

(3.1.1) Provide details of the environmental risks identified which have had a substantive effect on your organization in the reporting year, or are anticipated to have a substantive effect on your organization in the future.

Climate change

(3.1.1.1) Risk identifier

Select from:

Risk1

(3.1.1.3) Risk types and primary environmental risk driver

Policy

☑ Changes to national legislation

(3.1.1.4) Value chain stage where the risk occurs

Select from:

✓ Downstream value chain

(3.1.1.6) Country/area where the risk occurs

Select all that apply

✓ Italy

✓ Spain
✓ Belgium

✓ Greece
✓ Denmark

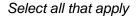
✓ Norway
✓ Germany

Hungary

Portugal

Netherlands

(3.1.1.9) Organization-specific description of risk


Government regulations may require Extended Producer Responsibility EPR to increase recycling rate (i.e. funding to cover net costs for collection, sorting and recycling of packaging products not recycled) at the end of life for packaging products. Although the regulation proposal is not entirely defined and clear at this time, it is possible Aptar will be considered a producer in this scenario in the future.

(3.1.1.11) Primary financial effect of the risk

Select from:

☑ Fines, penalties or enforcement orders

(3.1.1.12) Time horizon over which the risk is anticipated to have a substantive effect on the organization

- ✓ Short-term
- ✓ Medium-term
- ✓ Long-term

(3.1.1.13) Likelihood of the risk having an effect within the anticipated time horizon

Select from:

✓ Very unlikely

(3.1.1.14) Magnitude

Select from:

☑ High

(3.1.1.16) Anticipated effect of the risk on the financial position, financial performance and cash flows of the organization in the selected future time horizons

In 2023 Aptar calculated that 32% of total plastic packaging cannot be recycled (this is equal to 29,563 tons of product excluding Pharma products which are not currently in our recyclability disclosure). Recycling information is based on our 2023 disclosure to the New Plastic Economy Global Commitment report (Ellen MacArthur Foundation) and it is not considering any future acquisitions. Therefore, we estimate that the EPR scheme can impact Aptar with indirect cost of: 421 x 29,563 tons 12M

(3.1.1.17) Are you able to quantify the financial effect of the risk?

Select from:

✓ Yes

(3.1.1.19) Anticipated financial effect figure in the short-term – minimum (currency)

12000000

(3.1.1.20) Anticipated financial effect figure in the short-term – maximum (currency)

12000000

(3.1.1.21) Anticipated financial effect figure in the medium-term – minimum (currency)

12000000

(3.1.1.22) Anticipated financial effect figure in the medium-term – maximum (currency)

12000000

(3.1.1.23) Anticipated financial effect figure in the long-term – minimum (currency)

12000000

(3.1.1.24) Anticipated financial effect figure in the long-term – maximum (currency)

12000000

(3.1.1.25) Explanation of financial effect figure

In 2023 Aptar calculated that 32% of total plastic packaging cannot be recycled (this is equal to 29,563 tons of product excluding Pharma products which are not currently in our recyclability disclosure). Recycling information is based on our 2023 disclosure to the New Plastic Economy Global Commitment report (Ellen MacArthur Foundation) and it is not considering any future acquisitions. Therefore, we estimate that the EPR scheme can impact Aptar with indirect cost of 12M

(3.1.1.26) Primary response to risk

Infrastructure, technology and spending

☑ Take action to switch to plastic which is recyclable in practice and at scale

(3.1.1.27) Cost of response to risk

1000000

(3.1.1.28) Explanation of cost calculation

We are assuming a need for 0.6M - 1.0M to upgrade eco-design software and external recyclability analysis to support our products recyclability.

(3.1.1.29) Description of response

While we believe it is likely that there will be mandates on and regulations of existing products with EPR, the probability of this risk has been evaluated "unlikely" because where the customers are not willing to buy from us more sustainable options (not single use), we will pass through the cost of mandates and regulation of options they choose.

Water

(3.1.1.1) Risk identifier

Select from:

✓ Risk2

(3.1.1.3) Risk types and primary environmental risk driver

Acute physical

Drought

(3.1.1.4) Value chain stage where the risk occurs

Select from:

✓ Direct operations

(3.1.1.6) Country/area where the risk occurs

Select all that apply

China

✓ Bahrain

India

Thailand

- ✓ Italy
- ✓ Spain
- ✓ Mexico

(3.1.1.7) River basin where the risk occurs

Select all that apply

☑ Other, please specify: Mediterranean Sea, Arabian Peninsula, Zhu Jiang, Adriatic Sea, North Pacific, Yellow Sea, Gulf of Thailand

(3.1.1.9) Organization-specific description of risk

We have identified eight Aptar sites in different river basins that are impacted by water risks in our direct operations with the potential to have a substantive impact on our business. These sites manufacture products with plastics sourced from our suppliers and are important for us because their continued functioning is key to ensuring business continuity at many of our B2B customers. Aptar conducted water risk assessment with WWF Risk Filter tool and its database highlighted high physical risk quantity especially related to water stress (water stress measures the ratio of total water withdrawals to available renewable surface and groundwater supplies). We evaluated potential financial impact on areas where risk is in a range between medium-high and extremely high. We identified Aptar sites that are located in water stress areas (1 site in Spain, 1 site in Thailand, 2 in China, 1 site in India, 1 site in Bahrain, 2 sites in Italy, and 1 site in Mexico). Drought risk could lead to a temporary suspension (estimation max 4 weeks) of operations due to water scarcity because injection molding cooling processes requires water for cooling molds and periodic clean out of molds into the maintenance department. Furthermore, it is very unlikely that all sites identified would have a water stress related issue at the same time, especially considering that they all have water contingency plans to ensure business continuity.

(3.1.1.11) Primary financial effect of the risk

Select from:

✓ Decreased revenues due to reduced production capacity

(3.1.1.12) Time horizon over which the risk is anticipated to have a substantive effect on the organization

Select all that apply

✓ Short-term

✓ Medium-term

✓ Long-term

(3.1.1.13) Likelihood of the risk having an effect within the anticipated time horizon

Select from:

✓ Exceptionally unlikely

(3.1.1.14) Magnitude

Select from:

✓ High

(3.1.1.16) Anticipated effect of the risk on the financial position, financial performance and cash flows of the organization in the selected future time horizons

The percentage of our global revenue that could be affected is estimated and depends on a range of factors such as the impact type, magnitude and duration, as well as the unique nature of the knock-on impacts on our B2B customers from partial or full site closure. The main risk driver is linked to the water scarcity (drought) with medium-high severity. Considering the nature of the risk, the main problem is related to the stop of injection molding cooling process that can have an impact on the overall business. Potential financial impact has been estimated taking into consideration the average gross business interruption value for 4 weeks in sites located in water stressed areas.

(3.1.1.17) Are you able to quantify the financial effect of the risk?

Select from:

√ Yes

(3.1.1.19) Anticipated financial effect figure in the short-term – minimum (currency)

18000000

(3.1.1.20) Anticipated financial effect figure in the short-term – maximum (currency)

18000000

(3.1.1.21) Anticipated financial effect figure in the medium-term – minimum (currency)

18000000

(3.1.1.22) Anticipated financial effect figure in the medium-term – maximum (currency)

18000000

(3.1.1.23) Anticipated financial effect figure in the long-term – minimum (currency)

18000000

(3.1.1.24) Anticipated financial effect figure in the long-term – maximum (currency)

(3.1.1.25) Explanation of financial effect figure

Potential financial impact has been estimated taking into consideration the average gross business interruption value for 4 weeks.

(3.1.1.26) Primary response to risk

Infrastructure, technology and spending

☑ Adopt water efficiency, water reuse, recycling and conservation practices

(3.1.1.27) Cost of response to risk

1000000

(3.1.1.28) Explanation of cost calculation

The cost is based on the optimization of a closed loop water system for plants in in order to increase water recycling level and decrease the volume of water leakages (consumed). The cost has been calculated on technical quotation and timescale is mid-long term.

(3.1.1.29) Description of response

As mitigation process, we have identified the optimization of water reuse system, recycling and conservation practices in our operations that conduct injection molding process. In addition we have planned regular maintenance of closed loop water system and review of water contingency plan (to manage residual risks). The timeframe of this mitigation action is short term (in progress). The primary response to risk has been evaluated very effective in order to prevent the risk identified, improving organization's resilience about water management. Water security level can be considered increased thanks to the adoption of systematic check of water conservation practices and water reuse system. In addition, our primary response to risk is supporting SDG goal number 6 substantially based on increase water-use efficiency across all sectors and ensure sustainable withdrawals and supply of freshwater to address water scarcity and substantially reduce the number of people suffering from water scarcity. The water risk identified influenced our local financial planning at site level in terms of Capex allocation for water reuse and recycling system. Finally, our operations leader received training focused on water stress topic, in fact this training was a focus activity in the earth week promotion into the past 2 reporting years.

Plastics

(3.1.1.1) Risk identifier

20	lact	from	
SE	UUL	поп	

✓ Risk3

(3.1.1.3) Risk types and primary environmental risk driver

Policy

☑ Changes to national legislation

(3.1.1.4) Value chain stage where the risk occurs

Select from:

Downstream value chain

(3.1.1.6) Country/area where the risk occurs

Select all that apply

✓ Italy

Spain

✓ United Kingdom of Great Britain and Northern Ireland

(3.1.1.9) Organization-specific description of risk

In January 2021, European Commission authorities introduced a directive Plastic Levy named "Plastic Own Resources" for a mandatory contribution to single use plastic packaging. The tax base is calculated on the amount of conventional resin contained in single-use packaging containing plastic, semi-finished plastic products intended for the manufacture of packaging. At the moment, UK, Italy and Spain approved this directive with a mandatory tax of 450 per tons of single use plastic packaging product. Expansion is anticipated to the US, specifically California.

(3.1.1.11) Primary financial effect of the risk

Select from:

☑ Fines, penalties or enforcement orders

(3.1.1.12) Time horizon over which the risk is anticipated to have a substantive effect on the organization

Select all that apply

- ✓ Short-term
- ✓ Medium-term
- ✓ Long-term

(3.1.1.13) Likelihood of the risk having an effect within the anticipated time horizon

Select from:

✓ Very unlikely

(3.1.1.14) Magnitude

Select from:

☑ High

(3.1.1.16) Anticipated effect of the risk on the financial position, financial performance and cash flows of the organization in the selected future time horizons

At the moment Italy and Spain approved this directive with a mandatory tax of 450 per tons of single use plastic packaging product. We can assume that also other EU countries will follow the same approach, so, considering Closure and Beauty EMEA products as single use packaging and/or not recycled content minimum, emerged that about 58k tons of Aptar products (41k tons for Beauty EMEA and 17k tons for Closure EMEA) could fall in this tax scenario.

(3.1.1.26) Primary response to risk

Infrastructure, technology and spending

☑ Take action to remove single-use plastic products/packaging

(3.1.1.29) Description of response

As mitigation process, we are assuming a need for 0.6M - 1.0M to upgrade eco-design tool and external regulatory support and certificates promoting the no use of single use plastic.

Water

(3.1.1.1) Risk identifier

Select from:

✓ Risk4

(3.1.1.3) Risk types and primary environmental risk driver

Chronic physical

✓ Declining water quality

(3.1.1.4) Value chain stage where the risk occurs

Select from:

✓ Upstream value chain

(3.1.1.6) Country/area where the risk occurs

Select all that apply

- Argentina
- China
- ✓ France
- Germany
- Italy

(3.1.1.7) River basin where the risk occurs

Select all that apply

Unknown

(3.1.1.9) Organization-specific description of risk

We have completed water related risk analysis involving our upstream value chain for the main commodities spend. The analysis, completed with the use of WWF Biodiversity Risk Filter Tool, has been based on the water pollution topic that represents risk if our suppliers cannot respect wastewater discharge permits. The

analysis identified areas of very high risk, estimated to have extremely poor water quality due to high BOD, EC and nitrogen in freshwater and high nutrient levels and acidification in marine water. Suppliers manufacturing sites could potentially be affected (activity suspended) due to high level of water pollution. We evaluated potential financial impact on areas where risk is in a range between medium-high and extremely high. We identified 4 main commodities on which the risk is especially relevant for sites in France (4 commodities), China (2 commodities), Germany (2 commodities), Italy (2 commodities), and Argentina (1 commodity). Steel suppliers represent potential risk in 3 sourcing regions. Plastic, paper, aluminum, and wood suppliers represent potential risk in 2 sourcing regions each.

(3.1.1.11) Primary financial effect of the risk

Select from:

☑ Decreased revenues due to reduced demand for products and services

(3.1.1.12) Time horizon over which the risk is anticipated to have a substantive effect on the organization

Select all that apply

- ✓ Short-term
- ✓ Medium-term
- ✓ Long-term

(3.1.1.13) Likelihood of the risk having an effect within the anticipated time horizon

Select from:

✓ Very unlikely

(3.1.1.14) Magnitude

Select from:

✓ Medium-high

(3.1.1.16) Anticipated effect of the risk on the financial position, financial performance and cash flows of the organization in the selected future time horizons

The percentage of our global revenue that could be affected is estimated and depends on a range of factors such as the impact type, magnitude and duration, as well as the unique nature of the knock-on impacts on our B2B customers from partial or full site closure. The main risk driver is linked to the water quality pollution with medium-high severity. Considering the nature of the risk, the main problem is related to the stop of raw materials production that can stop our production processes

that can have an impact on the overall business. Potential financial impact is under estimation taking into consideration the average gross business interruption value for 4 weeks due to missing of raw materials.

(3.1.1.17) Are you able to quantify the financial effect of the risk?

Select from:

✓ No

(3.1.1.26) Primary response to risk

Diversification

✓ Increase supplier diversification

(3.1.1.27) Cost of response to risk

1000000

(3.1.1.28) Explanation of cost calculation

The cost estimation is under investigation, but is based on the management of new suppliers diversification. The cost has been calculated on internal technical quotation and timescale is mid-long term.

(3.1.1.29) Description of response

As mitigation process, we have identified the increase of supplier diversification that can avoid business interruptions. The primary response to risk has been evaluated very effective in order to prevent the risk identified, improving organization's resilience about raw materials suppliers. Raw materials stock and security level can be considered increased thanks to the adoption of supplier diversification strategy. The risk identified influenced our local financial planning at site level in terms of raw materials suppliers management.

Climate change

(3.1.1.1) Risk identifier

Select from:

✓ Risk5

(3.1.1.3) Risk types and primary environmental risk driver

Liability

✓ Non-compliance with legislation

(3.1.1.4) Value chain stage where the risk occurs

Select from:

✓ Direct operations

(3.1.1.6) Country/area where the risk occurs

Select all that apply

- Czechia
- ✓ France
- Germany
- ✓ Italy
- ✓ Spain

(3.1.1.9) Organization-specific description of risk

The EU Taxonomy aims to help scale up investments in projects and activities that are necessary to reach the objectives of the European Green Deal. The EU Taxonomy helps investors identify environmentally sustainable economic activities, promote a transition to a zero-carbon future and guide funding towards solutions to tackle the climate crisis and prevent further environmental degradation: - It creates a frame of reference for investors and companies; - It supports companies in their efforts to plan and finance their transition; - It protects against greenwashing practices; - It helps accelerate financing of those projects that are already sustainable and those needed in the transition. We are evaluating whether or not Aptar is subject to these reporting requirements, and, if so, there is a risk that Aptar will not able to satisfy investors request regarding classification and report on the specific sector on which Aptar is operating (manufacturing of plastic packaging). There is risk as to whether we will be able to demonstrate our commitment to decrease the impact on the circular economy environmental objectives, environmental objectives for the DNSH.

(3.1.1.11) Primary financial effect of the risk

Select from:

✓ Fines, penalties or enforcement orders

(3.1.1.12) Time horizon over which the risk is anticipated to have a substantive effect on the organization

Select all that apply

- Short-term
- ✓ Medium-term
- ✓ Long-term

(3.1.1.13) Likelihood of the risk having an effect within the anticipated time horizon

Select from:

✓ Very unlikely

(3.1.1.14) Magnitude

Select from:

✓ High

(3.1.1.16) Anticipated effect of the risk on the financial position, financial performance and cash flows of the organization in the selected future time horizons

Aptar risk is based on the fact that we are not able to satisfy investors request about the EU Taxonomy classification and report on the specific sector on which Aptar is operating (manufacturing of plastic packaging). In addition, we cannot be able to demonstrate our commitment to decrease the impact on the circular economy environmental objectives, environmental objectives for the DNSH, and to be comply with minimum safeguards. At the moment the financial impact of this risk can be linked to the CSRD non compliance penalty, assuming the worst scenario with the highest penalty up to 10 mln.

(3.1.1.17) Are you able to quantify the financial effect of the risk?

Select from:

✓ Yes

(3.1.1.19) Anticipated financial effect figure in the short-term – minimum (currency)

10000000

(3.1.1.20) Anticipated financial effect figure in the short-term – maximum (currency)

(3.1.1.21) Anticipated financial effect figure in the medium-term – minimum (currency)

10000000

(3.1.1.22) Anticipated financial effect figure in the medium-term – maximum (currency)

10000000

(3.1.1.23) Anticipated financial effect figure in the long-term – minimum (currency)

10000000

(3.1.1.24) Anticipated financial effect figure in the long-term – maximum (currency)

10000000

(3.1.1.25) Explanation of financial effect figure

Aptar risk is based on the fact that we are not able to satisfy investors request about the EU Taxonomy classification and report on the specific sector on which Aptar is operating (manufacturing of plastic packaging). In addition, we cannot be able to demonstrate our commitment to decrease the impact on the circular economy environmental objectives, environmental objectives for the DNSH, and to be comply with minimum safeguards. At the moment the financial impact of this risk can be linked to the CSRD non compliance penalty, assuming the worst scenario with the highest penalty up to 10 mln.

(3.1.1.26) Primary response to risk

Compliance, monitoring and targets

☑ Greater compliance with regulatory requirements

(3.1.1.27) Cost of response to risk

1000000

(3.1.1.28) Explanation of cost calculation

We are assuming a need for 0.6M - 1.0M in short term period to upgrade internal management system with regulatory support and compliance from external consultants and tools for the EU Taxonomy regulation.

(3.1.1.29) Description of response

As mitigation process, we have identified the management of internal regulatory system that can ensure regulatory compliance. The primary response to risk has been evaluated very effective in order to prevent the risk identified, improving organization's resilience about new law and regulatory requirements for the sustainability aspects.

Climate change

(3.1.1.1) Risk identifier

Select from:

✓ Risk6

(3.1.1.3) Risk types and primary environmental risk driver

Liability

✓ Non-compliance with legislation

(3.1.1.4) Value chain stage where the risk occurs

Select from:

✓ Direct operations

(3.1.1.6) Country/area where the risk occurs

Select all that apply

- Czechia
- ✓ France
- Germany
- ✓ Italy
- Spain

(3.1.1.9) Organization-specific description of risk

The CSDD directive introduces a corporate due diligence duty to identify, prevent, bring to an end, mitigate and account for adverse human rights and environmental impacts in the company's own operations, its subsidiaries and their value chains. In order to do so, companies have to conduct mandatory and continuous human rights and environmental due diligence aligned with the OECD due diligence guidelines. Companies that the CSDDD targets will be required to integrate human rights and environmental due diligence into policies, develop a process to identify and assess actual or potential adverse human rights and environmental impacts – both in own operations and in the supply chain, prevent or mitigate potential impacts, bring to an end or minimize actual impacts, track the implementation and results to evaluate the effectiveness of due diligence procedures (at least once every 12 months), publish an annual statement on the company website to communicate the relevant due diligence measures taken during the previous calendar year, and establish and maintain a complaints procedure.

(3.1.1.11) Primary financial effect of the risk

Select from:

☑ Fines, penalties or enforcement orders

(3.1.1.12) Time horizon over which the risk is anticipated to have a substantive effect on the organization

Select all that apply

- Short-term
- ✓ Medium-term
- ✓ Long-term

(3.1.1.13) Likelihood of the risk having an effect within the anticipated time horizon

Select from:

✓ Very unlikely

(3.1.1.14) Magnitude

Select from:

✓ High

(3.1.1.16) Anticipated effect of the risk on the financial position, financial performance and cash flows of the organization in the selected future time horizons

Aptar risk is based on the fact that we are not ready to satisfy CSDDD requirements for our upstream value chain, so, in that worst case the CSDDD defined penalties that include fine of up to 5% of companies net worldwide turnover. Aptar Worldwide turnover 2023 284,486 mln 5% fines 14 mln

(3.1.1.17) Are you able to quantify the financial effect of the risk?

Select from:

✓ Yes

(3.1.1.19) Anticipated financial effect figure in the short-term – minimum (currency)

14000000

(3.1.1.20) Anticipated financial effect figure in the short-term – maximum (currency)

14000000

(3.1.1.21) Anticipated financial effect figure in the medium-term – minimum (currency)

14000000

(3.1.1.22) Anticipated financial effect figure in the medium-term – maximum (currency)

14000000

(3.1.1.23) Anticipated financial effect figure in the long-term – minimum (currency)

14000000

(3.1.1.24) Anticipated financial effect figure in the long-term – maximum (currency)

14000000

(3.1.1.25) Explanation of financial effect figure

Aptar risk is based on the fact that we are not ready to satisfy CSDDD requirements for our upstream value chain, so, in that worst case the CSDDD defined penalties that include fine of up to 5% of companies net worldwide turnover.

(3.1.1.26) Primary response to risk

Compliance, monitoring and targets

☑ Greater compliance with regulatory requirements

(3.1.1.27) Cost of response to risk

1000000

(3.1.1.28) Explanation of cost calculation

We are assuming a need for 0.6M - 1.0M in short term period to upgrade internal management system with regulatory support and compliance from external consultants and tools for the CSDDD regulation.

(3.1.1.29) Description of response

As mitigation process, we have identified the management of internal regulatory system that can ensure regulatory compliance. The primary response to risk has been evaluated very effective in order to prevent the risk identified, improving organization's resilience about new law and regulatory requirements for the sustainability aspects.

Climate change

(3.1.1.1) Risk identifier

Select from:

✓ Risk7

(3.1.1.3) Risk types and primary environmental risk driver

Liability

✓ Non-compliance with legislation

(3.1.1.4) Value chain stage where the risk occurs

Select from:

✓ Direct operations

(3.1.1.6) Country/area where the risk occurs

Select all that apply

- Czechia
- ✓ France
- Germany
- ✓ Italy
- ✓ Spain

(3.1.1.9) Organization-specific description of risk

The aim of CBAM is to align the carbon prices of goods imported into the EU with goods produced in the EU. Since under the EU ETS, only EU producers have to purchase certificates, thus raising their prices in comparison to imports, the CBAM aims to level the playing field. CBAM is the first regime of its kind in any emission trading system, though the EU Commission maintains that it is a WTO-compatible measure that boosts global sustainability. CBAM applies directly to all persons or entities who import goods to the EU (importers). Importers will request the relevant information from the manufacturers of CBAM goods that are imported into the EU (so called Operators). So while Operators don't have any immediate obligations under CBAM, they may be affected indirectly. CBAM applies to goods or certain processed products made from aluminum. Exemptions currently exist for goods originating in Liechtenstein, Norway, Iceland, as those countries participate in the EU ETS, as well as for goods originating in Switzerland, as the Swiss emission trading system is linked to EU ETS. The exemption rule is expected to be extended to other countries depending on their CO2.

(3.1.1.11) Primary financial effect of the risk

Select from:

☑ Fines, penalties or enforcement orders

(3.1.1.12) Time horizon over which the risk is anticipated to have a substantive effect on the organization

Select all that apply

- ✓ Short-term
- ✓ Medium-term
- ✓ Long-term

(3.1.1.13) Likelihood of the risk having an effect within the anticipated time horizon

Select from:

✓ Very unlikely

(3.1.1.14) Magnitude

Select from:

Medium

(3.1.1.16) Anticipated effect of the risk on the financial position, financial performance and cash flows of the organization in the selected future time horizons

Aptar risk is based on the aluminum components imported from non EU countries to EU Aptar plant, so, failure to comply with CBAM reporting requirements or inaccuracies in CBAM reports can result in penalties set by each EU member state, ranging from 10 to 50 per ton of unreported or incorrectly reported embedded emissions. Authorized CBAM declarants, which fail to surrender the necessary number of CBAM certificates by May 31 of each year starting in 2027, will be held liable for the payment of fines equal to those under the EU ETS, meaning 100 for each ton of CO2. Following the reporting obligations, ultimately, when certain goods are imported into the customs territory of the Union, they are subject to the same carbon price as they would have been if they had been produced in countries that are subject to the European Emissions Trading System (EU ETS. This obligation will start in 2027 for the year 2026. The CBAM certificates will be sold via a platform operated by the EU Commission. The obligation to purchase and surrender CBAM allowances will gradually increase corresponding with the reduction of free allocation of EU ETS to EU producers. Importers will initially have to pay for only 2.5% of embedded emissions for 2026, and this rate will gradually increase to 100% of grey emissions by 2034. Companies already affected by other reporting obligations (such as EU Taxonomy, CSRD, national supply chain acts) should carefully assess where data that's already being collected can be reused for CBAM and where there are significant differences.

(3.1.1.17) Are you able to quantify the financial effect of the risk?

Select from:

Yes

(3.1.1.19) Anticipated financial effect figure in the short-term – minimum (currency)

3000000

(3.1.1.20) Anticipated financial effect figure in the short-term – maximum (currency)

3000000

(3.1.1.21) Anticipated financial effect figure in the medium-term – minimum (currency)

3000000

(3.1.1.22) Anticipated financial effect figure in the medium-term – maximum (currency)

3000000

(3.1.1.23) Anticipated financial effect figure in the long-term – minimum (currency)

3000000

(3.1.1.24) Anticipated financial effect figure in the long-term – maximum (currency)

3000000

(3.1.1.25) Explanation of financial effect figure

Following the reporting obligations, we can have a scenario on which 50% of aluminum purchased by Aptar can be subject to CBAM, so, in terms of CO2 emissions means about 34,084 tons CO2e subject to fines in case of inaccuracies or unreporting in CBAM regulation. Worst case scenario: 34,084 tons CO2e x 100 3M

(3.1.1.26) Primary response to risk

Compliance, monitoring and targets

☑ Greater compliance with regulatory requirements

(3.1.1.27) Cost of response to risk

1000000

(3.1.1.28) Explanation of cost calculation

We are assuming a need for 0.6M - 1.0M in short term period to upgrade internal management system with regulatory support and compliance from external consultants and tools for the CBAM regulation.

(3.1.1.29) Description of response

As mitigation process, we have identified the management of internal regulatory system that can ensure regulatory compliance. The primary response to risk has been evaluated very effective in order to prevent the risk identified, improving organization's resilience about new law and regulatory requirements for the sustainability aspects.

Climate change

(3.1.1.1) Risk identifier

Select from:

Risk8

(3.1.1.3) Risk types and primary environmental risk driver

Policy

✓ Carbon pricing mechanisms

(3.1.1.4) Value chain stage where the risk occurs

Select from:

✓ Direct operations

(3.1.1.6) Country/area where the risk occurs

Select all that apply

- Czechia
- France
- Germany
- ✓ Italy
- Spain

(3.1.1.9) Organization-specific description of risk

The Paris Agreement defined a global GHG emissions target in order to avoid Climate Change potential risk. Aptar may be subject to a severe change in the regulation landscape globally and expected to pay a price on carbon emissions. Considering the current and emerging regulation, the EU confirmed the carbon tax mechanism defined by Emission Trading Scheme (tax on CO2 emitted from energy-intensive industry sectors, e.g. oil refineries, metals production) and introduced by 2028 a new carbon tax "Emission Trading Scheme 2" for fuels used in buildings, road transport and process heat in industry (Scope 1 emissions). A CO2 price range to 2030 is defined within the latest IEA WEO 2022 Scenarios: minimum 83/ton CO2e (Stated Policies Scenario) and maximum 140/ton CO2e (Net Zero Emissions by 2050 scenario). Current CO2 price defined by regulatory Emission Trading Scheme in Europe is 96/ton CO2e.

(3.1.1.11) Primary financial effect of the risk

Select from:

☑ Fines, penalties or enforcement orders

(3.1.1.12) Time horizon over which the risk is anticipated to have a substantive effect on the organization

Select all that apply

- ✓ Short-term
- ✓ Medium-term
- ✓ Long-term

(3.1.1.13) Likelihood of the risk having an effect within the anticipated time horizon

Select from:

Unlikely

(3.1.1.14) Magnitude

Select from:

High

(3.1.1.16) Anticipated effect of the risk on the financial position, financial performance and cash flows of the organization in the selected future time horizons

The risk is related to the direct and indirect effect that these current/emerging regulation on carbon tax could have on Aptar performance for Scope 1 and Scope 3 emissions. Please note that the indirect carbon tax risk estimated for the Scope 3 emissions is potentially passed to customers. The worst case scenario is assumed to be that Aptar does not reduce Scope 1, Scope 2 and Scope 3 - raw materials emissions any further beyond our current performance totals and increase emissions

in all scopes 20% respect year 2023 to target year 2030 (from 2019 to current year the average increase of emissions was 10%, so, in the next 8 years it is likely that we can have 20% increase).

(3.1.1.17) Are you able to quantify the financial effect of the risk?

Select from:

√ Yes

(3.1.1.19) Anticipated financial effect figure in the short-term – minimum (currency)

25000000

(3.1.1.20) Anticipated financial effect figure in the short-term – maximum (currency)

61000000

(3.1.1.21) Anticipated financial effect figure in the medium-term – minimum (currency)

25000000

(3.1.1.22) Anticipated financial effect figure in the medium-term – maximum (currency)

61000000

(3.1.1.23) Anticipated financial effect figure in the long-term – minimum (currency)

25000000

(3.1.1.24) Anticipated financial effect figure in the long-term – maximum (currency)

61000000

(3.1.1.25) Explanation of financial effect figure

The risk is related to the direct and indirect effect that these current/emerging regulation on carbon tax could have on Aptar performance for Scope 1 and Scope 3 emissions. Please note that the indirect carbon tax risk estimated for the Scope 3 emissions is potentially passed to customers. The worst case scenario is assumed

to be that Aptar does not reduce Scope 1, Scope 2 and Scope 3 - raw materials emissions any further beyond our current performance totals and increase emissions in all scopes 20% respect year 2023 to target year 2030 (from 2019 to current year the average increase of emissions was 10%, so, in the next 8 years it is likely that we can have 20% increase). The best case scenario is that Aptar is able to achieve direct and indirect GHGs emissions reduction as defined by SBT target (Scope 1, 46% reduction by 2030 from most recent year 2021) and for Scope 3 (14% reduction by 2030 from baseline 2019).

(3.1.1.26) Primary response to risk

Policies and plans

✓ Develop a climate transition plan

(3.1.1.27) Cost of response to risk

1000000

(3.1.1.28) Explanation of cost calculation

Assumes Aptar decides to engage the top 10 operations mostly contributor of Scope 1 emissions moving to the implementation of clean technology reducing fuels used in buildings and process heat.

(3.1.1.29) Description of response

As mitigation process, we have identified the management of internal regulatory system that can ensure regulatory compliance. The primary response to risk has been evaluated very effective in order to prevent the risk identified, improving organization's resilience about new law and regulatory requirements for the sustainability aspects.

Climate change

(3.1.1.1) Risk identifier

Select from:

✓ Risk9

(3.1.1.3) Risk types and primary environmental risk driver

Market

✓ Changing customer behavior

(3.1.1.4) Value chain stage where the risk occurs

Select from:

✓ Downstream value chain

(3.1.1.6) Country/area where the risk occurs

Select all that apply

✓ Italy

✓ Spain✓ France✓ Belgium

✓ Norway
✓ Czechia

✓ Poland✓ Denmark✓ Slovenia

✓ Germany
✓ Netherlands

✓ Romania ✓ Switzerland

✓ Portugal
✓ United States of America

✓ Slovakia

(3.1.1.9) Organization-specific description of risk

Environmental sustainability for packaging sector is a crucial aspect, so, it is very likely that our customers and end-users will be more orientated to choose responsible products for planet and people in the next 10 years (as identified in European Plastic Pact). In case Aptar is not able to satisfy this new market need, it is possible lower demand will effect revenue.

(3.1.1.11) Primary financial effect of the risk

Select from:

✓ Disruption to sales

(3.1.1.12) Time horizon over which the risk is anticipated to have a substantive effect on the organization

Select all that apply

- Short-term
- ✓ Medium-term
- ✓ Long-term

(3.1.1.13) Likelihood of the risk having an effect within the anticipated time horizon

Select from:

✓ Exceptionally unlikely

(3.1.1.14) Magnitude

Select from:

High

(3.1.1.16) Anticipated effect of the risk on the financial position, financial performance and cash flows of the organization in the selected future time horizons

The risk is related to the assumption that Beauty and Closure customers are affected due to switch to packaging product with lower emission options (for example sustainable materials and/or no single-use packaging) as will be requested by laws and markets. The worst case is that global regulatory aspects on sustainable packaging will drive markets and will change customers behaviours to more sustainable solutions, so, if we will not satisfy this request in terms of minimum recycled content and more circular products. An additional risk, based on the fact that developed countries are making incremental commitments to reuse and emerging countries are developing more aggressive policies to reduce single-use plastics, is linked to the circular consumption models that require refillable and reusable packaging solutions. The impact on the financial revenue could take into consideration the following reusability scenarios: Conservative: 1% of new reuse business opportunities (flexible closure for refillable solutions, new business model) and costant price. Increase 1% in volume assuming customers use multi-use products 5 times, price increase of 3% given multi-use specifications. Realistic: 3% of new reuse business opportunities (flexible closure for refillable solutions, new business model, new technology do deliver reuse) and costant price. Increase 3% in volume assuming customers use multi-use products 5 times, price increaseof 3% given multi-use specifications.

(3.1.1.17) Are you able to quantify the financial effect of the risk?

Select from:

✓ Yes

(3.1.1.19) Anticipated financial effect figure in the short-term – minimum (currency)

1463000000

(3.1.1.20) Anticipated financial effect figure in the short-term – maximum (currency)

2182000000

(3.1.1.21) Anticipated financial effect figure in the medium-term – minimum (currency)

1463000000

(3.1.1.22) Anticipated financial effect figure in the medium-term – maximum (currency)

2182000000

(3.1.1.23) Anticipated financial effect figure in the long-term – minimum (currency)

1463000000

(3.1.1.24) Anticipated financial effect figure in the long-term – maximum (currency)

2182000000

(3.1.1.25) Explanation of financial effect figure

The risk is related to the assumption that Beauty and Closure customers are affected due to switch to packaging product with lower emission options (for example sustainable materials and/or no single-use packaging) as will be requested by laws and markets. The worst case is that global regulatory aspects on sustainable packaging will drive markets and will change customers behaviours to more sustainable solutions, so, if we will not satisfy this request in terms of minimum recycled content and more circular products. An additional risk, based on the fact that developed countries are making incremental commitments to reuse and emerging countries are developing more aggressive policies to reduce single-use plastics, is linked to the circular consumption models that require refillable and reusable packaging solutions.

(3.1.1.26) Primary response to risk

Policies and plans

✓ Increased use of sustainably sourced materials

(3.1.1.27) Cost of response to risk

1000000

(3.1.1.28) Explanation of cost calculation

We are assuming a need to upgrade software for eco design external support and testing of new sustainable materials such as PCR and/or bio-feedstock.

(3.1.1.29) Description of response

As mitigation process, while we believe it is very likely that consumers will request lower emission solutions, the probability of this risk has been evaluated "Very Unlikely" because our Expert Centers and Product Sustainability Team are costantly looking for sustainable solutions to meet customers and markets expectations.we have identified the management of internal regulatory system that can ensure regulatory compliance.

Climate change

(3.1.1.1) Risk identifier

Select from:

✓ Risk10

(3.1.1.3) Risk types and primary environmental risk driver

Market

☑ Lack of availability and/or increased cost of certified sustainable material

(3.1.1.4) Value chain stage where the risk occurs

Select from:

Upstream value chain

(3.1.1.6) Country/area where the risk occurs

Select all that apply

United States of America

(3.1.1.9) Organization-specific description of risk

Aptar since year 2019 defined recycled content target with conversion plan for post consumer recycled resin by 2025. PCR price, respective of year 2019, increase 110% By 2025 PCR price could increase by an additional 20-30% respective of the 2022 baseline price. PCR price increase is loosely dependent from conventional resin price behavior. Consequently, If regulations are not applied on the full package, Aptar's customers can very well reach their recycled content targets by converting primary container material and excluding the dispensing system/closure. This exclusion would thus slow down Aptar's conversion plan.

(3.1.1.11) Primary financial effect of the risk

Select from:

✓ Increased production costs

(3.1.1.12) Time horizon over which the risk is anticipated to have a substantive effect on the organization

Select all that apply

- ✓ Short-term
- ✓ Medium-term
- ✓ Long-term

(3.1.1.13) Likelihood of the risk having an effect within the anticipated time horizon

Select from:

Unlikely

(3.1.1.14) Magnitude

Select from:

✓ Medium

(3.1.1.16) Anticipated effect of the risk on the financial position, financial performance and cash flows of the organization in the selected future time horizons

Aptar since year 2019 defined recycled content target with conversion plan for post consumer recycled resin by 2025. PCR price, respect year 2019, increase 110% It is likely that by 2025 PCR price could increase for additional 20-30% respect baseline price 2022. PCR price increase is losely dependent from conventional resin price behaviour. Consequently, Aptar customers could reach their recycled content target converting primary container material, thus slowing down Aptar conversion plan through the economic lever.

(3.1.1.17) Are you able to quantify the financial effect of the risk?

Select from:

Yes

(3.1.1.19) Anticipated financial effect figure in the short-term – minimum (currency)

4000000

(3.1.1.20) Anticipated financial effect figure in the short-term – maximum (currency)

6000000

(3.1.1.21) Anticipated financial effect figure in the medium-term – minimum (currency)

4000000

(3.1.1.22) Anticipated financial effect figure in the medium-term – maximum (currency)

6000000

(3.1.1.23) Anticipated financial effect figure in the long-term – minimum (currency)

4000000

(3.1.1.24) Anticipated financial effect figure in the long-term – maximum (currency)

6000000

(3.1.1.25) Explanation of financial effect figure

The risk is related to the PCR price increase. It is likely that by 2025 PCR price could increase for additional 20-30% respect baseline price 2022. PCR price increase is losely dependent from conventional resin price behaviour. Consequently, Aptar customers could reach their recycled content target converting primary container material, thus slowing down Aptar conversion plan through the economic lever.

(3.1.1.26) Primary response to risk

Diversification

✓ Increase supplier diversification

(3.1.1.27) Cost of response to risk

1000000

(3.1.1.28) Explanation of cost calculation

We assume access to production tools and material testing cost for the approval of PCR characteristics

(3.1.1.29) Description of response

As part of our sustainability business strategy, Aptar's response to this risk consists of suppliers/materials diversification and secure volume in advance reducing the risk of price volatility. More in accuracy we are also investigating the use of biofeedstock raw materials that could be subject to less price volatility respect post consumer recycled content. While we believe it is virtually certain that the cost of PCR will increase, the probability of this risk has been evaluated "Unlikely" because we either pass through the increase cost materials to customers or not convert products to PCR materials.

Climate change

(3.1.1.1) Risk identifier

Select from:

Risk11

(3.1.1.3) Risk types and primary environmental risk driver

Liability

✓ Non-compliance with legislation

(3.1.1.4) Value chain stage where the risk occurs

Select from:

✓ Direct operations

(3.1.1.6) Country/area where the risk occurs

Select all that apply

- Czechia
- **✓** France
- Germany
- ✓ Italy
- ✓ Spain

(3.1.1.9) Organization-specific description of risk

Government regulations may require restrictions for the use of commodities from forest use (for example wood). Although the regulation proposal is not entirely defined and clear at this time, it is possible Aptar will need to consider an increase in compliance costs due to the dependency on forest risk commodities exposed to jurisdictions with regulatory restrictions. Specific regulatory case is based on the EUDR, it will require many economic operators to carry out a rigorous analysis of their supply chains to guarantee that the products they introduce into the market, or export, do not contribute to deforestation or forest degradation and that they are obtained and produced with full respect for the regulations of the countries of origin. In terms of financial impact, the worst case is based on the sanctioning regime with fines amounting to 4% of the company's turnover in the EU.

(3.1.1.11) Primary financial effect of the risk

Select from:

☑ Fines, penalties or enforcement orders

(3.1.1.12) Time horizon over which the risk is anticipated to have a substantive effect on the organization

Select all that apply

- √ Short-term
- ✓ Medium-term
- ✓ Long-term

(3.1.1.13) Likelihood of the risk having an effect within the anticipated time horizon

Select from:

✓ Very unlikely

(3.1.1.14) Magnitude

Select from:

☑ High

(3.1.1.16) Anticipated effect of the risk on the financial position, financial performance and cash flows of the organization in the selected future time horizons

Government regulations may require restrictions for the use of commodities from forest use (for example wood). Although the regulation proposal is not entirely defined and clear at this time, it is possible Aptar will need to consider an increase in compliance costs due to the dependency on forest risk commodities exposed to jurisdictions with regulatory restrictions. Specific regulatory case is based on the EUDR, it will require many economic operators to carry out a rigorous analysis of their supply chains to guarantee that the products they introduce into the market, or export, do not contribute to deforestation or forest degradation and that they are obtained and produced with full respect for the regulations of the countries of origin. In terms of financial impact, the worst case is based on the sanctioning regime with fines amounting to 4% of the company's turnover in the EU.

(3.1.1.17) Are you able to quantify the financial effect of the risk?

Select from:

Yes

(3.1.1.19) Anticipated financial effect figure in the short-term – minimum (currency)

9000000

(3.1.1.20) Anticipated financial effect figure in the short-term – maximum (currency)

(3.1.1.21) Anticipated financial effect figure in the medium-term – minimum (currency)

9000000

(3.1.1.22) Anticipated financial effect figure in the medium-term – maximum (currency)

9000000

(3.1.1.23) Anticipated financial effect figure in the long-term – minimum (currency)

9000000

(3.1.1.24) Anticipated financial effect figure in the long-term – maximum (currency)

9000000

(3.1.1.25) Explanation of financial effect figure

Specific regulatory case is based on the EUDR, it will require many economic operators to carry out a rigorous analysis of their supply chains to guarantee that the products they introduce into the market, or export, do not contribute to deforestation or forest degradation and that they are obtained and produced with full respect for the regulations of the countries of origin. In terms of financial impact, the worst case is based on the sanctioning regime with fines amounting to 4% of the company's turnover in the EU. While we believe it is very likely that the mandates on and regulations will be confirmed by EU commission, the probability of this risk has been evaluated "Unlikely" because we either pass through the upstream value chain the use of sustainable commodities in compliance with EUDR requirements (for example appropriate third party certification about forest management certification for wooden products) or not produce packaging with forest risk commodities exposure.

(3.1.1.26) Primary response to risk

Policies and plans

✓ Increased use of sustainably sourced materials

(3.1.1.27) Cost of response to risk

1000000

(3.1.1.28) Explanation of cost calculation

We are assuming a need to upgrade eco-design software to support our packaging products with wood

(3.1.1.29) Description of response

As mitigation process, we have identified the management of internal regulatory system that can ensure regulatory compliance. The primary response to risk has been evaluated very effective in order to prevent the risk identified, improving organization's resilience about new law and regulatory requirements for the sustainability aspects.

Climate change

(3.1.1.1) Risk identifier

Select from:

✓ Risk12

(3.1.1.3) Risk types and primary environmental risk driver

Reputation

✓ Negative press coverage related to support of projects or activities with negative impacts on the environment (e.g. GHG emissions, deforestation & conversion, water stress)

(3.1.1.4) Value chain stage where the risk occurs

Select from:

Direct operations

(3.1.1.6) Country/area where the risk occurs

Select all that apply

✓ United States of America

(3.1.1.9) Organization-specific description of risk

Government regulations may require restrictions for the use of commodities from forest use (for example wood). Although the regulation proposal is not entirely defined and clear at this time, it is possible Aptar will need to consider an increase in compliance costs due to the dependency on forest risk commodities exposed to jurisdictions with regulatory restrictions. Specific regulatory case is based on the EUDR, it will require many economic operators to carry out a rigorous analysis of their supply chains to guarantee that the products they introduce into the market, or export, do not contribute to deforestation or forest degradation and that they are obtained and produced with full respect for the regulations of the countries of origin. In terms of financial impact, the worst case is based on the sanctioning regime with fines amounting to 4% of the company's turnover in the EU.

(3.1.1.11) Primary financial effect of the risk

Select from:

☑ Fines, penalties or enforcement orders

(3.1.1.12) Time horizon over which the risk is anticipated to have a substantive effect on the organization

Select all that apply

- ✓ Short-term
- ✓ Medium-term
- ✓ Long-term

(3.1.1.13) Likelihood of the risk having an effect within the anticipated time horizon

Select from:

✓ Very unlikely

(3.1.1.14) Magnitude

Select from:

Medium-high

(3.1.1.16) Anticipated effect of the risk on the financial position, financial performance and cash flows of the organization in the selected future time horizons

Government regulations may require restrictions for the use of commodities from forest use (for example wood). Although the regulation proposal is not entirely defined and clear at this time, it is possible Aptar will need to consider an increase in compliance costs due to the dependency on forest risk commodities exposed to jurisdictions with regulatory restrictions. Specific regulatory case is based on the EUDR, it will require many economic operators to carry out a rigorous analysis of

their supply chains to guarantee that the products they introduce into the market, or export, do not contribute to deforestation or forest degradation and that they are obtained and produced with full respect for the regulations of the countries of origin. In terms of financial impact, the worst case is based on the sanctioning regime with fines amounting to 4% of the company's turnover in the EU.

(3.1.1.17) Are you able to quantify the financial effect of the risk?

Select from:

Yes

(3.1.1.19) Anticipated financial effect figure in the short-term – minimum (currency)

9000000

(3.1.1.20) Anticipated financial effect figure in the short-term – maximum (currency)

9000000

(3.1.1.21) Anticipated financial effect figure in the medium-term – minimum (currency)

9000000

(3.1.1.22) Anticipated financial effect figure in the medium-term – maximum (currency)

9000000

(3.1.1.23) Anticipated financial effect figure in the long-term – minimum (currency)

9000000

(3.1.1.24) Anticipated financial effect figure in the long-term – maximum (currency)

9000000

(3.1.1.25) Explanation of financial effect figure

Government regulations may require restrictions for the use of commodities from forest use (for example wood). Although the regulation proposal is not entirely defined and clear at this time, it is possible Aptar will need to consider an increase in compliance costs due to the dependency on forest risk commodities exposed to jurisdictions with regulatory restrictions. Specific regulatory case is based on the EUDR, it will require many economic operators to carry out a rigorous analysis of their supply chains to guarantee that the products they introduce into the market, or export, do not contribute to deforestation or forest degradation and that they are obtained and produced with full respect for the regulations of the countries of origin. In terms of financial impact, the worst case is based on the sanctioning regime with fines amounting to 4% of the company's turnover in the EU.

(3.1.1.26) Primary response to risk

Engagement

✓ Align organization's public policy engagement with its environmental strategy

(3.1.1.27) Cost of response to risk

1000000

(3.1.1.28) Explanation of cost calculation

We are assuming a need to upgrade eco-design software to support our packaging products with wood

(3.1.1.29) Description of response

As mitigation process, we have identified the management of internal regulatory system that can ensure regulatory compliance. The primary response to risk has been evaluated very effective in order to prevent the risk identified, improving organization's resilience about new law and regulatory requirements for the sustainability aspects.

Climate change

(3.1.1.1) Risk identifier

Select from:

✓ Risk13

(3.1.1.3) Risk types and primary environmental risk driver

Acute physical

✓ Cyclone, hurricane, typhoon

(3.1.1.4) Value chain stage where the risk occurs

Select from:

✓ Direct operations

(3.1.1.6) Country/area where the risk occurs

Select all that apply

China

✓ India

Italy

France

Mexico

✓ Indonesia

✓ United States of America

(3.1.1.9) Organization-specific description of risk

In the latest years we are more and more challenging with an increas of severity levels related to the extreme weather events, many countries and regions are involved. The main risk is related to the delay in production and operations from supply chain disruptions, for example the delivery of raw materials and/or finished products due to the disruption of transportation routes. This risk, from Aptar point of view, has been quantified with a business interruptions calculation starting from WWF Biodiversity Risk Filter tool on which has been analyzed high-risk sites for tropical cyclones, fire hazard, and landslides. The average business interruption has been assumed for maximum 4 weeks.

(3.1.1.11) Primary financial effect of the risk

Select from:

✓ Disruption in production capacity

(3.1.1.12) Time horizon over which the risk is anticipated to have a substantive effect on the organization

Select all that apply

✓ Short-term

	N 4 = ali + a
\mathbf{v}	Medium-term

✓ Long-term

(3.1.1.13) Likelihood of the risk having an effect within the anticipated time horizon

Select from:

✓ Very unlikely

(3.1.1.14) Magnitude

Select from:

✓ High

(3.1.1.16) Anticipated effect of the risk on the financial position, financial performance and cash flows of the organization in the selected future time horizons

In the latest years we are more and more challenging with an increas of severity levels related to the extreme weather events, many countries and regions are involved. The main risk is related to the delay in production and operations from supply chain disruptions, for example the delivery of raw materials and/or finished products due to the disruption of transportation routes. This risk, from Aptar point of view, has been quantified with a business interruptions calculation starting from WWF Biodiversity Risk Filter tool on which has been analyzed high-risk sites for tropical cyclones, fire hazard, and landslides. The average business interruption has been assumed for maximum 4 weeks.

(3.1.1.17) Are you able to quantify the financial effect of the risk?

Select from:

Yes

(3.1.1.19) Anticipated financial effect figure in the short-term – minimum (currency)

78000000

(3.1.1.20) Anticipated financial effect figure in the short-term – maximum (currency)

78000000

(3.1.1.21) Anticipated financial effect figure in the medium-term – minimum (currency)

78000000

(3.1.1.22) Anticipated financial effect figure in the medium-term – maximum (currency)

78000000

(3.1.1.23) Anticipated financial effect figure in the long-term – minimum (currency)

78000000

(3.1.1.24) Anticipated financial effect figure in the long-term – maximum (currency)

78000000

(3.1.1.25) Explanation of financial effect figure

In the latest years we are more and more challenging with an increas of severity levels related to the extreme weather events, many countries and regions are involved. The main risk is related to the delay in production and operations from supply chain disruptions, for example the delivery of raw materials and/or finished products due to the disruption of transportation routes. This risk, from Aptar point of view, has been quantified with a business interruptions calculation starting from WWF Biodiversity Risk Filter tool on which has been analyzed high-risk sites for tropical cyclones, fire hazard, and landslides. The average business interruption has been assumed for maximum 4 weeks.

(3.1.1.26) Primary response to risk

Infrastructure, technology and spending

✓ Improve maintenance of infrastructure

(3.1.1.27) Cost of response to risk

1000000

(3.1.1.28) Explanation of cost calculation

We are assuming a need to manage the improvement of maintenance for the infrastructure in our operations.

(3.1.1.29) Description of response

As mitigation process, we have identified the improvement of maintenance for the infrastructure in our operations.management.

Climate change

(3.1.1.1) Risk identifier

Select from:

✓ Risk14

(3.1.1.3) Risk types and primary environmental risk driver

Technology

✓ Unsuccessful investment in new technologies

(3.1.1.4) Value chain stage where the risk occurs

Select from:

✓ Direct operations

(3.1.1.6) Country/area where the risk occurs

Select all that apply

✓ United States of America

(3.1.1.9) Organization-specific description of risk

Environmental sustainability for packaging sector is a crucial aspect, so, it is very likely that our customers and end-users will be more orientated to choose responsible products for planet and people in the next 10 years (as identified in European Plastic Pact). This scenario means that also Aptar technologies need to be updated, especially the assets related to the production of plastic packaging with new sustainable materials (like biofeedstock resins, recycled content materials etc...) that can require new molds, assembling machines and injection molding press with different set up for ensuring the quality of the production processes. In case Aptar is not able to satisfy this new technology evolution, the products portfolio can generate a decrease revenue due to low demand.

(3.1.1.11) Primary financial effect of the risk

Select from:

☑ Decreased asset value or asset useful life leading to write-offs, asset impairment or early retirement of existing assets

(3.1.1.12) Time horizon over which the risk is anticipated to have a substantive effect on the organization

Select all that apply

- ✓ Short-term
- ✓ Medium-term
- ✓ Long-term

(3.1.1.13) Likelihood of the risk having an effect within the anticipated time horizon

Select from:

✓ Exceptionally unlikely

(3.1.1.14) Magnitude

Select from:

✓ High

(3.1.1.16) Anticipated effect of the risk on the financial position, financial performance and cash flows of the organization in the selected future time horizons

Aptar has investments in machinery and equipment for all operations (Beauty, Closure and Pharma), so, assuming that at least 50% of these assets can be affected switching to new investments in technology to produce packaging product with lower emission options (sustainable materials and/or no single-use packaging), the cost related to the unsuccessfull investment is about 1.6bn. While we believe it is likely that there will be more and more request of responsible products from customers and markets, the probability of this risk has been evaluated "unlikely" because more and more the new sustainable materials can be used with same injection molding and assembling technologies already used for the use of non sustainable materials.

(3.1.1.17) Are you able to quantify the financial effect of the risk?

Select from:

✓ Yes

(3.1.1.19) Anticipated financial effect figure in the short-term – minimum (currency)

1600000000

(3.1.1.20) Anticipated financial effect figure in the short-term – maximum (currency)

1600000000

(3.1.1.21) Anticipated financial effect figure in the medium-term – minimum (currency)

1600000000

(3.1.1.22) Anticipated financial effect figure in the medium-term – maximum (currency)

1600000000

(3.1.1.23) Anticipated financial effect figure in the long-term – minimum (currency)

1600000000

(3.1.1.24) Anticipated financial effect figure in the long-term – maximum (currency)

1600000000

(3.1.1.25) Explanation of financial effect figure

Aptar has investments in machinery and equipment for all operations (Beauty, Closure and Pharma), so, assuming that at least 50% of these assets can be affected switching to new investments in technology to produce packaging product with lower emission options (sustainable materials and/or no single-use packaging), the cost related to the unsuccesfull investment is about 1.6bn. While we believe it is likely that there will be more and more request of responsible products from customers and markets, the probability of this risk has been evaluated "unlikely" because more and more the new sustainable materials can be used with same injection molding and assembling technologies already used for the use of non sustainable materials.

(3.1.1.26) Primary response to risk

Infrastructure, technology and spending

✓ Increase investment in R&D

(3.1.1.27) Cost of response to risk

1000000

(3.1.1.28) Explanation of cost calculation

We are assuming that Aptar will need to increase investment in R&D especially for trial tests, investigation of new sustainable materials features and technical requirements.

(3.1.1.29) Description of response

We are assuming that Aptar will need to increase investment in R&D especially for trial tests, investigation of new sustainable materials features and technical requirements.

[Add row]

(3.1.2) Provide the amount and proportion of your financial metrics from the reporting year that are vulnerable to the substantive effects of environmental risks.

Climate change

(3.1.2.1) Financial metric

Select from:

Revenue

(3.1.2.2) Amount of financial metric vulnerable to transition risks for this environmental issue (unit currency as selected in 1.2)

141000000

(3.1.2.3) % of total financial metric vulnerable to transition risks for this environmental issue

Select from:

✓ 1-10%

(3.1.2.4) Amount of financial metric vulnerable to physical risks for this environmental issue (unit currency as selected in 1.2)

156000000

$(3.1.2.5)\,$ % of total financial metric vulnerable to physical risks for this environmental issue

Select from:

✓ 1-10%

(3.1.2.7) Explanation of financial figures

Aptar identifies and assesses climate-related risks and opportunities at a company level considering the main risk and opportunity drivers that could affect our business, markets and customer's expectations. Internally we classified climate related risks into the three internal categories as macroeconomic, strategic and operational. Regarding the identification and assessment of risks and opportunities at company level, as part of the Aptar Production System, we measure and track each facility along a progression path, each facility is responsible to determine aspects and impacts of the business and then to prioritize these aspects and impacts, risks and opportunities, and dependencies. The process for the evaluation of risks is defined by the VP of Treasury and Risk Management. The potential size and scope of identified risks are based on the screening process considering the severity of the impact to cash flow and earnings and to strategic business objectives. We currently have integrated climate related risks in our risk model to define when risks have strategic impact and they are evaluated more than once a year through active management plans. The organization's dependencies and impacts are the starting point of the risk assessment, for example assuming info from the main impacts of operations and main dependencies like energy and raw materials uses. In addition, the main data sources for the assessment are based on the internal primary data, but, where it is not possible, we can have support from databases scientific approved. Once a climate-related risk and opportunity is identified to have a substantive financial or strategic impact on Aptar's business, Aptar ensures to develop KPIs and a governance process in line with the respective time horizon(s) to address the risk/opportunity and drive initiatives to manage the respective risk/opportunities. These initiatives are specified depending on if the risk/opportunity occurs/affects upstream (supply chain engagement), direct operations (site-specific initiatives) or downstream (product/market/sales). The methodology used to assess the nature, likelihood and magnitude of the effects of dependencies, impacts, risks and opportunities, takes into consideration qualitative factors about the ability to meet strategic business objectives and stakeholders involvement, and quantitative thresholds based on the loss of profits in a range between 2-10 million (rating scale from 1 to 9).

Water

(3.1.2.1) Financial metric

Select from:

▼ Revenue

(3.1.2.2) Amount of financial metric vulnerable to transition risks for this environmental issue (unit currency as selected in 1.2)

0

(3.1.2.3) % of total financial metric vulnerable to transition risks for this environmental issue

Select from:

✓ Less than 1%

(3.1.2.4) Amount of financial metric vulnerable to physical risks for this environmental issue (unit currency as selected in 1.2)

18000000

(3.1.2.5) % of total financial metric vulnerable to physical risks for this environmental issue

Select from:

✓ Less than 1%

(3.1.2.7) Explanation of financial figures

Aptar identifies and assesses water-related risks and opportunities at a company level considering the main risk and opportunity drivers that could affect our business, markets and customer's expectations. Internally we classified climate related risks into the three internal categories as macroeconomic, strategic and operational. Regarding the identification and assessment of risks and opportunities at company level, as part of the Aptar Production System, we measure and track each facility along a progression path, each facility is responsible to determine aspects and impacts of the business and then to prioritize these aspects and impacts, risks and opportunities, and dependencies. The process for the evaluation of risks is defined by the VP of Treasury and Risk Management. The potential size and scope of identified risks are based on the screening process considering the severity of the impact to cash flow and earnings and to strategic business objectives. We currently have integrated climate related risks in our risk model to define when risks have strategic impact and they are evaluated more than once a year through active management plans. The organization's dependencies and impacts are the starting point of the risk assessment, for example assuming info from the main impacts of operations and main dependencies like energy and raw materials uses. In addition, the main data sources for the assessment are based on the internal primary data, but, where it is not possible, we can have support from databases scientific approved. Once a climate-related risk and opportunity is identified to have a substantive financial or strategic impact on Aptar's business, Aptar ensures to develop KPIs and a governance process in line with the respective time horizon(s) to address the risk/opportunity and drive initiatives to manage the respective risk/opportunities. These initiatives are specified depending on if the risk/opportunity

occurs/affects upstream (supply chain engagement), direct operations (site-specific initiatives) or downstream (product/market/sales). The methodology used to assess the nature, likelihood and magnitude of the effects of dependencies, impacts, risks and opportunities, takes into consideration qualitative factors about the ability to meet strategic business objectives and stakeholders involvement, and quantitative thresholds based on the loss of profits in a range between 2-10 million (rating scale from 1 to 9).

[Add row]

(3.2) Within each river basin, how many facilities are exposed to substantive effects of water-related risks, and what percentage of your total number of facilities does this represent?

Row 1

(3.2.1) Country/Area & River basin

Spain

☑ Other, please specify :Mediterranean Sea

(3.2.2) Value chain stages where facilities at risk have been identified in this river basin

Select all that apply

✓ Direct operations

(3.2.3) Number of facilities within direct operations exposed to water-related risk in this river basin

1

(3.2.4) % of your organization's total facilities within direct operations exposed to water-related risk in this river basin

Select from:

✓ 1-25%

(3.2.10) % organization's total global revenue that could be affected

Select from:

(3.2.11) Please explain

We have identified one Aptar site in the Mediterrean Sea river basin that is impacted by water risks in our direct operations with the potential to have a substantive impact on our business. This site manufactures closures with plastics sourced from our suppliers and are important for us because their continued functioning is key to ensuring business continuity at many of our B2B customers. The percentage of our global revenue that could be affected is estimated and depends on a range of factors such as the impact type, magnitude and duration, as well as the unique nature of the knock-on impacts on our B2B customers from partial or full site closure. The main risk driver is linked to the water scarcity (drought) with medium-high severity. Considering the nature of the risk, the main problem is related to the stop of injection molding cooling process that can have an impact on the overall business. Potential financial impact has been estimated taking into consideration the average gross business interruption value for 2 weeks in sites located in water stressed areas.

Row 2

(3.2.1) Country/Area & River basin

China

Amur

(3.2.2) Value chain stages where facilities at risk have been identified in this river basin

Select all that apply

Direct operations

(3.2.3) Number of facilities within direct operations exposed to water-related risk in this river basin

1

(3.2.4) % of your organization's total facilities within direct operations exposed to water-related risk in this river basin

Select from:

✓ 1-25%

(3.2.11) Please explain

We have identified one Aptar site in the Amur river basin that are impacted by water risks in our direct operations with the potential to have a substantive impact on our business. These sites manufacture closures with plastics sourced from our suppliers and are important for us because their continued functioning is key to ensuring business continuity at many of our B2B customers. The percentage of our global revenue that could be affected is estimated and depends on a range of factors such as the impact type, magnitude and duration, as well as the unique nature of the knock-on impacts on our B2B customers from partial or full site closure. The main risk driver is linked to the water scarcity (drought) with medium-high severity. Considering the nature of the risk, the main problem is related to the stop of injection molding cooling process that can have an impact on the overall business. Potential financial impact has been estimated taking into consideration the average gross business interruption value for 2 weeks in sites located in water stressed areas.

Row 3

(3.2.1) Country/Area & River basin

China

☑ Other, please specify: Yellow Sea and East China Sea

(3.2.2) Value chain stages where facilities at risk have been identified in this river basin

Select all that apply

✓ Direct operations

(3.2.3) Number of facilities within direct operations exposed to water-related risk in this river basin

1

(3.2.4) % of your organization's total facilities within direct operations exposed to water-related risk in this river basin

Select from:

✓ 1-25%

(3.2.11) Please explain

We have identified one Aptar site in the Yellow Sea and East China Sea river basin that are impacted by water risks in our direct operations with the potential to have a substantive impact on our business. These sites manufacture closures with plastics sourced from our suppliers and are important for us because their continued functioning is key to ensuring business continuity at many of our B2B customers. The percentage of our global revenue that could be affected is estimated and depends on a range of factors such as the impact type, magnitude and duration, as well as the unique nature of the knock-on impacts on our B2B customers from partial or full site closure. The main risk driver is linked to the water scarcity (drought) with medium-high severity. Considering the nature of the risk, the main problem is related to the stop of injection molding cooling process that can have an impact on the overall business. Potential financial impact has been estimated taking into consideration the average gross business interruption value for 2 weeks in sites located in water stressed areas.

Row 4

(3.2.1) Country/Area & River basin

Thailand

✓ Other, please specify: Gulf of Thailand

(3.2.2) Value chain stages where facilities at risk have been identified in this river basin

Select all that apply

✓ Direct operations

(3.2.3) Number of facilities within direct operations exposed to water-related risk in this river basin

1

(3.2.4) % of your organization's total facilities within direct operations exposed to water-related risk in this river basin

Select from:

✓ 1-25%

(3.2.11) Please explain

We have identified one Aptar site in the Gulf of Thailand river basin that are impacted by water risks in our direct operations with the potential to have a substantive impact on our business. These sites manufacture closures with plastics sourced from our suppliers and are important for us because their continued functioning is key to ensuring business continuity at many of our B2B customers. The percentage of our global revenue that could be affected is estimated and depends on a range of factors such as the impact type, magnitude and duration, as well as the unique nature of the knock-on impacts on our B2B customers from partial or full site closure. The main risk driver is linked to the water scarcity (drought) with medium-high severity. Considering the nature of the risk, the main problem is related to the stop of injection molding cooling process that can have an impact on the overall business. Potential financial impact has been estimated taking into consideration the average gross business interruption value for 2 weeks in sites located in water stressed areas.

Row 5

(3.2.1) Country/Area & River basin

Italy

☑ Other, please specify :Adriatic Sea

(3.2.2) Value chain stages where facilities at risk have been identified in this river basin

Select all that apply

✓ Direct operations

(3.2.3) Number of facilities within direct operations exposed to water-related risk in this river basin

2

(3.2.4) % of your organization's total facilities within direct operations exposed to water-related risk in this river basin

Select from:

✓ 1-25%

(3.2.11) Please explain

We have identified two Aptar sites in the Adriatic Sea river basin that are impacted by water risks in our direct operations with the potential to have a substantive impact on our business. These sites manufacture closures with plastics sourced from our suppliers and are important for us because their continued functioning is key to ensuring business continuity at many of our B2B customers. The percentage of our global revenue that could be affected is estimated and depends on a range of factors such as the impact type, magnitude and duration, as well as the unique nature of the knock-on impacts on our B2B customers from partial or full site closure. The main risk driver is linked to the water scarcity (drought) with medium-high severity. Considering the nature of the risk, the main problem is related to the stop of injection molding cooling process that can have an impact on the overall business. Potential financial impact has been estimated taking into consideration the average gross business interruption value for 2 weeks in sites located in water stressed areas.

Row 6

(3.2.1) Country/Area & River basin

India

☑ Other, please specify: Bay of Bengal

(3.2.2) Value chain stages where facilities at risk have been identified in this river basin

Select all that apply

✓ Direct operations

(3.2.3) Number of facilities within direct operations exposed to water-related risk in this river basin

1

(3.2.4) % of your organization's total facilities within direct operations exposed to water-related risk in this river basin

Select from:

✓ 1-25%

(3.2.11) Please explain

We have identified one Aptar site in the Bay of Bengal river basin that are impacted by water risks in our direct operations with the potential to have a substantive impact on our business. These sites manufacture closures with plastics sourced from our suppliers and are important for us because their continued functioning is key to ensuring business continuity at many of our B2B customers. The percentage of our global revenue that could be affected is estimated and depends on a range of factors such as the impact type, magnitude and duration, as well as the unique nature of the knock-on impacts on our B2B customers from partial or full site closure. The main risk driver is linked to the water scarcity (drought) with medium-high severity. Considering the nature of the risk, the main problem is related to the stop of injection molding cooling process that can have an impact on the overall business. Potential financial impact has been estimated taking into consideration the average gross business interruption value for 2 weeks in sites located in water stressed areas.

Row 7

(3.2.1) Country/Area & River basin

Mexico

☑ Other, please specify: North Pacific

(3.2.2) Value chain stages where facilities at risk have been identified in this river basin

Select all that apply

✓ Direct operations

(3.2.3) Number of facilities within direct operations exposed to water-related risk in this river basin

1

(3.2.4) % of your organization's total facilities within direct operations exposed to water-related risk in this river basin

Select from:

✓ 1-25%

(3.2.11) Please explain

We have identified one Aptar site in theNorth Pacific river basin that are impacted by water risks in our direct operations with the potential to have a substantive impact on our business. These sites manufacture closures with plastics sourced from our suppliers and are important for us because their continued functioning is key to ensuring business continuity at many of our B2B customers. The percentage of our global revenue that could be affected is estimated and depends on a range of factors such as the impact type, magnitude and duration, as well as the unique nature of the knock-on impacts on our B2B customers from partial or full site closure. The main risk driver is linked to the water scarcity (drought) with medium-high severity. Considering the nature of the risk, the main problem is related to the stop of injection molding cooling process that can have an impact on the overall business. Potential financial impact has been estimated taking into consideration the average gross business interruption value for 2 weeks in sites located in water stressed areas.

Row 8

(3.2.1) Country/Area & River basin

Brazil

✓ Other, please specify :North Pacific

(3.2.2) Value chain stages where facilities at risk have been identified in this river basin

Select all that apply

✓ Direct operations

(3.2.3) Number of facilities within direct operations exposed to water-related risk in this river basin

1

(3.2.4) % of your organization's total facilities within direct operations exposed to water-related risk in this river basin

Select from:

✓ 1-25%

(3.2.11) Please explain

We have identified one Aptar site in theNorth Pacific river basin that are impacted by water risks in our direct operations with the potential to have a substantive impact on our business. These sites manufacture closures with plastics sourced from our suppliers and are important for us because their continued functioning is key to ensuring business continuity at many of our B2B customers. The percentage of our global revenue that could be affected is estimated and depends on a range of factors such as the impact type, magnitude and duration, as well as the unique nature of the knock-on impacts on our B2B customers from partial or full site closure. The main risk driver is linked to the water scarcity (drought) with medium-high severity. Considering the nature of the risk, the main problem is related to the stop of injection molding cooling process that can have an impact on the overall business. Potential financial impact has been estimated taking into consideration the average gross business interruption value for 2 weeks in sites located in water stressed areas.

[Add row]

(3.3) In the reporting year, was your organization subject to any fines, enforcement orders, and/or other penalties for water-related regulatory violations?

Water-related regulatory violations	Comment
Select from: ✓ No	Aptar has not subject to particular fines

[Fixed row]

(3.6) Have you identified any environmental opportunities which have had a substantive effect on your organization in the reporting year, or are anticipated to have a substantive effect on your organization in the future?

	Environmental opportunities identified
Climate change	Select from: ✓ Yes, we have identified opportunities, and some/all are being realized
Water	Select from: ✓ Yes, we have identified opportunities, and some/all are being realized

[Fixed row]

(3.6.1) Provide details of the environmental opportunities identified which have had a substantive effect on your organization in the reporting year, or are anticipated to have a substantive effect on your organization in the future.

Climate change

(3.6.1.1) Opportunity identifier

Select from:

✓ Opp1

(3.6.1.3) Opportunity type and primary environmental opportunity driver

Resource efficiency

✓ Move to more energy/resource efficient buildings

(3.6.1.4) Value chain stage where the opportunity occurs

Select from:

✓ Direct operations

(3.6.1.5) Country/area where the opportunity occurs

Select all that apply

- ✓ France
- Germany
- ✓ Italy
- Spain
- ✓ United States of America

(3.6.1.8) Organization specific description

Assumes Aptar decides to move to more efficient buildings (10 - 13 existing Aptar manufacturing replaced by new plant). Our estimation is based on a real example, Aptar site "Granville 2", for which we have built a new facility in alignment to LEED standard. This energy efficient building is expected to generate annual energy savings of 10% as compared to the former facility.

(3.6.1.9) Primary financial effect of the opportunity

Select from:

✓ Reduced direct costs

(3.6.1.10) Time horizon over which the opportunity is anticipated to have a substantive effect on the organization

Select all that apply

- ✓ Short-term
- Medium-term
- ✓ Long-term

(3.6.1.11) Likelihood of the opportunity having an effect within the anticipated time horizon

Select from:

✓ Likely (66-100%)

(3.6.1.12) Magnitude

Sel	lect	fro	m
001	-cc	$II \cup$,,,,

✓ Medium

(3.6.1.14) Anticipated effect of the opportunity on the financial position, financial performance and cash flows of the organization in the selected future time horizons

The implementation of energy conservation measures and the design of new plant can ensure the reduction of direct and indirect costs related to the life cycle of the plant. In terms of cash flow we can estimate less energy cost and maintenance cost.

(3.6.1.15) Are you able to quantify the financial effects of the opportunity?

Select from:

✓ Yes

(3.6.1.17) Anticipated financial effect figure in the short-term - minimum (currency)

4700000

(3.6.1.18) Anticipated financial effect figure in the short-term – maximum (currency)

5700000

(3.6.1.19) Anticipated financial effect figure in the medium-term - minimum (currency)

4700000

(3.6.1.20) Anticipated financial effect figure in the medium-term - maximum (currency)

5700000

(3.6.1.21) Anticipated financial effect figure in the long-term - minimum (currency)

4700000

(3.6.1.22) Anticipated financial effect figure in the long-term – maximum (currency)

(3.6.1.23) Explanation of financial effect figures

Aptar investigated the possibility to retrofit operations that will not be involved in new plant project, so, we estimated 40 sites that can implement energy conservation measures related to energy uses for auxiliaries processes (e.g. HVAC, Compressed Air) in the next mid term period (about 4 sites per year) using part of the yearly CAPEX dedicated to energy efficiency. Total energy saving estimated is 6% of total electricity consumption.

(3.6.1.24) Cost to realize opportunity

8000000

(3.6.1.25) Explanation of cost calculation

The total cost to realize energy efficiency retrofitting has been estimated using max 30% of total energy efficiency CAPEX.

(3.6.1.26) Strategy to realize opportunity

Assumes Aptar decides to move to more efficient buildings (10 - 13 existing Aptar manufacturing replaced by new plant). Our estimation is based on Aptar sites for which we have built a new facility in alignment to LEED standard. In addition, Aptar investigated the possibility to retrofit operations that will not be involved in new plant project, so, we estimated 40 sites that can implement energy conservation measures related to energy uses for auxiliaries processes (e.g. HVAC, Compressed Air) in the next mid term period (about 4 sites per year) using part of the yearly CAPEX dedicated to energy efficiency. Total opportunity is based on the following range: Min 0.2M x 10 plants 2M 2.7M 4.7M Max 0.2M x 13 plants 3M 2.7M 5.7M Cost to realize opportunity: The total cost to realize opportunity for new building (equipment installation) is about 0.5M Estimation of cost to realize opportunity is based on: 0.5M x 10 plants 5M 0.5M x 13 plants 7M The total cost to realize energy efficiency retrofitting has been estimated using max 30% of total energy efficiency CAPEX: 1M, so, the return on investment for yearly retrofitting in 4 sites is 3.7 years (1M / 0.27M). Total cost to realize opportunity is based on the following range: Min 0.5M x 10 plants 5M 1M 6M Max 0.5M x 13 plants 7M 1M 8M

Water

(3.6.1.1) Opportunity identifier

Select from:

✓ Opp2

(3.6.1.3) Opportunity type and primary environmental opportunity driver

Resource efficiency

✓ Increased efficiency of production and/or distribution processes

(3.6.1.4) Value chain stage where the opportunity occurs

Select from:

✓ Direct operations

(3.6.1.5) Country/area where the opportunity occurs

Select all that apply

☑ Brazil

(3.6.1.6) River basin where the opportunity occurs

Select all that apply

✓ Other, please specify

(3.6.1.8) Organization specific description

We have realized an opportunity in our Brazilian site in the South Atlantic river basin. The opportunity is related to the implementation of a closed loop system to treat and reuse wastewater coming from the anodizing process for aluminum components. This solution can have strategic impact thanks to the increase of efficiency level in our Brazilian operation and can have financial impact related to the decrease of wastewater disposal and water withdrawn. The benefit can be applied to Brazilian site related to anodizing process for aluminum components. From opportunity point of view, the concept of substantive impact can be linked to the strategy and actions to limit the decrease of our profits with high efficiency of our processes in operations. For example the development of new technology to adopt closed loop system and reuse system for water can have benefit with less cost to manage wastewater disposal and can ensure water saving of approximately 4.3 megaliters per month. In the current year Aptar has investigated steps to realize the opportunity and is expected to realize the opportunity by 2026.

(3.6.1.9) Primary financial effect of the opportunity

Select from:

✓ Reduced direct costs

(3.6.1.10) Time horizon over which the opportunity is anticipated to have a substantive effect on the organization

Select all	that	аррі	ly
------------	------	------	----

✓ Medium-term

(3.6.1.11) Likelihood of the opportunity having an effect within the anticipated time horizon

Select from:

✓ Likely (66–100%)

(3.6.1.12) Magnitude

Select from:

Medium

(3.6.1.14) Anticipated effect of the opportunity on the financial position, financial performance and cash flows of the organization in the selected future time horizons

The implementation of water reuse system and recycling of wastewater will reduce annual cost and can avoid the possible reduction in production capacity (and stop) for our intercompany plants

(3.6.1.15) Are you able to quantify the financial effects of the opportunity?

Select from:

✓ Yes

(3.6.1.19) Anticipated financial effect figure in the medium-term - minimum (currency)

1000000

(3.6.1.20) Anticipated financial effect figure in the medium-term - maximum (currency)

1000000

(3.6.1.23) Explanation of financial effect figures

The financial impact calculation is based on saving related to the cost of water consumed and wastewater (sewage).

(3.6.1.24) Cost to realize opportunity

50000

(3.6.1.25) Explanation of cost calculation

The total cost is focused on the implementation of closed loop system to treat and reuse wastewater coming from anodizing process

(3.6.1.26) Strategy to realize opportunity

Opportunity is related to the implementation of closed loop system to treat and reuse wastewater coming from anodizing process for aluminum components. This solution can have strategic impact thanks to the increase of efficiency level in our Brazilian operation and can have financial impact related to the decrease of wastewater disposal and water withdrawn. The benefit can be applied to Brazilian site related to anodizing process for aluminum components. From opportunity point of view, the concept of substantive impact can be linked to the strategy and actions to limit the decrease of our profits with high efficiency of our processes in operations. For example the development of new technology to adopt closed loop system and reuse system for water can have benefit with less cost to manage wastewater disposal and can ensure water saving of 4.3 megaliters per month. In the current year Aptar has taken investigation steps to realize the opportunity and is expected to realize the opportunity by 2026.

Climate change

(3.6.1.1) Opportunity identifier

Select from:

✓ Opp3

(3.6.1.3) Opportunity type and primary environmental opportunity driver

Products and services

✓ Shift in consumer preferences

(3.6.1.4) Value chain stage where the opportunity occurs

Select from:

✓ Downstream value chain

(3.6.1.5) Country/area where the opportunity occurs

Select all that apply

United States of America

(3.6.1.8) Organization specific description

Our customers recognize us as a innovation partners that shape the drug delivery and consumer product dispensing industries, while also becoming a proactive leader in sustainability. We care for people and planet, we collaborate with many industry partners, and we prioritize circular and recycling solutions so that we can advance our collective progress toward building a safer, healthier, more sustainable future. Assuming that markets will drive a shift in consumer preferences on which end-users are seeking for product solutions with reliable information on the environmental performance and sustainability rating linked to use of sustainable materials, renewable energy and low carbon content. Aptar can promote "a new service product-related" based on the product carbon footprint analyzed in compliance with Life Cycle Assessment methodology. This service assists Aptar customers and satisfies the market request on the eco-certifications of environmental performance of packaging (included recyclability assessment).

(3.6.1.9) Primary financial effect of the opportunity

Select from:

✓ Increased revenues resulting from increased demand for products and services

(3.6.1.10) Time horizon over which the opportunity is anticipated to have a substantive effect on the organization

Select all that apply

✓ Short-term

✓ Medium-term

✓ Long-term

(3.6.1.11) Likelihood of the opportunity having an effect within the anticipated time horizon

Select from:

✓ Unlikely (0-33%)

(3.6.1.12) Magnitude

Select from:

✓ Medium-low

(3.6.1.14) Anticipated effect of the opportunity on the financial position, financial performance and cash flows of the organization in the selected future time horizons

Assuming that market will drive a shift in consumer preferences on which end-users are looking for product solutions with reliable information on the environmental performance and sustainability rating linked to use of sustainable materials, renewable energy and low carbon content. Aptar can promote "a new service product-related" based on the product carbon footprint analyzed in compliance with Life Cycle Assessment methodology. This service can increase the fidelization of Aptar customers and satisfy the market request on the eco-certifications of environmental performance of packaging (included recyclability assessment).

(3.6.1.15) Are you able to quantify the financial effects of the opportunity?

Select from:

✓ Yes

(3.6.1.17) Anticipated financial effect figure in the short-term - minimum (currency)

1600000

(3.6.1.18) Anticipated financial effect figure in the short-term – maximum (currency)

1600000

(3.6.1.19) Anticipated financial effect figure in the medium-term - minimum (currency)

1600000

(3.6.1.20) Anticipated financial effect figure in the medium-term - maximum (currency)

1600000

(3.6.1.21) Anticipated financial effect figure in the long-term - minimum (currency)

1600000

(3.6.1.22) Anticipated financial effect figure in the long-term – maximum (currency)

(3.6.1.23) Explanation of financial effect figures

Aptar can promote "a new service product-related" based on the product carbon footprint analyzed in compliance with Life Cycle Assessment methodology. This service can increase the fidelization of Aptar customers and satisfy the market request on the eco-certifications of environmental performance of packaging (included recyclability assessment).

(3.6.1.24) Cost to realize opportunity

300000

(3.6.1.25) Explanation of cost calculation

we are assuming a need for 0.3M to update LCA software for eco-design, dedicated person and certificates services. While we believe it is likely that Aptar will need to support the shift in consumer preferences, the probability of this opportunity is unlikely because at the moment in the market we have different consultants and dedicated organizations for the product carbon footprint analysis that are already collaborating with our main customers. The cost to realize opportunity has been evaluated very low because we pass through the increase cost to promote shift in consumer preferences to eco-solutions and/or eco-certifications

(3.6.1.26) Strategy to realize opportunity

Assuming that market will drive a shift in consumer preferences on which end-users are looking for product solutions with reliable information on the environmental performance and sustainability rating linked to use of sustainable materials, renewable energy and low carbon content. Aptar can promote "a new service product-related" based on the product carbon footprint analyzed in compliance with Life Cycle Assessment methodology. This service can increase the fidelization of Aptar customers and satisfy the market request on the eco-certifications of environmental performance of packaging (included recyclability assessment).

Climate change

(3.6.1.1) Opportunity identifier

Select from:

✓ Opp4

(3.6.1.3) Opportunity type and primary environmental opportunity driver

Reputational capital

☑ Reputational benefits resulting in increased demand for products/services

(3.6.1.4) Value chain stage where the opportunity occurs

Select from:

✓ Downstream value chain

(3.6.1.5) Country/area where the opportunity occurs

Select all that apply

United States of America

(3.6.1.6) River basin where the opportunity occurs

Select all that apply

☑ Other, please specify :not necessary for climate change

(3.6.1.8) Organization specific description

Our customers recognize us as a true innovation leader that has shaped the drug delivery and consumer product dispensing industries while becoming a proactive leader in sustainability. We care for each other and the planet, we collaborate with many industry partners, and we prioritize circular and recycling solutions so that we can advance our collective progress toward building a safer, healthier, more sustainable future. Assuming that regulatory laws will drive the reduction of nature footprint and changing customer behaviors purchasing more sustainable solutions and low emission goods, Aptar identifies an opportunity converting the product portfolio with forest protection practices and resource efficiency as requested by markets and customers. New market share penetration may be realized (approximately 3%) in respect toconventional products.

(3.6.1.9) Primary financial effect of the opportunity

Select from:

✓ Increased revenues resulting from increased demand for products and services

(3.6.1.10) Time horizon over which the opportunity is anticipated to have a substantive effect on the organization

- √ Short-term
- ✓ Medium-term
- ✓ Long-term

(3.6.1.11) Likelihood of the opportunity having an effect within the anticipated time horizon

Select from:

✓ Likely (66–100%)

(3.6.1.12) Magnitude

Select from:

☑ High

(3.6.1.14) Anticipated effect of the opportunity on the financial position, financial performance and cash flows of the organization in the selected future time horizons

Our customers recognize us as a true innovation leader that has shaped the drug delivery and consumer product dispensing industries while becoming a proactive leader in sustainability. We care for each other and the planet, we collaborate with many industry partners, and we prioritize circular and recycling solutions so that we can advance our collective progress toward building a safer, healthier, more sustainable future. Assuming that regulatory laws will drive the reduction of nature footprint and changing customer behaviours purchasing more sustainable solutions and low emission goods, Aptar can estimate an opportunity converting the entire product portfolio with no deforestation practices and resource efficiency use requested by markets and customers. New market share penetration (approximately 3%) respect conventional products.

(3.6.1.15) Are you able to quantify the financial effects of the opportunity?

Select from:

Yes

(3.6.1.17) Anticipated financial effect figure in the short-term - minimum (currency)

60000000

(3.6.1.18) Anticipated financial effect figure in the short-term – maximum (currency)

(3.6.1.19) Anticipated financial effect figure in the medium-term - minimum (currency)

60000000

(3.6.1.20) Anticipated financial effect figure in the medium-term - maximum (currency)

60000000

(3.6.1.21) Anticipated financial effect figure in the long-term - minimum (currency)

60000000

(3.6.1.22) Anticipated financial effect figure in the long-term – maximum (currency)

60000000

(3.6.1.23) Explanation of financial effect figures

Aptar can estimate an opportunity converting the entire product portfolio with minimum recycled content requested by markets and customers. New market share penetration (approximately 3%) respect conventional products.

(3.6.1.24) Cost to realize opportunity

1000000

(3.6.1.25) Explanation of cost calculation

Access to production tools and material tests estimated in 0.6M - 1.0M While we believe it is very likely that Aptar will need to promote the use of recycled materials and that the cost of recycled materials will not decrease respect conventional materials, it is likely that Aptar can have a new market share penetration to new customers that are looking for low emissions goods. The cost to realize opportunity has been evaluated very low because we either pass through the increase cost materials to customers or not convert products to PCR materials.

(3.6.1.26) Strategy to realize opportunity

Opportunity is based on the fact that our customers recognize us as a true innovation leader that has shaped the drug delivery and consumer product dispensing industries while becoming a proactive leader in sustainability. We care for each other and the planet, we collaborate with many industry partners, and we prioritize circular and recycling solutions so that we can advance our collective progress toward building a safer, healthier, more sustainable future. Assuming that regulatory laws will drive the use of recycled content in the markets and changing customer behaviours purchasing more sustainable solutions and low emission goods, Aptar can estimate an opportunity converting the entire product portfolio with minimum recycled content requested by markets and customers. New market share penetration (approximately 3%) respect conventional products.

[Add row]

(3.6.2) Provide the amount and proportion of your financial metrics in the reporting year that are aligned with the substantive effects of environmental opportunities.

Climate change

(3.6.2.1) Financial metric

Select from:

Revenue

(3.6.2.2) Amount of financial metric aligned with opportunities for this environmental issue (unit currency as selected in 1.2)

67300000

(3.6.2.3) % of total financial metric aligned with opportunities for this environmental issue

Select from:

☑ 1-10%

(3.6.2.4) Explanation of financial figures

Included in the overall risk management system, Aptar identifies and assesses climate-related risks and opportunities at a company level considering the main risk and opportunity drivers that could affect our business, markets and customer's expectations. Internally we classified climate related risks into the three internal categories as macroeconomic, strategic and operational. Regarding the identification and assessment of risks and opportunities at company level, and each facility is responsible to determine aspects and impacts of the business and then to prioritize these aspects and impacts, risks and opportunities, and dependencies. The process for the evaluation of risks is defined by the VP of Treasury and Risk Management. The potential size and scope of identified risks are based on the screening

process considering the severity of the impact to cash flow and earnings and to strategic business objectives. We currently have integrated climate related risks in our risk model to define when risks have strategic impact and they are evaluated more than once a year through active management plans. The organization's dependencies and impacts are the starting point of the risk assessment, for example assuming info from the main impacts of operations and main dependencies like energy and raw materials uses. In addition, the main data sources for the assessment are based on the internal primary data, but, where it is not possible, we can have support from databases scientific approved. Once a climate-related risk and opportunity is identified to have a substantive financial or strategic impact on Aptar's business, Aptar ensures to develop KPIs and a governance process in line with the respective time horizon(s) to address the risk/opportunity and drive initiatives to manage the respective risk/opportunities. These initiatives are specified depending on if the risk/opportunity occurs/affects upstream (supply chain engagement), direct operations (site-specific initiatives) or downstream (product/market/sales). The methodology used to assess the nature, likelihood and magnitude of the effects of dependencies, impacts, risks and opportunities, takes into consideration qualitative factors about the ability to meet strategic business objectives and stakeholders involvement, and quantitative thresholds based on the loss of profits in a range between 2-10 million (rating scale from 1 to 9).

Water

(3.6.2.1) Financial metric

Select from:

CAPEX

(3.6.2.2) Amount of financial metric aligned with opportunities for this environmental issue (unit currency as selected in 1.2)

120000

(3.6.2.3) % of total financial metric aligned with opportunities for this environmental issue

Select from:

☑ 1-10%

(3.6.2.4) Explanation of financial figures

Included in the overall risk management system, Aptar identifies and assesses water-related risks and opportunities at a company level considering the main risk and opportunity drivers that could affect our business, markets and customer's expectations. Internally we classified climate related risks into the three internal categories as macroeconomic, strategic and operational. Regarding the identification and assessment of risks and opportunities at company level, and we measure and track each facility along a progression path, each facility is responsible to determine aspects and impacts of the business and then to prioritize these aspects and impacts, risks and opportunities, and dependencies. The process for the evaluation of risks is defined by the VP of Treasury and Risk Management. The potential size and scope of identified risks are based on the screening process considering the severity of the impact to cash flow and earnings and to strategic business objectives. We currently have integrated climate related risks in our risk model to define when risks have strategic impact and they are evaluated more than once a year through

active management plans. The organization's dependencies and impacts are the starting point of the risk assessment, for example assuming info from the main impacts of operations and main dependencies like energy and raw materials uses. In addition, the main data sources for the assessment are based on the internal primary data, but, where it is not possible, we can have support from databases scientific approved. Once a climate-related risk and opportunity is identified to have a substantive financial or strategic impact on Aptar's business, Aptar ensures to develop KPIs and a governance process in line with the respective time horizon(s) to address the risk/opportunity and drive initiatives to manage the respective risk/opportunities. These initiatives are specified depending on if the risk/opportunity occurs/affects upstream (supply chain engagement), direct operations (site-specific initiatives) or downstream (product/market/sales). The methodology used to assess the nature, likelihood and magnitude of the effects of dependencies, impacts, risks and opportunities, takes into consideration qualitative factors about the ability to meet strategic business objectives and stakeholders involvement, and quantitative thresholds based on the loss of profits in a range between 2-10 million (rating scale from 1 to 9).

[Add row]

C4. Governance

(4.1) Does your organization have a board of directors or an equivalent governing body?

(4.1.1) Board of directors or equivalent governing body

Select from:

Yes

(4.1.2) Frequency with which the board or equivalent meets

Select from:

Quarterly

(4.1.3) Types of directors your board or equivalent is comprised of

Select all that apply

- ☑ Executive directors or equivalent
- ✓ Non-executive directors or equivalent
- ✓ Independent non-executive directors or equivalent

(4.1.4) Board diversity and inclusion policy

Select from:

✓ Yes, and it is publicly available

(4.1.5) Briefly describe what the policy covers

Aptar's diversity initiatives are focused on increasing the gender balance of leadership at all levels. Through this effort, our practices and policies on recruitment and selection, compensation and benefits, professional development and training, promotions, assignments, separations, and community outreach are valued and implemented throughout the organization. Aptar is committed to: • ensuring that policies, strategies, processes and behaviors that promote equality and contribute to an inclusive organizational culture are in place; • understanding, valuing and working constructively with diversity to enable fair and full participation in our work and activities; • ensuring that there is no unjustified discrimination in our recruitment, selection, performance management and other processes; • ensuring action that

promotes equality; this includes conducting equality screening and impact assessments of policies and functions and progressing diversity action plans; treating individuals with whom we work with fairness, dignity and respect; and playing our part in removing barriers and redressing imbalances caused by inequality and unjustified discrimination. During the reporting year 50% of Aptar Board of Directors are women.

(4.1.6) Attach the policy (optional)

Aptar-Diversity-Equity-and-Inclusion-Policy_Dec2020-1.pdf [Fixed row]

(4.1.1) Is there board-level oversight of environmental issues within your organization?

	Board-level oversight of this environmental issue
Climate change	Select from: ✓ Yes
Water	Select from: ✓ Yes
Biodiversity	Select from: ✓ Yes

[Fixed row]

(4.1.2) Identify the positions (do not include any names) of the individuals or committees on the board with accountability for environmental issues and provide details of the board's oversight of environmental issues.

Climate change

(4.1.2.1) Positions of individuals or committees with accountability for this environmental issue

- Board chair
- General Counsel
- ✓ Other C-Suite Officer
- ☑ Board-level committee
- ☑ Chief Risk Officer (CRO)

- ✓ Chief Executive Officer (CEO)
- ✓ Chief Financial Officer (CFO)
- ☑ Chief Operating Officer (COO)
- ✓ Chief Procurement Officer (CPO)
- ☑ Chief Sustainability Officer (CSO)

(4.1.2.2) Positions' accountability for this environmental issue is outlined in policies applicable to the board

Select from:

Yes

(4.1.2.3) Policies which outline the positions' accountability for this environmental issue

Select all that apply

- ☑ Board Terms of Reference
- ✓ Board mandate

(4.1.2.4) Frequency with which this environmental issue is a scheduled agenda item

Select from:

✓ Scheduled agenda item in some board meetings – at least annually

(4.1.2.5) Governance mechanisms into which this environmental issue is integrated

- ☑ Reviewing and guiding annual budgets
- ✓ Overseeing and guiding scenario analysis
- ✓ Overseeing the setting of corporate targets
- ☑ Monitoring progress towards corporate targets
- ☑ Approving corporate policies and/or commitments
- ✓ Monitoring the implementation of a climate transition plan
- ✓ Overseeing and guiding the development of a business strategy
- ✓ Overseeing and guiding acquisitions, mergers, and divestitures

- ☑ Reviewing and guiding innovation/R&D priorities
- ☑ Approving and/or overseeing employee incentives
- ✓ Overseeing and guiding major capital expenditures
- ✓ Monitoring the implementation of the business strategy
- ✓ Overseeing reporting, audit, and verification processes

- ☑ Monitoring supplier compliance with organizational requirements
- ✓ Monitoring compliance with corporate policies and/or commitments
- ✓ Overseeing and guiding the development of a climate transition plan
- ☑ Reviewing and guiding the assessment process for dependencies, impacts, risks, and opportunities

(4.1.2.7) Please explain

Aptar's governance mechanism is contributing to the board's overall oversight for the climate change issue thanks to the support of various Board figures that oversee processes to incorporate the sustainability initiatives within business standards, rules, and guidelines. The Board receives frequent updates and is engaged on the specific initiatives including progress on goals, corporate targets, emerging sustainability trends, policies and/or commitments, monitoring of climate transition plan implementation, development and monitoring of a business strategy, guiding acquisitions, mergers and divestitures, review of annual budgets, risks and opportunities surrounding material sustainability issues & climate change. For example: the CEO leads the Executive Committee to decide on strategic Climate-related decisions such as our commitment to Science Based Targets, final decision to update Aptar's Scope 1 Scope 2 target to the more aggressive 1.5 degree scenario, future commitment on SBTN Nature Positive and plans along our Energy Roadmap, like support of the renewable energy purchasing strategy. The CFO oversees sustainability topics focusing on external reporting and assurance, operational control and risk management, confirmed the decision for Aptar to become a public signatory of the Task Force for Climate Related Financial Disclosures (TCFDs), and supported the integration of TCFDs into Aptar's Enterprise Risk Management process, which is managed within his organization, evaluates sustainability implications when contemplating capital expenditures and decides on actions necessary to accomplish our Climate-related commitments such as the Science Based targets (i.e. renewable energy purchases, refrigerant conversions, and other projects requiring CapEx), the CHRO oversees inclusion, equity and belonging, fair labor, human rights and employee engagement and development. Regarding our climate change commitment, understanding and support from the CHRO was necessary in order to "green" our fleet of cars that are provided as employee compensation benefits. The CHRO is instrumental in integrating sustainability into our Leadership for Growth employee survey. The members of the Executive Committee ("ExCom", C-Suite), each segment president oversees a unique excellence pillar working on sustainability: Operational Excellence, Innovation Excellence, Commercial Excellence, Global Purchasing, Global Sustainability. Direct line of reporting for the Global Sustainability Team is to the president responsible for the Beauty segment. Led by our Chief Sustainability Officer, the Global Sustainability Team is comprised of industry experts that develop and implement our programs. The Executive Committee members and SVP of Investor Relations hear from the CSO and the Product Sustainability Director during monthly ExCom meetings. The CSO provides information to the Board of Directors Audit and Governance Committees, with support from General Council.

Water

(4.1.2.1) Positions of individuals or committees with accountability for this environmental issue

- President
- ☑ Board chair
- ☑ General Counsel
- Director on board

- ☑ Board-level committee
- ✓ Chief Risk Officer (CRO)
- ☑ Chief Executive Officer (CEO)
- ✓ Chief Financial Officer (CFO)

- ✓ Other C-Suite Officer
- ☑ Chief Procurement Officer (CPO)
- ✓ Chief Sustainability Officer (CSO)

☑ Chief Operating Officer (COO)

(4.1.2.2) Positions' accountability for this environmental issue is outlined in policies applicable to the board

Select from:

✓ Yes

(4.1.2.3) Policies which outline the positions' accountability for this environmental issue

Select all that apply

- ☑ Board Terms of Reference
- ✓ Board mandate

(4.1.2.4) Frequency with which this environmental issue is a scheduled agenda item

Select from:

☑ Scheduled agenda item in some board meetings – at least annually

(4.1.2.5) Governance mechanisms into which this environmental issue is integrated

- ☑ Reviewing and guiding annual budgets
- ✓ Overseeing the setting of corporate targets
- Monitoring progress towards corporate targets
- ☑ Approving corporate policies and/or commitments
- ✓ Overseeing and guiding public policy engagement
- ☑ Monitoring the implementation of a climate transition plan
- ✓ Overseeing and guiding the development of a business strategy
- ✓ Overseeing and guiding acquisitions, mergers, and divestitures
- ✓ Monitoring supplier compliance with organizational requirements
- ☑ Monitoring compliance with corporate policies and/or commitments

- ☑ Reviewing and guiding innovation/R&D priorities
- ✓ Approving and/or overseeing employee incentives
- ✓ Overseeing and guiding major capital expenditures
- ✓ Monitoring the implementation of the business strategy
- ✓ Overseeing reporting, audit, and verification processes

- ✓ Overseeing and guiding the development of a climate transition plan
- ☑ Reviewing and guiding the assessment process for dependencies, impacts, risks, and opportunities

(4.1.2.7) Please explain

Aptar's governance mechanism is contributing to the Board's overall oversight for the water issue thanks to the support of different board figures that manage processes to incorporate the sustainability initiatives within business standards, rules, and guidelines. The board receives frequently updates and is engaged on the specific initiatives including progress on goals, corporate targets, emerging sustainability trends, policies and/or commitment, monitoring of water reduction plan implementation, development and monitoring of a business strategy, guiding acquisitions, mergers and divestitures, review of annual budgets, risks and opportunities surrounding material sustainability issues & water management. For example: the CEO leads the Executive Committee to decide on strategic water-related decisions such as our commitment to water conservation measures plan, final decision to integrate climate change plan with water management plan in the future commitment on SBT Nature Positive road map, the CFO oversees sustainability topics focusing on external reporting and assurance, operational control and risk management, confirmed the decision for Aptar to become a public signatory of the Task Force for Climate Related Financial Disclosures (TCFDs), and supported the integration of TCFDs into Aptar's Enterprise Risk Management process, which is managed within his organization, evaluates sustainability implications when contemplating capital expenditures and decides on actions necessary to accomplish our water-related commitments (i.e. water audit in plant located in water stressed areas, water conservation measures and other projects requiring CapEx). the CHRO oversees diversity, inclusion and equity, fair labor, human rights and employee engagement and development. Regarding our water commitment, understanding and support from the CHRO was necessary in order to "increase water management awareness". The CHRO is instrumental in integrating sustainability into our Leadership for Growth employee survey, the members of the Executive Committee ("ExCom", C-Suite), each segment president oversees a unique excellence pillar which works on sustainability topics: Operational Excellence, Innovation Excellence, Commercial Excellence, Global Purchasing, Global Sustainability. Direct line of reporting for the Global Sustainability Team is to the president responsible for the Beauty segment. Led by our Chief Sustainability Officer, the Global Sustainability Team is comprised of industry experts that develop and implement our programs. The Executive Committee members and SVP of Investor Relations hear from the CSO and the Product Sustainability Director during monthly ExCom meetings. The CSO provides information to the Board of Directors Audit and Governance Committees, with support from General Council. The Board Chair oversees Aptar's sustainability strategy and assists the Executive Committee in the direction.

Biodiversity

(4.1.2.1) Positions of individuals or committees with accountability for this environmental issue

Select all that apply

President

Board chair

General Counsel

Director on board

✓ Other C-Suite Officer

☑ Chief Procurement Officer (CPO)

☑ Board-level committee

✓ Chief Risk Officer (CRO)

✓ Chief Executive Officer (CEO)

☑ Chief Financial Officer (CFO)

☑ Chief Operating Officer (COO)

✓ Chief Sustainability Officer (CSO)

(4.1.2.2) Positions' accountability for this environmental issue is outlined in policies applicable to the board

Select from:

Yes

(4.1.2.3) Policies which outline the positions' accountability for this environmental issue

Select all that apply

- ☑ Board Terms of Reference
- ✓ Board mandate

(4.1.2.4) Frequency with which this environmental issue is a scheduled agenda item

Select from:

☑ Scheduled agenda item in some board meetings – at least annually

(4.1.2.5) Governance mechanisms into which this environmental issue is integrated

Select all that apply

- ☑ Reviewing and guiding annual budgets
- ✓ Overseeing the setting of corporate targets
- ☑ Monitoring progress towards corporate targets
- ☑ Approving corporate policies and/or commitments
- ✓ Overseeing and guiding public policy engagement
- ☑ Monitoring the implementation of a climate transition plan
- ✓ Overseeing and guiding the development of a business strategy
- ✓ Overseeing and guiding acquisitions, mergers, and divestitures
- ☑ Monitoring supplier compliance with organizational requirements
- ☑ Monitoring compliance with corporate policies and/or commitments
- ✓ Overseeing and guiding the development of a climate transition plan
- ☑ Reviewing and guiding the assessment process for dependencies, impacts, risks, and opportunities

- ✓ Reviewing and guiding innovation/R&D priorities
- ✓ Approving and/or overseeing employee incentives
- ✓ Overseeing and guiding major capital expenditures
- ✓ Monitoring the implementation of the business strategy
- ✓ Overseeing reporting, audit, and verification processes

(4.1.2.7) Please explain

Aptar's governance mechanism is contributing to the Board's overall oversight for the biodiversity issue thanks to the support of different board figures that manages processes to incorporate the sustainability initiatives within business standards, rules, and guidelines. The Board receives frequently updates and is engaged on the specific initiatives including progress on goals, corporate targets, emerging sustainability trends, policies and/or commitment, monitoring of biodiversity road map implementation, development and monitoring of a business strategy, guiding acquisitions, mergers and divestitures, review of annual budgets, risks and opportunities surrounding material sustainability issues & biodiversity management. For example: the CEO leads the Executive Committee to decide on strategic biodiversityrelated decisions such as our commitment to water conservation measures plan, final decision to integrate climate change and water plan with biodiversity management plan in the future commitment on SBT Nature Positive road map. The CFO oversees sustainability topics focusing on external reporting and assurance, operational control and risk management, confirmed the decision for Aptar to become a public signatory of the Task Force for Nature Related Financial Disclosures (TNFD), and supported the integration of TNFD into Aptar's Enterprise Risk Management process, which is managed within his organization, evaluates sustainability implications when contemplating capital expenditures and decides on actions necessary to accomplish our biodiversity-related commitments (i.e. evaluation of nature pressures along value chain). the members of the Executive Committee ("ExCom", C-Suite), each segment president oversees a unique excellence pillar which works on sustainability topics: Operational Excellence, Innovation Excellence, Commercial Excellence, Global Purchasing, Global Sustainability. Direct line of reporting for the Global Sustainability Team is to the president responsible for the Beauty segment. Led by our Chief Sustainability Officer, the Global Sustainability Team is comprised of industry experts that develop and implement our programs. The Executive Committee members and SVP of Investor Relations hear from the CSO and the Product Sustainability Director during monthly ExCom meetings. The CSO provides information to the Board of Directors Audit and Governance Committees, with support from General Council. The Board Chair oversees Aptar's sustainability strategy and assists the Executive Committee in the direction of the company's governance, programs, and policies, through the lens of biodiversity risks, and opportunities and their impact on company performance, decides on the sustainability strategy and, in particular, confirms decisions reflected in public disclosures like the Corporate Sustainability Report. [Fixed row]

(4.2) Does your organization's board have competency on environmental issues?

Climate change

(4.2.1) Board-level competency on this environmental issue

Select from:

Yes

(4.2.2) Mechanisms to maintain an environmentally competent board

Select all that apply

- ☑ Consulting regularly with an internal, permanent, subject-expert working group
- ☑ Engaging regularly with external stakeholders and experts on environmental issues

- ✓ Integrating knowledge of environmental issues into board nominating process
- ☑ Regular training for directors on environmental issues, industry best practice, and standards (e.g., TCFD, SBTi)
- ☑ Having at least one board member with expertise on this environmental issue

(4.2.3) Environmental expertise of the board member

Academic

✓ Undergraduate education (e.g., BSc/BA in environment and sustainability, climate science, environmental science, water resources management, environmental engineering, forestry, etc.), please specify: Engineering Degree in polymer science and plastic engineering

Experience

- ☑ Executive-level experience in a role focused on environmental issues
- ✓ Management-level experience in a role focused on environmental issues

Water

(4.2.1) Board-level competency on this environmental issue

Select from:

Yes

(4.2.2) Mechanisms to maintain an environmentally competent board

Select all that apply

- ☑ Consulting regularly with an internal, permanent, subject-expert working group
- ☑ Engaging regularly with external stakeholders and experts on environmental issues
- ✓ Integrating knowledge of environmental issues into board nominating process
- ☑ Regular training for directors on environmental issues, industry best practice, and standards (e.g., TCFD, SBTi)
- ☑ Having at least one board member with expertise on this environmental issue

(4.2.3) Environmental expertise of the board member

Academic

✓ Undergraduate education (e.g., BSc/BA in environment and sustainability, climate science, environmental science, water resources management, environmental engineering, forestry, etc.), please specify: Engineering Degree in polymer science and plastic engineering

Experience

- ☑ Executive-level experience in a role focused on environmental issues
- ☑ Management-level experience in a role focused on environmental issues

[Fixed row]

(4.3) Is there management-level responsibility for environmental issues within your organization?

	Management-level responsibility for this environmental issue
Climate change	Select from: ☑ Yes
Water	Select from: ☑ Yes
Biodiversity	Select from: ✓ Yes

[Fixed row]

(4.3.1) Provide the highest senior management-level positions or committees with responsibility for environmental issues (do not include the names of individuals).

Climate change

(4.3.1.1) Position of individual or committee with responsibility

Executive level

☑ Chief Executive Officer (CEO)

(4.3.1.2) Environmental responsibilities of this position

Engagement

- ☑ Managing engagement in landscapes and/or jurisdictions
- ☑ Managing public policy engagement related to environmental issues

Policies, commitments, and targets

- ☑ Setting corporate environmental policies and/or commitments
- ☑ Setting corporate environmental targets

Strategy and financial planning

☑ Managing acquisitions, mergers, and divestitures related to environmental issues

(4.3.1.4) Reporting line

Select from:

☑ Reports to the board directly

(4.3.1.5) Frequency of reporting to the board on environmental issues

Select from:

✓ More frequently than quarterly

(4.3.1.6) Please explain

The President and CEO supports and promotes the entire Aptar sustainability strategy including social, environmental and economic pillars. This is a board-level position. The CEO manages processes to incorporate the sustainability initiatives within business standards, rules, and guidelines. The CEO receives monthly updates on specific initiatives including progress on goals, targets, emerging sustainability trends, risks and opportunities surrounding material sustainability issues & climate change. The CEO leads the Executive Committee to decide on strategic Climate-related decisions such as our commitment to Science Based Targets and plans along our Energy Road Map, like support of the renewable energy purchasing strategy and the updating of our Science-based targets. The CEO oversees our

disclosures as related to the Taskforce on Climate-related Financial Disclosures (TCFD). The CEO also enables Aptar to remain a go-to thought leader in our industry by representing Aptar within organizations like the World Business Council for Sustainable Development. The President and CEO takes responsibility for Climate-related issues because product stewardship and corporate citizenship are inherent aspects of Aptar business that are not separated from our overall business strategy. This is evident in our visions and aspirations. The CEO has the knowledge and expertise for making strategic decisions which is why this climate related task has been assigned to this position. The process by which the position is informed of and monitor climate-related issues is based on the regular meeting and reporting from other functions and to the board. The CEO is part of external network (e.g. WBCSD organization) that keeps members informed the sustainability related trends and offers training webinars. As an example, annual CEO's meeting sessions regarding upcoming ESG disclosure requirements and sustainability megatrends have been offered us by the WBCSD and CEO attended it.

Water

(4.3.1.1) Position of individual or committee with responsibility

Executive level

✓ Chief Executive Officer (CEO)

(4.3.1.2) Environmental responsibilities of this position

Engagement

- ☑ Managing engagement in landscapes and/or jurisdictions
- ☑ Managing public policy engagement related to environmental issues

Policies, commitments, and targets

☑ Setting corporate environmental policies and/or commitments

Strategy and financial planning

☑ Managing acquisitions, mergers, and divestitures related to environmental issues

(4.3.1.4) Reporting line

Select from:

☑ Reports to the board directly

(4.3.1.5) Frequency of reporting to the board on environmental issues

Select from:

✓ More frequently than quarterly

(4.3.1.6) Please explain

The President and CEO supports and promotes the entire Aptar sustainability strategy including social, environmental and economic pillars. This is a board-level position. The CEO manages processes to incorporate the sustainability initiatives within business standards, rules, and guidelines. The CEO receives monthly updates on specific initiatives including progress on goals, targets, emerging sustainability trends, risks and opportunities surrounding material sustainability issues & water management. The CEO leads the Executive Committee to decide on strategic water-related decisions such as our commitment to SBTN for freshwater reduction target and plans along our water conservation map. The CEO oversees our disclosures as related to the Taskforce on Climate-related Financial Disclosures (TCFD) water related. The President and CEO takes responsibility for water-related issues because product stewardship and corporate citizenship are inherent aspects of Aptar business that are not separated from our overall business strategy. This is evident in our visions and aspirations. The CEO has the knowledge and expertise for making strategic decisions which is why this water related task has been assigned to this position. The process by which the position is informed of and monitor water-related issues is based on the regular meeting and reporting from other functions and to the board. As an example, annual CEO's meeting sessions regarding upcoming ESG disclosure requirements and sustainability megatrends have been offered us by the WBCSD, and Aptar CEO attended the sessions to keep informed. Internally is used dedicated tools and dashboard focused on the sustainability performances, KPIs, targets and goals.

Biodiversity

(4.3.1.1) Position of individual or committee with responsibility

Executive level

☑ Chief Executive Officer (CEO)

(4.3.1.2) Environmental responsibilities of this position

Engagement

- ☑ Managing engagement in landscapes and/or jurisdictions
- ☑ Managing public policy engagement related to environmental issues

Strategy and financial planning

- ☑ Developing a business strategy which considers environmental issues
- ☑ Managing acquisitions, mergers, and divestitures related to environmental issues
- ☑ Managing annual budgets related to environmental issues

☑ Managing major capital and/or operational expenditures relating to environmental issues

Other

✓ Providing employee incentives related to environmental performance

(4.3.1.4) Reporting line

Select from:

☑ Reports to the board directly

(4.3.1.5) Frequency of reporting to the board on environmental issues

Select from:

✓ More frequently than quarterly

(4.3.1.6) Please explain

The President and CEO supports and promotes the entire Aptar sustainability strategy including social, environmental and economic pillars. This is a board-level position. The CEO manages processes to incorporate the sustainability initiatives within business standards, rules, and guidelines. The CEO receives monthly updates on specific initiatives including progress on goals, targets, emerging sustainability trends, risks and opportunities surrounding material sustainability issues & biodiversity management. The CEO leads the Executive Committee to decide on strategic biodiversity-related decisions such as our commitment to SBTN for freshwater reduction target and plans along our biodiversity road map. The CEO oversees our disclosures as related to the Taskforce on Nature-related Financial Disclosures (TNFD) nature related. The President and CEO takes responsibility for biodiversity-related issues because product stewardship and corporate citizenship are inherent aspects of Aptar business that are not separated from our overall business strategy. This is evident in our visions and aspirations. The CEO has the knowledge and expertise for making strategic decisions which is why this biodiversity related task has been assigned to this position. The process by which the position is informed of and monitor biodiversity-related issues is based on the regular meeting and reporting from other functions and to the board. As an example, annual CEO's meeting sessions regarding upcoming ESG disclosure requirements and sustainability megatrends have been offered us by the WBCSD, and Aptar CEO attended the sessions to keep informed. Internally is used dedicated tools and dashboard focused on the sustainability performances, KPIs, targets and goals.

Climate change

(4.3.1.1) Position of individual or committee with responsibility

Executive level

☑ Chief Financial Officer (CFO)

(4.3.1.2) Environmental responsibilities of this position

Dependencies, impacts, risks and opportunities

☑ Managing environmental dependencies, impacts, risks, and opportunities

Strategy and financial planning

- ☑ Managing acquisitions, mergers, and divestitures related to environmental issues
- ☑ Managing annual budgets related to environmental issues
- ☑ Managing major capital and/or operational expenditures relating to environmental issues

Other

✓ Providing employee incentives related to environmental performance

(4.3.1.4) Reporting line

Select from:

☑ Reports to the Chief Executive Officer (CEO)

(4.3.1.5) Frequency of reporting to the board on environmental issues

Select from:

✓ More frequently than quarterly

(4.3.1.6) Please explain

The Chief Financial Officer (CFO) oversees sustainability topics focusing on external reporting and assurance, operational control and risk management. The CFO confirmed the decision for Aptar to become a public signatory of the Task Force for Climate Related Financial Disclosures (TCFDs), and supported the integration of TCFDs into Aptar's Enterprise Risk Management process, which is managed within his organization. The CFO evaluates sustainability implications when contemplating capital expenditures and decides on actions necessary to accomplish our Climate-related commitments such as the Science Based targets (i.e. renewable energy purchases, refrigerant conversions, and other projects requiring CapEx). The CFO is actively involved in our TCFD evaluation and reporting, and oversees the integration of Climate-related risks into our Enterprise Risk Management processes. The CFO has the knowledge and expertise for making financial decisions which is why this climate related task has been assigned to this position. The process by which the position is informed of and monitor climate-related issues is based on the regular meeting and reporting from other functions and to the board. The CFO is part of external network that keeps members informed the

sustainability related trends and offers training webinars. As an example, multiple training sessions regarding upcoming ESG disclosure requirements have been offered us by the big financial firms, and Aptar financial team members have been attending the sessions to keep informed. Internally is used dedicated tools and dashboard focused on the sustainability performances, KPIs, targets and goals.

Climate change

(4.3.1.1) Position of individual or committee with responsibility

Executive level

☑ Chief Procurement Officer (CPO)

(4.3.1.2) Environmental responsibilities of this position

Engagement

- ☑ Managing supplier compliance with environmental requirements
- ☑ Managing value chain engagement related to environmental issues

Policies, commitments, and targets

- Measuring progress towards environmental corporate targets
- ☑ Measuring progress towards environmental science-based targets

Strategy and financial planning

✓ Implementing a climate transition plan

(4.3.1.4) Reporting line

Select from:

☑ Reports to the Chief Executive Officer (CEO)

(4.3.1.5) Frequency of reporting to the board on environmental issues

Select from:

✓ More frequently than quarterly

(4.3.1.6) Please explain

The Chief Procurement Officer (CPO) is mostly responsible for the engagement and managing of value chain on climate-related issues. The CPO oversees the purchase process of green energy, sustainable materials and strategy/approaches for the mapping of sustainable initiatives along supply chain. The CPO is responsible for the organization of Supplier Summit on which suppliers are engaged to collaboration and innovation programs that will support Aptar sustainability journey. The CPO has the knowledge and expertise for making sustainable purchasing decisions which is why this climate related task has been assigned to this position. The process by which the position is informed of and monitor climate-related issues is based on the regular meeting and reporting from other functions and to the board. The CPO is part of external network that keeps members informed about purchasing sustainability drivers and offers training webinars. As an example, CPO is part of meeting sessions regarding upcoming ESG disclosure requirements and sustainable purchasing strategy organized by partners like WBCSD. Internally is used dedicated tools and dashboard focused on the sustainability performances, KPIs, targets and goals.

Climate change

(4.3.1.1) Position of individual or committee with responsibility

Executive level

☑ Chief Sustainability Officer (CSO)

(4.3.1.2) Environmental responsibilities of this position

Dependencies, impacts, risks and opportunities

- ✓ Assessing environmental dependencies, impacts, risks, and opportunities
- ☑ Assessing future trends in environmental dependencies, impacts, risks, and opportunities
- ☑ Managing environmental dependencies, impacts, risks, and opportunities

Policies, commitments, and targets

- ✓ Monitoring compliance with corporate environmental policies and/or commitments
- ☑ Measuring progress towards environmental corporate targets
- ☑ Measuring progress towards environmental science-based targets
- ☑ Setting corporate environmental policies and/or commitments
- ☑ Setting corporate environmental targets

Strategy and financial planning

✓ Developing a climate transition plan

✓ Developing a business strategy which considers environmental issues

- ✓ Implementing a climate transition plan
- ✓ Conducting environmental scenario analysis
- ☑ Managing annual budgets related to environmental issues
- ✓ Implementing the business strategy related to environmental issues

Other

✓ Providing employee incentives related to environmental performance

(4.3.1.4) Reporting line

Select from:

☑ Reports to the Chief Executive Officer (CEO)

(4.3.1.5) Frequency of reporting to the board on environmental issues

Select from:

✓ More frequently than quarterly

(4.3.1.6) Please explain

The Chief Sustainability Officer (CSO) oversees sustainability topics focusing on the integration of climate-related issues into the strategy, monitoring progress against climate-related corporate targets and managing climate-related risks and opportunities. The CSO support the setting process of climate-related corporate targets and evaluates sustainability implications when contemplating the external communication and ESG reporting. The CSO has the knowledge and expertise for making sustainability strategy and decisions which is why this climate related task has been assigned to this position. The process by which the position is informed of and monitor climate-related issues is based on the regular meeting and reporting from other functions and to the board. The CSO is part of external network (e.g. WBCSD, APR, Ellen MacArthur Foundation) that keeps members informed the sustainability related trends and offers training webinars. As an example, annual Liasion Delegate meeting regarding upcoming ESG disclosure requirements and sustainability megatrends have been offered us by the WBCSD, and Aptar CSO attended the sessions to keep informed. Internally is used dedicated tools and dashboard focused on the sustainability performances, KPIs, targets and goals.

☑ Managing environmental reporting, audit, and verification processes

Climate change

(4.3.1.1) Position of individual or committee with responsibility

Other

✓ Other, please specify :Energy Manager

(4.3.1.2) Environmental responsibilities of this position

Policies, commitments, and targets

☑ Measuring progress towards environmental science-based targets

Strategy and financial planning

- ✓ Implementing a climate transition plan
- ☑ Managing annual budgets related to environmental issues
- ☑ Managing environmental reporting, audit, and verification processes
- ✓ Managing major capital and/or operational expenditures relating to environmental issues

(4.3.1.4) Reporting line

Select from:

☑ Other, please specify : Operations - COO reporting line

(4.3.1.5) Frequency of reporting to the board on environmental issues

Select from:

☑ More frequently than quarterly

(4.3.1.6) Please explain

The Global Energy Manager oversees the identification and implementation of energy conservation measures (ECM) that contribute to the development and implementation of the climate transition plan. This function manages dedicated budget for the ECM monitoring climate-related corporate targets (for example SBT). The energy manager has the knowledge and expertise for implementing energy conservation measures in our operations supporting decarbonization plan decisions, so, which is why this climate related task has been assigned to this position. The process by which the position is informed of and monitor climate-related issues is based on the regular meeting and reporting from other functions and to the board. The energy manager is part of different working groups in external network (e.g. WBCSD organization) that keeps members informed on the clean technologies implementation and sustainability related trends offering training webinars. As an example, annual WBCSD meeting sessions regarding upcoming energy management best practices and sustainability megatrends have been offered us by the

WBCSD, and energy manager attended the sessions to keep informed. The process by which the position is informed of and monitor climate-related issues is based on the regular meeting and reporting from other functions and to the board. Internally is used dedicated tools and dashboard focused on the sustainability performances, KPIs, targets and goals.

Climate change

(4.3.1.1) Position of individual or committee with responsibility

Other

✓ Other, please specify: Sustainability Manager

(4.3.1.2) Environmental responsibilities of this position

Dependencies, impacts, risks and opportunities

- ✓ Assessing environmental dependencies, impacts, risks, and opportunities
- ☑ Assessing future trends in environmental dependencies, impacts, risks, and opportunities
- ☑ Managing environmental dependencies, impacts, risks, and opportunities

Policies, commitments, and targets

- ✓ Monitoring compliance with corporate environmental policies and/or commitments
- ☑ Measuring progress towards environmental corporate targets
- ✓ Measuring progress towards environmental science-based targets
- ☑ Setting corporate environmental policies and/or commitments
- ☑ Setting corporate environmental targets

Strategy and financial planning

- ✓ Developing a climate transition plan
- ✓ Implementing a climate transition plan

(4.3.1.4) Reporting line

Select from:

☑ Reports to the Chief Sustainability Officer (CSO)

(4.3.1.5) Frequency of reporting to the board on environmental issues

Select from:

✓ More frequently than quarterly

(4.3.1.6) Please explain

The Sustainability Manager define the climate-related risks and opportunities process conducting climate-related scenario analysis. This function support the developing and implementation of climate transition plan in agreement with the climate-related strategy. The sustainability manager has the knowledge and expertise for supporting the development and the implementation of climate transition plan which is why this climate related task has been assigned to this position. The process by which the position is informed of and monitor climate-related issues is based on the regular meeting and reporting from other functions and to the board. The sustainability manager is part of different working groups in external network (e.g. WBCSD organization) that keeps members informed on the sustainability macrotrends and topics offering training webinars. As an example, annual WBCSD meeting sessions regarding upcoming energy management best practices and sustainability megatrends have been offered us by the WBCSD, and energy manager attended the sessions to keep informed. The process by which the position is informed of and monitor climate-related issues is based on the regular meeting and reporting from other functions and to the board. Internally is used dedicated tools and dashboard focused on the sustainability performances, KPIs, targets and goals.

Water

(4.3.1.1) Position of individual or committee with responsibility

Executive level

☑ Chief Procurement Officer (CPO)

(4.3.1.2) Environmental responsibilities of this position

Engagement

- ☑ Managing supplier compliance with environmental requirements
- ✓ Managing value chain engagement related to environmental issues

Policies, commitments, and targets

☑ Measuring progress towards environmental corporate targets

Strategy and financial planning

✓ Implementing a climate transition plan

(4.3.1.4) Reporting line

Select from:

☑ Reports to the Chief Executive Officer (CEO)

(4.3.1.5) Frequency of reporting to the board on environmental issues

Select from:

More frequently than quarterly

(4.3.1.6) Please explain

The Chief Procurement Officer (CPO) is mostly responsible for the engagement and managing of value chain on water-related issues. The CPO oversees the mapping of sustainable water reduction initiatives along supply chain. The CPO is responsible for the organization of Supplier Summit on which suppliers are engaged to collaboration and innovation programs that will support Aptar sustainability journey. The CPO has the knowledge and expertise for making sustainable purchasing decisions which is why this water related task has been assigned to this position. The process by which the position is informed of and monitor water-related issues is based on the regular meeting and reporting from other functions and to the board. The CPO is part of external network that keeps members informed about purchasing sustainability drivers and offers training webinars. As an example, CPO is part of meeting sessions regarding upcoming ESG disclosure requirements and sustainable purchasing strategy organized by partners like WBCSD. Internally is used dedicated tools and dashboard focused on the sustainability performances, KPIs, targets and goals.

Water

(4.3.1.1) Position of individual or committee with responsibility

Executive level

☑ Chief Sustainability Officer (CSO)

(4.3.1.2) Environmental responsibilities of this position

Dependencies, impacts, risks and opportunities

- ✓ Assessing environmental dependencies, impacts, risks, and opportunities
- ☑ Assessing future trends in environmental dependencies, impacts, risks, and opportunities
- ☑ Managing environmental dependencies, impacts, risks, and opportunities

Policies, commitments, and targets

- ✓ Monitoring compliance with corporate environmental policies and/or commitments
- ☑ Measuring progress towards environmental corporate targets
- ☑ Measuring progress towards environmental science-based targets
- ✓ Setting corporate environmental policies and/or commitments
- ☑ Setting corporate environmental targets

Strategy and financial planning

- ✓ Developing a climate transition plan
- ✓ Implementing a climate transition plan
- ☑ Conducting environmental scenario analysis
- ☑ Managing annual budgets related to environmental issues
- ✓ Implementing the business strategy related to environmental issues

- ✓ Developing a business strategy which considers environmental issues
- ☑ Managing environmental reporting, audit, and verification processes

Other

✓ Providing employee incentives related to environmental performance

(4.3.1.4) Reporting line

Select from:

☑ Reports to the Chief Executive Officer (CEO)

(4.3.1.5) Frequency of reporting to the board on environmental issues

Select from:

✓ More frequently than quarterly

(4.3.1.6) Please explain

The Chief Sustainability Officer (CSO) oversees sustainability topics focusing on the integration of water-related issues into the strategy, monitoring progress against water-related corporate targets and managing water-related risks and opportunities. The CSO support the setting process of climate-related corporate targets and evaluates sustainability implications when contemplating the external communication and ESG reporting. The CSO has the knowledge and expertise for making sustainability strategy and decisions which is why this water related task has been assigned to this position. The process by which the position is informed of and monitor water-related issues is based on the regular meeting and reporting from other functions and to the board. The CSO is part of external network (e.g. WBCSD, APR, Ellen MacArthur Foundation) that keeps members informed the sustainability related trends and offers training webinars. As an example, annual Liasion Delegate meeting regarding upcoming ESG disclosure requirements and sustainability megatrends have been offered us by the WBCSD, and Aptar CSO attended the sessions to keep informed. Internally is used dedicated tools and dashboard focused on the sustainability performances, KPIs, targets and goals.

Water

(4.3.1.1) Position of individual or committee with responsibility

Other

✓ Other, please specify: Sustainability Manager

(4.3.1.2) Environmental responsibilities of this position

Dependencies, impacts, risks and opportunities

- ✓ Assessing environmental dependencies, impacts, risks, and opportunities
- ☑ Assessing future trends in environmental dependencies, impacts, risks, and opportunities

Policies, commitments, and targets

- ☑ Measuring progress towards environmental corporate targets
- ☑ Measuring progress towards environmental science-based targets

Strategy and financial planning

- ☑ Conducting environmental scenario analysis
- ✓ Implementing a climate transition plan
- ☑ Managing environmental reporting, audit, and verification processes

(4.3.1.4) Reporting line

Select from:

☑ Reports to the Chief Sustainability Officer (CSO)

(4.3.1.5) Frequency of reporting to the board on environmental issues

Select from:

✓ More frequently than quarterly

(4.3.1.6) Please explain

The Sustainability Manager define the water-related risks and opportunities process conducting water-related scenario analysis. This function support the developing and implementation of water conservation plan in agreement with the water-related strategy. The sustainability manager has the knowledge and expertise for supporting the development and the implementation of water transition plan which is why this water related task has been assigned to this position. The process by which the position is informed of and monitor water-related issues is based on the regular meeting and reporting from other functions and to the board. The sustainability manager is part of different working groups in external network (e.g. WBCSD organization) that keeps members informed on the sustainability macrotrends and topics offering training webinars. As an example, annual WBCSD meeting sessions regarding upcoming energy management best practices and sustainability megatrends have been offered us by the WBCSD, and energy manager attended the sessions to keep informed. The process by which the position is informed of and monitor water-related issues is based on the regular meeting and reporting from other functions and to the board. Internally is used dedicated tools and dashboard focused on the sustainability performances, KPIs, targets and goals.

Biodiversity

(4.3.1.1) Position of individual or committee with responsibility

Executive level

☑ Chief Financial Officer (CFO)

(4.3.1.2) Environmental responsibilities of this position

Dependencies, impacts, risks and opportunities

☑ Managing environmental dependencies, impacts, risks, and opportunities

Strategy and financial planning

- ✓ Implementing a climate transition plan
- ☑ Implementing the business strategy related to environmental issues
- ☑ Managing acquisitions, mergers, and divestitures related to environmental issues
- ☑ Managing annual budgets related to environmental issues
- ☑ Managing major capital and/or operational expenditures relating to environmental issues

Other

✓ Providing employee incentives related to environmental performance

(4.3.1.4) Reporting line

Select from:

☑ Reports to the Chief Executive Officer (CEO)

(4.3.1.5) Frequency of reporting to the board on environmental issues

Select from:

✓ More frequently than quarterly

(4.3.1.6) Please explain

The Chief Financial Officer (CFO) oversees sustainability topics focusing on external reporting and assurance, operational control and risk management. The CFO confirmed the decision for Aptar to become a public signatory of the Task Force for Nature Related Financial Disclosures (TNFD), and supported the integration of TNFD into Aptar's Enterprise Risk Management process, which is managed within his organization. The CFO evaluates sustainability implications when contemplating capital expenditures and decides on actions necessary to accomplish our biodiversity-related commitments such as the Science Based Targets for Nature. The CFO is actively involved in our TNFD evaluation and reporting, and oversees the integration of biodiversity-related risks into our Enterprise Risk Management processes. The CFO has the knowledge and expertise for making financial decisions which is why this biodiversity related task has been assigned to this position. The process by which the position is informed of and monitor biodiversity-related issues is based on the regular meeting and reporting from other functions and to the board. The CFO is part of external network that keeps members informed the sustainability related trends and offers training webinars. As an example, multiple training sessions regarding upcoming ESG disclosure requirements have been offered us by the big financial firms, and Aptar financial team members have been attending the sessions to keep informed. Internally is used dedicated tools and dashboard focused on the sustainability performances, KPIs, targets and goals.

Biodiversity

(4.3.1.1) Position of individual or committee with responsibility

Executive level

☑ Chief Procurement Officer (CPO)

(4.3.1.2) Environmental responsibilities of this position

Engagement

- ☑ Managing supplier compliance with environmental requirements
- ☑ Managing value chain engagement related to environmental issues

Policies, commitments, and targets

- ☑ Measuring progress towards environmental corporate targets
- ✓ Measuring progress towards environmental science-based targets

Strategy and financial planning

- ✓ Implementing a climate transition plan
- ✓ Implementing the business strategy related to environmental issues

(4.3.1.4) Reporting line

Select from:

☑ Reports to the Chief Executive Officer (CEO)

(4.3.1.5) Frequency of reporting to the board on environmental issues

Select from:

✓ More frequently than quarterly

(4.3.1.6) Please explain

The Chief Procurement Officer (CPO) is mostly responsible for the engagement and managing of value chain on biodiversity-related issues. The CPO oversees the mapping of biodiversity impact and regeneration initiatives along supply chain. The CPO is responsible for the organization of Supplier Summit on which suppliers are engaged to collaboration and innovation programs that will support Aptar sustainability journey. The CPO has the knowledge and expertise for making sustainable purchasing decisions which is why this biodiversity related task has been assigned to this position. The process by which the position is informed of and monitor biodiversity-related issues is based on the regular meeting and reporting from other functions and to the board. The CPO is part of external network that keeps members informed about purchasing sustainability drivers and offers training webinars. As an example, CPO is part of meeting sessions regarding upcoming ESG disclosure requirements and sustainable purchasing strategy organized by partners like WBCSD. Internally is used dedicated tools and dashboard focused on the sustainability performances, KPIs, targets and goals.

Biodiversity

(4.3.1.1) Position of individual or committee with responsibility

Executive level

☑ Chief Sustainability Officer (CSO)

(4.3.1.2) Environmental responsibilities of this position

Dependencies, impacts, risks and opportunities

- Assessing environmental dependencies, impacts, risks, and opportunities
- ☑ Assessing future trends in environmental dependencies, impacts, risks, and opportunities
- ☑ Managing environmental dependencies, impacts, risks, and opportunities

Policies, commitments, and targets

- ✓ Monitoring compliance with corporate environmental policies and/or commitments
- ☑ Measuring progress towards environmental corporate targets
- ✓ Measuring progress towards environmental science-based targets
- ☑ Setting corporate environmental policies and/or commitments
- ☑ Setting corporate environmental targets

Strategy and financial planning

- ☑ Developing a business strategy which considers environmental issues
- ✓ Developing a climate transition plan

- ✓ Implementing a climate transition plan
- ✓ Implementing the business strategy related to environmental issues
- ☑ Managing environmental reporting, audit, and verification processes

(4.3.1.4) Reporting line

Select from:

☑ Reports to the Chief Executive Officer (CEO)

(4.3.1.5) Frequency of reporting to the board on environmental issues

Select from:

✓ More frequently than quarterly

(4.3.1.6) Please explain

The Chief Sustainability Officer (CSO) oversees sustainability topics focusing on the integration of biodiversity-related issues into the strategy, monitoring progress against biodiversity-related corporate targets and managing biodiversity-related risks and opportunities. The CSO support the setting process of climate-related corporate targets and evaluates sustainability implications when contemplating the external communication and ESG reporting. The CSO has the knowledge and expertise for making sustainability strategy and decisions which is why this water related task has been assigned to this position. The process by which the position is informed of and monitor water-related issues is based on the regular meeting and reporting from other functions and to the board. The CSO is part of external network (e.g. WBCSD, APR, Ellen MacArthur Foundation) that keeps members informed the sustainability related trends and offers training webinars. As an example, annual Liaison Delegate meeting regarding upcoming ESG disclosure requirements and sustainability megatrends have been offered us by the WBCSD, and Aptar CSO attended the sessions to keep informed. Internally is used dedicated tools and dashboard focused on the sustainability performances, KPIs, targets and goals.

Biodiversity

(4.3.1.1) Position of individual or committee with responsibility

Other

☑ Other, please specify :Sustainability Manager

(4.3.1.2) Environmental responsibilities of this position

Dependencies, impacts, risks and opportunities

- ✓ Assessing environmental dependencies, impacts, risks, and opportunities
- ☑ Assessing future trends in environmental dependencies, impacts, risks, and opportunities
- ☑ Managing environmental dependencies, impacts, risks, and opportunities

Policies, commitments, and targets

- ☑ Measuring progress towards environmental corporate targets
- ✓ Measuring progress towards environmental science-based targets

Strategy and financial planning

- ✓ Conducting environmental scenario analysis
- ✓ Implementing a climate transition plan
- ☑ Managing environmental reporting, audit, and verification processes

(4.3.1.4) Reporting line

Select from:

☑ Reports to the Chief Sustainability Officer (CSO)

(4.3.1.5) Frequency of reporting to the board on environmental issues

Select from:

✓ More frequently than quarterly

(4.3.1.6) Please explain

The Sustainability Manager define the biodiversity-related risks and opportunities process conducting biodiversity-related scenario analysis. This function support the developing and implementation of biodiversity conservation plan in agreement with the nature-related strategy. The sustainability manager has the knowledge and expertise for supporting the development and the implementation of water transition plan which is why this biodiversity related task has been assigned to this position. The process by which the position is informed of and monitor biodiversity-related issues is based on the regular meeting and reporting from other functions and to the board. The sustainability manager is part of different working groups in external network (e.g. WBCSD organization) that keeps members informed on the sustainability macrotrends and topics offering training webinars. As an example, annual WBCSD meeting sessions regarding upcoming energy management best practices and sustainability megatrends have been offered us by the WBCSD, and energy manager attended the sessions to keep informed. The process by which

the position is informed of and monitor water-related issues is based on the regular meeting and reporting from other functions and to the board. Internally is used dedicated tools and dashboard focused on the sustainability performances, KPIs, targets and goals.

Climate change

(4.3.1.1) Position of individual or committee with responsibility

Executive level

General Counsel

(4.3.1.2) Environmental responsibilities of this position

Policies, commitments, and targets

- ✓ Monitoring compliance with corporate environmental policies and/or commitments
- ☑ Measuring progress towards environmental corporate targets
- ☑ Measuring progress towards environmental science-based targets
- ☑ Setting corporate environmental policies and/or commitments
- ☑ Setting corporate environmental targets

Strategy and financial planning

- ✓ Developing a business strategy which considers environmental issues
- ☑ Managing environmental reporting, audit, and verification processes

(4.3.1.4) Reporting line

Select from:

☑ Reports to the Chief Executive Officer (CEO)

(4.3.1.5) Frequency of reporting to the board on environmental issues

Select from:

More frequently than quarterly

(4.3.1.6) Please explain

This role serve as liasion between the Global Sustainability Team actions and the Board of Directors audit Governance Committee. [Add row]

(4.5) Do you provide monetary incentives for the management of environmental issues, including the attainment of targets?

Climate change

(4.5.1) Provision of monetary incentives related to this environmental issue

Select from:

√ Yes

(4.5.2) % of total C-suite and board-level monetary incentives linked to the management of this environmental issue

100

(4.5.3) Please explain

Aptar believes it is the responsibility of all leaders and functions to maintain responsible business practices and to contribute toward our public sustainability commitments. These commitments should not be managed separately. Therefore, sustainability topics are integrated into leader incentives according to their accountabilities and what they have the ability to impact within their roles. For example, Aptar's Segment Presidents have sustainability targets integrated into their plans, which support our public commitments on climate change (responsible consumption) within our own operations and through suppliers/product development (renewable energy purchases, recycled content, recyclability or products).

Water

(4.5.1) Provision of monetary incentives related to this environmental issue

Select from:

✓ No, but we plan to introduce them in the next two years

(4.5.3) Please explain

Aptar is in-process of developing measurements and commitments along our biodiversity road map, including freshwater targets and goals in compliance with SBTN guidelines. This will integrate incentives plan related to the management of water quality and consumption defined into the new SBTN standard.

[Fixed row]

(4.5.1) Provide further details on the monetary incentives provided for the management of environmental issues (do not include the names of individuals).

Climate change

(4.5.1.1) Position entitled to monetary incentive

Board or executive level

☑ Chief Procurement Officer (CPO)

(4.5.1.2) Incentives

Select all that apply

- ✓ Bonus % of salary
- ✓ Salary increase
- Shares

(4.5.1.3) Performance metrics

Emission reduction

✓ Increased share of renewable energy in total energy consumption

Policies and commitments

- ✓ Increased supplier compliance with environmental requirements
- ✓ New or tighter environmental requirements applied to purchasing practices

Engagement

- ✓ Increased engagement with suppliers on environmental issues
- ✓ Increased engagement with smallholders on environmental issues
- ✓ Increased value chain visibility (traceability, mapping)

(4.5.1.4) Incentive plan the incentives are linked to

Select from:

☑ Both Short-Term and Long-Term Incentive Plan, or equivalent

(4.5.1.5) Further details of incentives

Our CPO is entitled to compensation (calculated as fix and variable part based on a repartition between company and personal performance.) considering collaborations with suppliers along the value chain. For example, the CPO is responsible for securing renewable energy purchases as well as hosting the Supplier Summit through which Aptar learns of innovative solutions to support our targets. The CPO also oversees the Supplier Diversity Program and Due Diligence Screening.

(4.5.1.6) How the position's incentives contribute to the achievement of your environmental commitments and/or climate transition plan

This incentive is linked to our commitment to SBTi commitment 2C for Scope 3 throughout our supply chain by 2030.

Climate change

(4.5.1.1) Position entitled to monetary incentive

Board or executive level

☑ Chief Sustainability Officer (CSO)

(4.5.1.2) Incentives

Select all that apply

✓ Bonus - % of salary

- ☑ Salary increase
- ✓ Shares

(4.5.1.3) Performance metrics

Targets

- ✓ Progress towards environmental targets
- ☑ Achievement of environmental targets
- ✓ Organization performance against an environmental sustainability index
- ☑ Reduction in absolute emissions in line with net-zero target

Strategy and financial planning

☑ Board approval of climate transition plan

(4.5.1.4) Incentive plan the incentives are linked to

Select from:

☑ Both Short-Term and Long-Term Incentive Plan, or equivalent

(4.5.1.5) Further details of incentives

Our CSO is entitled to compensation (calculated as fix and variable part) considering progress along Aptar's public climate-related targets. The responsibility includes development and implementation of strategies, processes, systems, disclosures as well as influencing other Aptar leaders in a non-direct reporting relationship.

(4.5.1.6) How the position's incentives contribute to the achievement of your environmental commitments and/or climate transition plan

This incentive is linked to our commitment to SBTi commitment for Scope 1, Scope 2 and Scope 3 throughout our supply chain by 2030.

Climate change

(4.5.1.1) Position entitled to monetary incentive

Board or executive level

☑ Chief Financial Officer (CFO)

(4.5.1.2) Incentives

Select all that apply

- ✓ Bonus % of salary
- ✓ Salary increase
- Shares

(4.5.1.3) Performance metrics

Strategy and financial planning

✓ Increased alignment of capex with transition plan and/or sustainable finance taxonomy

(4.5.1.4) Incentive plan the incentives are linked to

Select from:

☑ Both Short-Term and Long-Term Incentive Plan, or equivalent

(4.5.1.5) Further details of incentives

Our CFO oversees the Internal and External auditing processes, which enable transparent performance disclosures along our public commitments. The CFO is incentivized according to implementation of appropriate disclosure systems, and ensuring data accuracy. These audit plans include oversight of the climate-related performance data and systems.

(4.5.1.6) How the position's incentives contribute to the achievement of your environmental commitments and/or climate transition plan

This incentive is linked to our SBTi and Net Zero commitment for the management of sustainable finance taxonomy.

Climate change

(4.5.1.1) Position entitled to monetary incentive

Senior-mid management

☑ Energy manager

(4.5.1.2) Incentives

Select all that apply

- ✓ Bonus % of salary
- ✓ Bonus set figure

(4.5.1.3) Performance metrics

Targets

☑ Reduction in absolute emissions in line with net-zero target

Emission reduction

- ☑ Implementation of an emissions reduction initiative
- ☑ Reduction in emissions intensity
- ☑ Increased share of renewable energy in total energy consumption
- ☑ Reduction in absolute emissions

Resource use and efficiency

- ☑ Improvements in emissions data, reporting, and third-party verification
- ✓ Energy efficiency improvement
- ☑ Reduction in total energy consumption

(4.5.1.4) Incentive plan the incentives are linked to

Select from:

☑ Short-Term Incentive Plan, or equivalent, only (e.g. contractual annual bonus)

(4.5.1.5) Further details of incentives

Our Global Energy Manager is entitled to a bonus of their salary (calculated as fix and variable part based on a repartition between company and personal performance.) considering alignment to reduction of energy consumption and GHG emissions in compliance with our validated SBT target and Net Zero scenario, implementation of energy conservation measures and increase of renewables.

(4.5.1.6) How the position's incentives contribute to the achievement of your environmental commitments and/or climate transition plan

This incentive is linked to SBTi and Net Zero commitment in alignment to 1.5C commitment for Scope 12 by 2030.

Climate change

(4.5.1.1) Position entitled to monetary incentive

Senior-mid management

☑ Environment/Sustainability manager

(4.5.1.2) Incentives

Select all that apply

- ✓ Bonus % of salary
- ✓ Bonus set figure

(4.5.1.3) Performance metrics

Targets

- ✓ Progress towards environmental targets
- ☑ Reduction in absolute emissions in line with net-zero target

Strategy and financial planning

☑ Achievement of climate transition plan

☑ Improvements in emissions data, reporting, and third-party verification

(4.5.1.4) Incentive plan the incentives are linked to

Select from:

☑ Short-Term Incentive Plan, or equivalent, only (e.g. contractual annual bonus)

(4.5.1.5) Further details of incentives

Our Sustainability Manager is entitled to a bonus of their salary (calculated as fix and variable part based on a repartition between company and personal performance) considering progress to environmental targets, including reduction in absolute GHG emissions in compliance with SBT target and Net Zero scenario, achieving the climate transition plan to Net Zero.

(4.5.1.6) How the position's incentives contribute to the achievement of your environmental commitments and/or climate transition plan

This incentive is linked to SBTi and Net Zero commitment in alignment to 1.5C commitment for Scope 12 by 2030 and in general aligned to the climate transition plan. [Add row]

(4.6) Does your organization have an environmental policy that addresses environmental issues?

Does your organization have any environmental policies?
Select from: ✓ Yes

[Fixed row]

(4.6.1) Provide details of your environmental policies.

Row 1

(4.6.1.1) Environmental issues covered

Select all that apply

- ✓ Climate change
- Water
- ☑ Biodiversity

(4.6.1.2) Level of coverage

Select from:

✓ Organization-wide

(4.6.1.3) Value chain stages covered

Select all that apply

- ✓ Direct operations
- ✓ Upstream value chain
- ✓ Downstream value chain
- ✓ Portfolio

(4.6.1.4) Explain the coverage

Aptar environmental policy ("EHS Policy") covers all regions where we are operating, as well as our value chain. We do not have any exclusions in terms of geographical areas and/or business activities.

(4.6.1.5) Environmental policy content

Environmental commitments

- ☑ Commitment to a circular economy strategy
- ✓ Commitment to avoidance of negative impacts on threatened and protected species
- ☑ Commitment to comply with regulations and mandatory standards

- ☑ Commitment to take environmental action beyond regulatory compliance
- ☑ Commitment to stakeholder engagement and capacity building on environmental issues

Climate-specific commitments

- ☑ Commitment to 100% renewable energy
- ✓ Commitment to not invest in fossil-fuel expansion

Water-specific commitments

- ☑ Commitment to reduce water consumption volumes
- ☑ Commitment to reduce water withdrawal volumes
- ☑ Commitment to reduce or phase out hazardous substances
- ☑ Commitment to control/reduce/eliminate water pollution
- ☑ Commitment to safely managed WASH in local communities
- **Social commitments**
- ☑ Adoption of the UN International Labour Organization principles
- ☑ Commitment to promote gender equality and women's empowerment
- ☑ Commitment to respect internationally recognized human rights

Additional references/Descriptions

✓ Description of renewable electricity procurement practices

- ☑ Commitment to the conservation of freshwater ecosystems
- ☑ Commitment to water stewardship and/or collective action

(4.6.1.6) Indicate whether your environmental policy is in line with global environmental treaties or policy goals

Select all that apply

- ✓ Yes, in line with the Paris Agreement
- ✓ Yes, in line with Sustainable Development Goal 6 on Clean Water and Sanitation

(4.6.1.7) Public availability

Select from:

✓ Publicly available

(4.6.1.8) Attach the policy

EHS Policy 2022.pdf [Add row]

(4.10) Are you a signatory or member of any environmental collaborative frameworks or initiatives?

(4.10.1) Are you a signatory or member of any environmental collaborative frameworks or initiatives?

Select from:

Yes

(4.10.2) Collaborative framework or initiative

Select all that apply

UN Global Compact

✓ Science-Based Targets for Nature (SBTN)

☑ Science-Based Targets Initiative (SBTi)

✓ Ellen MacArthur Foundation Global Commitment

☑ Global Reporting Initiative (GRI) Community Member

✓ Task Force on Nature-related Financial Disclosures (TNFD)

✓ Task Force on Climate-related Financial Disclosures (TCFD)

✓ World Business Council for Sustainable Development (WBCSD)

(4.10.3) Describe your organization's role within each framework or initiative

Ellen MacArthur Foundation: Aptar joined the New Plastic Economy Global Commitment in 2019. We have defined sustainability targets for our product portfolio which are based on Ellen MacArthur definitions. In addition, we are committed to circular economy principles and the participation in this framework support our strategy. GRI Community Member: Aptar is part of GRI community, our annual sustainability reporting is based on the GRI standard framework and our corporate sustainability team joins different events and training hosted by GRI. Science Based Targets Initiative and Science Based Targets for Nature: Aptar developed SBT target climate-related since year 2020 and in 2023 we have defined our Biodiversity road map in compliance with SBTN guidelines. TNFD and TCFD: Aptar since the beginning supported the development and piloting test of these methods, taking part of working group and commissions. WBCSD: Since 2019, Aptar has been a member of WBCSD supporting different working groups and topics, our CEO and our Liaison Delegate collaborated proactive to their agenda. Our Chief Sustainability Officer received the LEAP Leading Women Award recognition and completed a leadership program sponsored by WBCSD. We are also committed to the UN Global Compact and publish a progress report on an annual basis.

[Fixed row]

(4.11) In the reporting year, did your organization engage in activities that could directly or indirectly influence policy, law, or regulation that may (positively or negatively) impact the environment?

(4.11.1) External engagement activities that could directly or indirectly influence policy, law, or regulation that may impact the environment

Select all that apply

✓ Yes, we engaged indirectly through, and/or provided financial or in-kind support to a trade association or other intermediary organization or individual whose activities could influence policy, law, or regulation

(4.11.2) Indicate whether your organization has a public commitment or position statement to conduct your engagement activities in line with global environmental treaties or policy goals

Select from:

✓ Yes, we have a public commitment or position statement in line with global environmental treaties or policy goals

(4.11.3) Global environmental treaties or policy goals in line with public commitment or position statement

Select all that apply

✓ Paris Agreement

(4.11.4) Attach commitment or position statement

SBTi Certificate_AptarGroup.pdf

(4.11.5) Indicate whether your organization is registered on a transparency register

Select from:

✓ No

(4.11.8) Describe the process your organization has in place to ensure that your external engagement activities are consistent with your environmental commitments and/or transition plan

The organization has implemented various engagement relationships and activities lead by our global sustainability team that supports functional leaders across Aptar business divisions and geographies on specific topic (for example Paris Agreement and SBT commitment, Recyclability of the products, renewables and green energy), ensuring a common approach that can be in alignment with corporate sustainability strategies addressing the main environmental issues (for example decarbonization transition plan, climate, water and nature-related risks and opportunities). The global sustainability team, during the year, defined currently meeting with functional leaders on which they can have alignment on the main activities on-going respect Aptar external engagement, and, in case we should have misalignment, the internal team support the different departments on topics. Aptar external engagement activities are focused on the identified environmental dependencies, risks and impacts, for example engagement in the SBT for net zero target and TCFD, engagement in SBTN for biodiversity/freshwater management and TNFD risks assessment, recyclability for the New Plastic Economy Global Commitment and Circular Economy targets, renewables targets for the decarbonization program supporting our climate transition plan. [Fixed row]

(4.11.1) On what policies, laws, or regulations that may (positively or negatively) impact the environment has your organization been engaging directly with policy makers in the reporting year?

Row 1

(4.11.1.1) Specify the policy, law, or regulation on which your organization is engaging with policy makers

Corporate Sustainability Reporting Directive - CSRD

(4.11.1.2) Environmental issues the policy, law, or regulation relates to

Select all that apply

✓ Climate change

(4.11.1.3) Focus area of policy, law, or regulation that may impact the environment

Transparency and due diligence

✓ Corporate environmental reporting

(4.11.1.4) Geographic coverage of policy, law, or regulation

Select from:

Global

(4.11.2) Provide details of your indirect engagement on policy, law, or regulation that may (positively or negatively) impact the environment through trade associations or other intermediary organizations or individuals in the reporting year.

Row 1

(4.11.2.1) Type of indirect engagement

Select from:

✓ Indirect engagement via other intermediary organization or individual

(4.11.2.2) Type of organization or individual

Select from:

✓ Non-Governmental Organization (NGO) or charitable organization

(4.11.2.3) State the organization or position of individual

Aptar during the reporting year collaborated with WBCSD organization through Liaison Delegate (our CSO) and Membership by our CEO

(4.11.2.5) Environmental issues relevant to the policies, laws, or regulations on which the organization or individual has taken a position

Select all that apply

- ✓ Climate change
- ✓ Water

(4.11.2.6) Indicate whether your organization's position is consistent with the organization or individual you engage with

Select from:

Consistent

(4.11.2.7) Indicate whether your organization attempted to influence the organization or individual's position in the reporting year

Select from:

✓ Yes, we publicly promoted their current position

(4.11.2.8) Describe how your organization's position is consistent with or differs from the organization or individual's position, and any actions taken to influence their position

Aptar during the reporting year supported different working groups of WBCSD focused on climate change topic and biodiversity, especially on this last topic, we agreed in-kind support about the development of road map testing for the engagement of the value chain in the SBTN for nature.

(4.11.2.9) Funding figure your organization provided to this organization or individual in the reporting year (currency)

120000

(4.11.2.10) Describe the aim of this funding and how it could influence policy, law or regulation that may impact the environment

The funding was based on the membership fees that allow Aptar to take part of the working group and plan indirect activities that may impact the environmental topics

(4.11.2.11) Indicate if you have evaluated whether your organization's engagement is aligned with global environmental treaties or policy goals

Select from:

✓ Yes, we have evaluated, and it is aligned

(4.11.2.12) Global environmental treaties or policy goals aligned with your organization's engagement on policy, law or regulation

Select all that apply

- ✓ Paris Agreement
- ✓ Sustainable Development Goal 6 on Clean Water and Sanitation [Add row]

(4.12.1) Provide details on the information published about your organization's response to environmental issues for this reporting year in places other than your CDP response. Please attach the publication.

Row 1

(4.12.1.1) **Publication**

Select from:

☑ In mainstream reports, in line with environmental disclosure standards or frameworks

(4.12.1.2) Standard or framework the report is in line with

Select all that apply

- **✓** ESRS
- ✓ GRI
- **✓** TCFD
- ✓ TNFD

(4.12.1.3) Environmental issues covered in publication

Select all that apply

- ✓ Climate change
- ✓ Water
- ☑ Biodiversity

(4.12.1.4) Status of the publication

Select from:

Complete

(4.12.1.5) Content elements

Select all that apply

- Strategy
- ✓ Governance
- Emission targets
- ☑ Risks & Opportunities
- ✓ Water pollution indicators
- ☑ Content of environmental policies

- ✓ Value chain engagement
- ✓ Dependencies & Impacts
- ☑ Biodiversity indicators
- ✓ Public policy engagement
- ✓ Water accounting figures

(4.12.1.6) Page/section reference

Please see the entire report

(4.12.1.7) Attach the relevant publication

2024-05-28_Aptar-CSR-23_Final.pdf

(4.12.1.8) Comment

Aptar Corporate Sustainability report is published annually [Add row]

C5. Business strategy

(5.1) Does your organization use scenario analysis to identify environmental outcomes?

Climate change

((5.1.1)) Use of scenario anal	vsis
B.		, coconant ana	

Select from:

Yes

(5.1.2) Frequency of analysis

Select from:

Annually

Water

(5.1.1) Use of scenario analysis

Select from:

Yes

(5.1.2) Frequency of analysis

Select from:

Annually

[Fixed row]

(5.1.1) Provide details of the scenarios used in your organization's scenario analysis.

Climate change

(5.1.1.1) Scenario used

Climate transition scenarios

☑ IEA NZE 2050

(5.1.1.3) Approach to scenario

Select from:

✓ Qualitative and quantitative

(5.1.1.4) Scenario coverage

Select from:

✓ Organization-wide

(5.1.1.5) Risk types considered in scenario

Select all that apply

- Policy
- Market
- Liability

(5.1.1.6) Temperature alignment of scenario

Select from:

✓ 1.5°C or lower

(5.1.1.7) Reference year

2021

(5.1.1.8) Timeframes covered

Select all that apply

(5.1.1.9) Driving forces in scenario

Local ecosystem asset interactions, dependencies and impacts

✓ Climate change (one of five drivers of nature change)

Stakeholder and customer demands

☑ Consumer attention to impact

Regulators, legal and policy regimes

☑ Global regulation

Direct interaction with climate

✓ On asset values, on the corporate

Macro and microeconomy

Globalizing markets

(5.1.1.10) Assumptions, uncertainties and constraints in scenario

Aptar explored a variety of climate-related scenarios consisting of transition scenarios focusing on different driving forces influencing pathways for GHG emissions. APTAR used the new IEA WEO NZE2050 scenario as an ambitious scenario in line with the Paris Agreement and in line with APTAR's ambition to update and align their Science-based Target to 1.5C The major assumptions are based on policies and regulation evolution in Europe and US, macroeconomic trends based on the market demand and price fluctuation, national variables related to weather patterns and natural depletion, technology levels and trends to low carbon technology, and energy mix to renewables with energy conservation measures. The severity of the driving forces identified in the analysis has been identified considering the past and current impact of them. Under the assessed transition scenarios, Aptar made use of the CO2 price projections by the IEA. The CO2 price assumed and applied was based on the 2030 EU CO2 price projection from the scenario, reflecting 140 USD per tonne. The scenario has been evaluated both quantitative (e.g. CO2 price) and qualitative (effects on market, raw material etc.). The time horizon chosen for the transition scenarios is short-term (2021-2030) in line with Aptar's current science-based reduction target to 2030 from a 2019 base-year.

(5.1.1.11) Rationale for choice of scenario

Aptar explored a variety of climate-related scenarios consisting of transition scenarios focusing on different driving forces influencing pathways for GHG emissions.

APTAR used the new IEA WEO NZE2050 scenario as an ambitious scenario in line with the Paris Agreement and in line with APTAR 's ambition to update and align

their Science-based Target to 1.5C, it is relevant for our corporate strategy because the majority of our customers, markets and investors are following these scenario for the decision making process. The scenario helps our internal strategy for the management of aspects like technology, resources depletion management, policy and liability compliance of our core processes activities to latest international agreements on climate change. For example, the CO2 price assumed and applied was based on the 2030 EU CO2 price projection from the scenario, reflecting 140 USD per tonne. The scenario has been evaluated both quantitative (e.g. CO2 price) and qualitative (effects on market, raw material etc.).

Water

(5.1.1.1) Scenario used

Physical climate scenarios

☑ RCP 8.5

(5.1.1.2) Scenario used SSPs used in conjunction with scenario

Select from:

✓ SSP1

(5.1.1.3) Approach to scenario

Select from:

✓ Qualitative and quantitative

(5.1.1.4) Scenario coverage

Select from:

✓ Organization-wide

(5.1.1.5) Risk types considered in scenario

Select all that apply

- ✓ Acute physical
- Chronic physical

(5.1.1.6) Temperature alignment of scenario

Select from:

✓ 4.0°C and above

(5.1.1.7) Reference year

2021

(5.1.1.8) Timeframes covered

Select all that apply

☑ 2030

✓ 2040

✓ 2080

☑ 2100

(5.1.1.9) Driving forces in scenario

Local ecosystem asset interactions, dependencies and impacts

☑ Changes to the state of nature

✓ Climate change (one of five drivers of nature change)

(5.1.1.10) Assumptions, uncertainties and constraints in scenario

Aptar explored physical scenarios addressing patterns of physical impacts attributed to climate change. Aptar chose as baseline scenarios the RCP 8.5 scenario as it is broadly aligned with current policies or business-as-usual with increasing GHG emissions and higher GHG concentration levels. RCP8.5 is generally taken as the worst case for climate scenarios with emissions continuing to rise throughout the 21 century and a global temperature rise of around 5 degrees by 2100 compared to pre-industrial levels. The major assumptions are based on changes to the state of nature, and climate change as one of five drivers of nature change. The severity of the driving forces identified in the analysis has been identified considering the past and current impact of them. Under the assessed transition scenarios, the physical impacts in the scenario lead to measurable impacts on the business such as production losses due to business interruptions through physical impacts such as flooding or water stress or investment needs to protect against and face these physical impacts. Aptar assumed that the scenario's regionalized projections can be mapped to own manufacturing sites in different regions and lead to a variety of impacts on assets and production.

(5.1.1.11) Rationale for choice of scenario

Aptar explored physical scenarios addressing patterns of physical impacts attributed to climate change. Aptar chose as baseline scenarios the RCP 8.5 scenario as it is broadly aligned with current policies or business-as-usual with increasing GHG emissions and higher GHG concentration levels. RCP8.5 is generally taken as the worst case for climate scenarios with emissions continuing to rise throughout the 21 century and a global temperature rise of around 5 degrees by 2100 compared to pre-industrial levels. The scenario has been evaluated both quantitative (number of sites affected) and qualitative (severity of impact, e.g. classifying sites into low, medium an high risk impact regions). The time horizon chosen for physical scenarios are 2030-2040 (as classified near-term by the scenario) as major physical impacts are occurring beyond 2030. Further, a long-term perspective (2080-2100) has been included in the scenario modelling due to the fact that between 2030 and 2040 the RCP4.5 and RCP8.5 are similar. [Add row]

(5.1.2) Provide details of the outcomes of your organization's scenario analysis.

Climate change

(5.1.2.1) Business processes influenced by your analysis of the reported scenarios

Select all that apply

- ☑ Risk and opportunities identification, assessment and management
- ✓ Strategy and financial planning
- ☑ Resilience of business model and strategy

(5.1.2.2) Coverage of analysis

Select from:

✓ Organization-wide

(5.1.2.3) Summarize the outcomes of the scenario analysis and any implications for other environmental issues

Aptar faces a variety of business impacts including revenue and cost implications, impacts on assets and own manufacturing sites, need for investments or business interruption to physical impacts such as flooding or water stress. Aptar faces several transition and physical risks for their manufacturing sites, due to the need to retrofit the building portfolio to 2030 as well as through physical, as Aptar faces high water stress among many sites. As both scenarios predict an increasing demand in recycled & more sustainable products, Aptar can make us of the opportunity through current efforts in PCR content, circular economy efforts and more sustainable product solutions. Informing business strategy: APTAR is in a good position regarding its current roadmap towards more sustainable and recycled products as this is projected by both transition scenarios. Further, APTAR needs to reduce emissions further as in line with its 1.5C aligned SBT in order to reduce the risk to face high

CO2-prices in future. Further, APTAR needs to revise their operation after as physical scenarios predict high impacts including drought, water stress or flooding. Financial planning is affected by upcoming financial impacts of climate scenario-related risks and opportunities, e.g. for example the upcoming CO2 price according to the IEA projections affects the development of an internal carbon price.

Water

(5.1.2.1) Business processes influenced by your analysis of the reported scenarios

Select all that apply

- ☑ Risk and opportunities identification, assessment and management
- ✓ Strategy and financial planning
- ✓ Resilience of business model and strategy
- ☑ Capacity building

(5.1.2.2) Coverage of analysis

Select from:

✓ Organization-wide

(5.1.2.3) Summarize the outcomes of the scenario analysis and any implications for other environmental issues

Aptar faces a variety of business impacts including revenue and cost implications, impacts on assets and own manufacturing sites, need for investments or business interruption to physical impacts such as flooding or water stress. Aptar faces several transition and physical risks for their manufacturing sites, due to the need to retrofit the building portfolio to 2030 as well as through physical, as Aptar faces high water stress among many sites.

[Fixed row]

(5.2) Does your organization's strategy include a climate transition plan?

(5.2.1) Transition plan

Select from:

✓ Yes, we have a climate transition plan which aligns with a 1.5°C world

(5.2.3) Publicly available climate transition plan

Select from:

✓ Yes

(5.2.4) Plan explicitly commits to cease all spending on, and revenue generation from, activities that contribute to fossil fuel expansion

Select from:

✓ Yes

(5.2.5) Description of activities included in commitment and implementation of commitment

Aptar's climate transition plan includes actions that align with climate science and support the transition to a low-carbon economy. In addition, Aptar developed an ISO 14064-1 Compliant Greenhouse Gas Emissions (GHG) management system to map and ensure accurate carbon accounting and reporting. More in accuracy, our climate commitments are part of how we care for the environment. Aptar has set science-based targets (SBTs) for Scope 1 and Scope 2 emissions reductions that are in line with requirements to keep global warming at 1.5 Celsius by 2030. In addition, we have a renewable electricity target, as well as a Scope 3 target. Aptar's targets have been validated by the Science Based Targets Initiative (SBTi). They are as follows: • Aptar commits to reduce absolute Scope 1 and 2 GHG emissions 82% by 2030 from a 2019 base year. • Aptar commits to reduce absolute Scope 3 GHG emissions from purchased goods and services, upstream transportation and distribution, waste generated in operations, and downstream transportation and distribution 14% by 2030 from a 2019 base year. • Aptar also commits to increase annual sourcing of renewable electricity from 57% in 2019 to 100% by 2030.

(5.2.7) Mechanism by which feedback is collected from shareholders on your climate transition plan

Select from:

☑ We have a different feedback mechanism in place

(5.2.8) Description of feedback mechanism

Aptar's carbon transition plan to 1.5C scenario, as reported annually in both our CDP assessment response and Corporate Sustainability Report, is summarized into a document called "Carbon Transition Plan" and posted within our ESG Reporting Center Hub on Aptar.com. We collect feedback via survey, and are able to share mid-long term targets for sustainability and climate actions in compliance to SBT and the 1.5C scenario.

(5.2.9) Frequency of feedback collection

Select from:

✓ More frequently than annually

(5.2.10) Description of key assumptions and dependencies on which the transition plan relies

Aptar's climate transition plan considered key assumptions based on the future market trends for the more sustainable products from customers, regulatory changes on policy focused on the support to the transition to a low-carbon economy in compliance with climate science. In addition, the reduction of GHG emissions are also considering the technology influence and evolution, especially for the energy and water conservation measures and process efficiency. The major dependencies on which the climate transition plan relies is the policy scenarios and regulatory compliances, that can influence markets and consumer's trends that, consequently, will influence the entire strategy and actions defined in our plan.

(5.2.11) Description of progress against transition plan disclosed in current or previous reporting period

Aptar's climate transition plan reported many progress against the previous reporting period, for example: in 2020 and 2021, we significantly surpassed our original goals for emission reductions to the WB2C scenario. Increases in renewable energy sourcing accounted for much of this progress. In 2022, we updated the Science Based Targets Initiative (SBTi) to set Scope 1 and 2 absolute emissions reductions goals to align to the 1.5C scenario. During the current reporting period we reduced Scope 1 2 emissions by 82% from 2019 baseline and we increased the renewables to 97%. Additionally, we increased our focus on our Scope 3 (value chain) emissions, as related to raw materials. Scope 3 emissions account for 92% of our total emissions and within that, most of these emissions come from Aptar's purchased goods & services, or raw materials. Plastic resins are our largest contributor to the raw material category therefore an added focus is needed to make progress towards our Scope 3 target. In addition to updating our Scope 12 targets, we are also working with the SBTi to update our Scope 3 baseline numbers as we have improved our ability to account for these emissions and have made some significant acquisitions since our initial validation in 2020.

(5.2.12) Attach any relevant documents which detail your climate transition plan (optional)

2023-Aptar-Climate-Transition-Plan (1).pdf

(5.2.13) Other environmental issues that your climate transition plan considers

Select all that apply

- ✓ Plastics
- Water
- ☑ Biodiversity

(5.2.14) Explain how the other environmental issues are considered in your climate transition plan

Aptar Carbon Transition Plan reports also our commitment and results to plastics, for example plastic packaging recyclability and use of alternative materials, water management and biodiversity road map started during the current reporting year.

[Fixed row]

(5.3) Have environmental risks and opportunities affected your strategy and/or financial planning?

(5.3.1) Environmental risks and/or opportunities have affected your strategy and/or financial planning

Select from:

✓ Yes, both strategy and financial planning

(5.3.2) Business areas where environmental risks and/or opportunities have affected your strategy

Select all that apply

- ✓ Upstream/downstream value chain
- Operations

[Fixed row]

(5.3.1) Describe where and how environmental risks and opportunities have affected your strategy.

Upstream/downstream value chain

(5.3.1.1) Effect type

Select all that apply

- ✓ Risks
- Opportunities

(5.3.1.2) Environmental issues relevant to the risks and/or opportunities that have affected your strategy in this area

Select all that apply

- ✓ Climate change
- ✓ Water

(5.3.1.3) Describe how environmental risks and/or opportunities have affected your strategy in this area

Climate and water-related risks and opportunities influence strategic decision in our upstream value chain, reflected for example in the decarbonization of our overall value chain and the related costs for both short and long-term time horizons. Aptar's strategic decisions in value chain are based on the target to optimize the uses and consumptions of natural resources in our value chain processes. Especially the reduction of greenhouse gas emissions and non-renewable resources, use of electricity from renewable energy sources, water conservation measures, and the reduction of process waste streams to landfill. These climate and water-related decisions can generate opportunities in terms of value chain cost reduction and increased value of fixed assets. As an example, a strategic decision in value chain included the definition of our sustainable materials uses, decarbonization of processes and optimization of freshwater that will define a decrease of the environmental impact along value chain in terms of greenhouse gases emissions and water consumption/pollution for direct and indirect activities.

Operations

(5.3.1.1) Effect type

Select all that apply

Risks

Opportunities

(5.3.1.2) Environmental issues relevant to the risks and/or opportunities that have affected your strategy in this area

Select all that apply

✓ Climate change

Water

(5.3.1.3) Describe how environmental risks and/or opportunities have affected your strategy in this area

Climate and water-related risks and opportunities influence strategic decision in our operations, reflected for example in the decarbonisation of our overall organization and the related costs for both short and long-term time horizons. Aptar's strategic decisions in operations are based on the target to optimize the consumption of natural resources in our operations and processes. Especially the reduction of greenhouse gas emissions, use of electricity from renewable energy sources, water conservation measures, and the reduction of process waste streams to landfill. These climate and water-related decisions can generate opportunities in terms of operational cost reduction and increased value of fixed assets. As an example, a strategic decision in operations included the definition of our Energy and Water Road Map in which the energy and water audit program, renewable energy plan and energy and water conservation measures for processes and buildings have been defined to decrease the environmental impact of operations in terms of greenhouse gases emissions and water consumption/pollution for direct and indirect activities.

[Add row]

(5.3.2) Describe where and how environmental risks and opportunities have affected your financial planning.

Row 1

(5.3.2.1) Financial planning elements that have been affected

Select all that apply

Revenues

Acquisitions and divestments

- ✓ Direct costs
- ✓ Indirect costs
- Capital allocation
- Capital expenditures

(5.3.2.2) Effect type

Select all that apply

- Risks
- Opportunities

(5.3.2.3) Environmental issues relevant to the risks and/or opportunities that have affected these financial planning elements

Select all that apply

- ✓ Climate change
- ✓ Water

(5.3.2.4) Describe how environmental risks and/or opportunities have affected these financial planning elements

Market requests and customer needs are generating climate and water risks and opportunities that are influencing our financial planning to investments for sustainable products and clean processes. This aspect is leading to an adaption in the financial planning in order to invest into clean technology for our operations. For example in 2019 Aptar defined the new global energy road map with goals and targets in order to reduce energy consumption in our operations, increase to 100% renewable electricity sources, implement energy conservation measures in our buildings and core processes. During the reporting year, our water road map defined water audit in the sites located in water stressed areas to reduce water consumptions and optimize wastewater pollution. The financial planning has been influenced about capital expenditures and allocation due to these new investments to reach our goals and targets year by year. The opportunity related to the development of low carbon product is driving the investment in clean technology that is influencing our financial planning for next years. The time horizon of financial planning linked to the energy and water road map is covering mid / long term period considering different investments such as PPAs for renewable energy and new clean

technologies to be carbon neutral by 2050. Aptar carbon transition plan is supported with a dedicated CAPEX (defined at corporate level) for specific activities that contribute to the decarbonization of our operations and core processes. For example investments in clean technology and energy conservation measures in
operations.
[Add row]

(5.4) In your organization's financial accounting	, do you identify spending/revenue	e that is aligned with your	organization's
climate transition?			

Identification of spending/revenue that is aligned with your organization's climate transition
Select from: ✓ No, but we plan to in the next two years

[Fixed row]

(5.4.1) Quantify the amount and percentage share of your spending/revenue that is aligned with your organization's climate transition.

	Methodology or framework used to assess alignment
Row 1	Select from: ✓ A sustainable finance taxonomy

[Add row]

(5.9) What is the trend in your organization's water-related capital expenditure (CAPEX) and operating expenditure (OPEX) for the reporting year, and the anticipated trend for the next reporting year?

(5.9.1) Water-related CAPEX (+/- % change)

1

(5.9.2) Anticipated forward trend for CAPEX (+/- % change)

1

(5.9.3) Water-related OPEX (+/- % change)

0

(5.9.4) Anticipated forward trend for OPEX (+/- % change)

0

(5.9.5) Please explain

The main Capex focus is based on water stressed sites, these sites are required to implement consumption reduction projects. In addition, the awareness training is serving to educate more Aptar employees in all locations (in 2023 we completed new water circularity training and questionnaire for management and quality of the water). Further, we are improving the accuracy of the data tracked through our CapEx system in order to more efficiently identify and monitor sustainability related projects. About OPEX, we do not have it in our process. Capex, respect the previous reporting year, has not changed due to the market performance, it is linked to the sales revenue and budget forecast.

[Fixed row]

(5.10) Does your organization use an internal price on environmental externalities?

Use of internal pricing of environmental externalities	Primary reason for not pricing environmental externalities	Explain why your organization does not price environmental externalities
Select from: ✓ No, but we plan to in the next two years	Select from: ☑ No standardized procedure	Aptar is investigating the right approach about the adoption of the internal price on water and climate related externalities

[Fixed row]

(5.11) Do you engage with your value chain on environmental issues?

	Engaging with this stakeholder on environmental issues	Environmental issues covered
Suppliers	Select from: ✓ Yes	Select all that apply ✓ Climate change ✓ Water ✓ Plastics
Customers	Select from: ✓ Yes	Select all that apply ✓ Climate change ✓ Water ✓ Plastics
Investors and shareholders	Select from: ✓ Yes	Select all that apply ✓ Climate change ✓ Water ✓ Plastics

	Engaging with this stakeholder on environmental issues	Environmental issues covered
Other value chain stakeholders	Select from:	Select all that apply
	✓ Yes	✓ Climate change
		✓ Water
		✓ Plastics

[Fixed row]

(5.11.1) Does your organization assess and classify suppliers according to their dependencies and/or impacts on the environment?

Climate change

(5.11.1.1) Assessment of supplier dependencies and/or impacts on the environment

Select from:

✓ Yes, we assess the dependencies and/or impacts of our suppliers

(5.11.1.2) Criteria for assessing supplier dependencies and/or impacts on the environment

Select all that apply

- ☑ Contribution to supplier-related Scope 3 emissions
- ☑ Dependence on ecosystem services/environmental assets

(5.11.1.3) % Tier 1 suppliers assessed

Select from:

✓ 1-25%

(5.11.1.4) Define a threshold for classifying suppliers as having substantive dependencies and/or impacts on the environment

Threshold is defined by percentage of suppliers engaged for the mapping of their GHG reduction targets and report annual emissions. In the reporting year we measured the success of this strategy versus our targets for the first time as we have engaged suppliers with dedicated program (for example Ecovadis). So far, 403 suppliers representing 3.3% of total suppliers by number, and are representing 58% of our spend. They cover 72% of our spend with scope 3 suppliers.

(5.11.1.5) % Tier 1 suppliers meeting the thresholds for substantive dependencies and/or impacts on the environment

Select from:

✓ 51-75%

(5.11.1.6) Number of Tier 1 suppliers meeting the thresholds for substantive dependencies and/or impacts on the environment

403

Water

(5.11.1.1) Assessment of supplier dependencies and/or impacts on the environment

Select from:

✓ Yes, we assess the dependencies and/or impacts of our suppliers

(5.11.1.2) Criteria for assessing supplier dependencies and/or impacts on the environment

Select all that apply

- ✓ Dependence on water
- ✓ Other, please specify: Water consumption

(5.11.1.3) % Tier 1 suppliers assessed

Select from:

(5.11.1.4) Define a threshold for classifying suppliers as having substantive dependencies and/or impacts on the environment

Threshold is defined by percentage of suppliers engaged for the mapping of their water consumption and water management. In the reporting year we measured the success of this strategy versus our targets for the first time as we have engaged suppliers with dedicated program (for example Ecovadis). So far, 403 suppliers representing 3.3% of total suppliers by number, and are representing 58% of our spend. They cover 72% of our spend with scope 3 suppliers.

(5.11.1.5) % Tier 1 suppliers meeting the thresholds for substantive dependencies and/or impacts on the environment

Select from:

✓ 51-75%

(5.11.1.6) Number of Tier 1 suppliers meeting the thresholds for substantive dependencies and/or impacts on the environment

403

Plastics

(5.11.1.1) Assessment of supplier dependencies and/or impacts on the environment

Select from:

✓ Yes, we assess the dependencies and/or impacts of our suppliers

(5.11.1.2) Criteria for assessing supplier dependencies and/or impacts on the environment

Select all that apply

- ✓ Impact on plastic waste and pollution
- ☑ Other, please specify :Primary data about CO2 plastic impact

(5.11.1.3) % Tier 1 suppliers assessed

Select from:

✓ 1-25%

(5.11.1.4) Define a threshold for classifying suppliers as having substantive dependencies and/or impacts on the environment

Threshold is defined by percentage of suppliers engaged for the mapping of their primary CO2 data impact for the production of plastic. In the reporting year we measured the success of this strategy versus our targets for the first time as we have engaged suppliers with dedicated program (for example CDP Supply Chain). So far, we engaged top 10 resin suppliers by volume, representing about 85% of our Scope 3 emissions.

(5.11.1.5) % Tier 1 suppliers meeting the thresholds for substantive dependencies and/or impacts on the environment

Select from:

✓ 76-99%

(5.11.1.6) Number of Tier 1 suppliers meeting the thresholds for substantive dependencies and/or impacts on the environment

10 [Fixed row]

(5.11.2) Does your organization prioritize which suppliers to engage with on environmental issues?

Climate change

(5.11.2.1) Supplier engagement prioritization on this environmental issue

Select from:

✓ Yes, we prioritize which suppliers to engage with on this environmental issue

(5.11.2.2) Criteria informing which suppliers are prioritized for engagement on this environmental issue

Select all that apply

☑ In line with the criteria used to classify suppliers as having substantive dependencies and/or impacts relating to climate change

- ✓ Material sourcing
- ✓ Procurement spend
- ✓ Product safety and compliance
- ✓ Regulatory compliance

(5.11.2.4) Please explain

Our supplier engagement strategy is based around the Scope 3 component of our SBTi-approved science-based target, which committed to working with our suppliers (representing more than 80% of its supply chain emissions) so that they set their own science-based reduction targets and report annual emissions by 2030. The coverage of this target prioritizes Aptar's engagement to "key suppliers" monitoring key KPIs that will help Aptar to analyze suppliers which will maximize the science-based target's impact. The target's requirement of suppliers to report emission reduction progress will not only encourage progress on GHG emissions management but also allow measurement of absolute emissions reductions. Our supplier information collection approach is based around information related to the climate change management, GHG reporting, energy efficiency, renewables and Science Based Target commitment thanks to the use of Ecovadis program. The target's requirement of suppliers to report emission reduction progress will not only encourage progress on GHG emissions management but also allow measurement of absolute emissions reductions.

Water

(5.11.2.1) Supplier engagement prioritization on this environmental issue

Select from:

✓ Yes, we prioritize which suppliers to engage with on this environmental issue

(5.11.2.2) Criteria informing which suppliers are prioritized for engagement on this environmental issue

Select all that apply

- ✓ In line with the criteria used to classify suppliers as having substantive dependencies and/or impacts relating to water
- ✓ Supplier performance improvement

(5.11.2.4) Please explain

Our supplier engagement strategy is based around the engagement of suppliers on the water management and water consumption. The coverage of this target prioritizes Aptar's engagement to "key suppliers" monitoring key KPIs that will help Aptar to analyse suppliers which will maximize the water conservation measures. The target's requirement of suppliers to report water consumption progress will not only encourage progress on water road map, but also allow measurement of absolute water reduction and water conservation initiatives.

Plastics

(5.11.2.1) Supplier engagement prioritization on this environmental issue

Select from:

✓ Yes, we prioritize which suppliers to engage with on this environmental issue

(5.11.2.2) Criteria informing which suppliers are prioritized for engagement on this environmental issue

Select all that apply

- ☑ In line with the criteria used to classify suppliers as having substantive dependencies and/or impacts relating to plastics
- Material sourcing
- ✓ Product lifecycle

(5.11.2.4) Please explain

Our supplier engagement strategy is based around the Scope 3 component of our SBTi-approved science-based target, which committed to working with our suppliers (representing more than 80% of its supply chain emissions) so that they set their own science-based reduction targets and report annual emissions by 2030. The coverage of this target prioritizes Aptar's engagement to "key suppliers" monitoring key KPIs that will help Aptar to analyze suppliers which will maximize the science-based target's impact. The target's requirement of suppliers to report emission reduction progress will not only encourage progress on GHG emissions management but also allow measurement of absolute emissions reductions, sustainable materials and product life cycle. The target's requirement of absolute emissions reductions. [Fixed row]

(5.11.5) Do your suppliers have to meet environmental requirements as part of your organization's purchasing process?

Climate change

(5.11.5.1) Suppliers have to meet specific environmental requirements related to this environmental issue as part of the purchasing process

Select from:

✓ Yes, environmental requirements related to this environmental issue are included in our supplier contracts

(5.11.5.2) Policy in place for addressing supplier non-compliance

Select from:

✓ Yes, we have a policy in place for addressing non-compliance

(5.11.5.3) Comment

Aptar develops solutions in accordance with fair business dealings and labour laws, while respecting the environment and its natural resources. In order to guarantee to its customers that it provides them with high quality products that come from a fair and respectful value chain, Aptar expects this approach to be implemented throughout its entire value chain. The Sustainable Purchasing Charter outlines the expectations Aptar has for a partnership with its suppliers based on fair dealing, honesty and mutual respect. Compliance with this Charter is a prerequisite for consideration and a requirement for a commercial relationship with Aptar. Aptar expects its suppliers to comply with local requirements in terms of environment and sustainable development and more particularly comply with environmental norms where applicable, and supporting the decarbonization process reducing GHG emissions in alignment with climate science target and scenarios. In addition, our internal policy support the retain and engage of our value chain in case they are not compliance with regulatory requirements and/or Aptar strategic targets. We also provide suppliers with a Supplier Playbook to help them understand how their efforts affect our initiatives.

Water

(5.11.5.1) Suppliers have to meet specific environmental requirements related to this environmental issue as part of the purchasing process

Select from:

☑ Yes, environmental requirements related to this environmental issue are included in our supplier contracts

(5.11.5.2) Policy in place for addressing supplier non-compliance

Select from:

✓ Yes, we have a policy in place for addressing non-compliance

(5.11.5.3) Comment

Aptar develops solutions in accordance with fair business dealings and labour laws, while respecting the environment and its natural resources. In order to guarantee to its customers that it provides them with high quality products that come from a fair and respectful value chain, Aptar expects this approach to be implemented throughout its entire value chain. The Sustainable Purchasing Charter outlines the expectations Aptar has for a partnership with its suppliers based on fair dealing, honesty and mutual respect. Compliance with this Charter is a prerequisite for consideration and a requirement for a commercial relationship with Aptar. Aptar expects its suppliers to comply with local requirements in terms of environment and sustainable development and more particularly comply with environmental norms

where applicable, and supporting the water management and water conservation measures supporting the biodiversity and nature preservation, in alignment with science based target for nature. In addition, our internal policy support the retain and engage of our value chain in case they are not compliance with regulatory requirements and/or Aptar strategic targets. We also provide suppliers with a Supplier Playbook to help them understand how their efforts affect our initiatives. [Fixed row]

(5.11.6) Provide details of the environmental requirements that suppliers have to meet as part of your organization's purchasing process, and the compliance measures in place.

Climate change

(5.11.6.1) Environmental requirement

Select from:

☑ Environmental disclosure through a non-public platform

(5.11.6.2) Mechanisms for monitoring compliance with this environmental requirement

Select all that apply

- ☑ Supplier scorecard or rating
- ✓ Supplier self-assessment

(5.11.6.3) % tier 1 suppliers by procurement spend required to comply with this environmental requirement

Select from:

☑ 76-99%

(5.11.6.4) % tier 1 suppliers by procurement spend in compliance with this environmental requirement

Select from:

✓ 51-75%

(5.11.6.7) % tier 1 supplier-related scope 3 emissions attributable to the suppliers required to comply with this environmental requirement

Select from:

✓ 51-75%

(5.11.6.8) % tier 1 supplier-related scope 3 emissions attributable to the suppliers in compliance with this environmental requirement

Select from:

✓ 51-75%

(5.11.6.9) Response to supplier non-compliance with this environmental requirement

Select from:

✓ Retain and engage

(5.11.6.10) % of non-compliant suppliers engaged

Select from:

☑ 1-25%

(5.11.6.11) Procedures to engage non-compliant suppliers

Select all that apply

- ✓ Providing information on appropriate actions that can be taken to address non-compliance
- ☑ Re-integrating suppliers back into upstream value chain based on the successful and verifiable completion of activities

(5.11.6.12) Comment

Our supplier engagement strategy is based around information collection related to the climate change management, GHG reporting, energy efficiency, renewables and Science Based Target commitment thanks to the use of EcoVadis program. The coverage of this target prioritizes vendors engagement to "key suppliers" monitoring key KPIs that will help Aptar to analyze suppliers which will maximize the science-based target's impact. The target's requirement of suppliers to report emission reduction progress will not only encourage progress on GHG emissions management but also allow measurement of absolute emissions reductions. So far, 403 suppliers representing 58% of our reporting year spend have been evaluated by Ecovadis. They cover 72% of our spend with scope 3 suppliers and 40% of our spend with non scope 3 suppliers. Currently, about the supplier's level of engagement on Energy & GHGs, we have mapped that 55% of the supplier spend is on the level Engaged / Advanced.

Water

(5.11.6.1) Environmental requirement

Select from:

☑ Total water withdrawal volumes reduction

(5.11.6.2) Mechanisms for monitoring compliance with this environmental requirement

Select all that apply

- ☑ Supplier scorecard or rating
- ✓ Supplier self-assessment

(5.11.6.3) % tier 1 suppliers by procurement spend required to comply with this environmental requirement

Select from:

✓ 76-99%

(5.11.6.4) % tier 1 suppliers by procurement spend in compliance with this environmental requirement

Select from:

☑ 51-75%

(5.11.6.5) % tier 1 suppliers with substantive environmental dependencies and/or impacts related to this environmental issue required to comply with this environmental requirement

Select from:

☑ 26-50%

(5.11.6.6) % tier 1 suppliers with substantive environmental dependencies and/or impacts related to this environmental issue that are in compliance with this environmental requirement

Select from:

✓ 51-75%

(5.11.6.9) Response to supplier non-compliance with this environmental requirement

Select from:

✓ Retain and engage

(5.11.6.10) % of non-compliant suppliers engaged

Select from:

✓ 1-25%

(5.11.6.11) Procedures to engage non-compliant suppliers

Select all that apply

- ✓ Providing information on appropriate actions that can be taken to address non-compliance
- ☑ Re-integrating suppliers back into upstream value chain based on the successful and verifiable completion of activities

(5.11.6.12) Comment

Our supplier engagement strategy is based around information collection related to the climate change management, GHG reporting, energy efficiency, renewables and Science Based Target commitment thanks to the use of EcoVadis program. The coverage of this target prioritizes vendors engagement to "key suppliers" monitoring key KPIs that will help Aptar to analyze suppliers which will maximize the science-based target's impact. The target's requirement of suppliers to report emission reduction progress will not only encourage progress on GHG emissions management but also allow measurement of absolute emissions reductions. So far, 403 suppliers representing 58% of our reporting year spend have been evaluated by Ecovadis. They cover 72% of our spend with scope 3 suppliers and 40% of our spend with non scope 3 suppliers. Currently, about the supplier's level of engagement on Energy & GHGs, we have mapped that 55% of the supplier spend is on the level Engaged / Advanced.

[Add row]

(5.11.7) Provide further details of your organization's supplier engagement on environmental issues.

Climate change

(5.11.7.2) Action driven by supplier engagement

Select from:

☑ Emissions reduction

(5.11.7.3) Type and details of engagement

Capacity building

- ✓ Provide training, support and best practices on how to measure GHG emissions
- ✓ Provide training, support and best practices on how to set science-based targets
- ✓ Support suppliers to develop public time-bound action plans with clear milestones

Information collection

- ☑ Collect climate transition plan information at least annually from suppliers
- ☑ Collect GHG emissions data at least annually from suppliers
- ☑ Collect targets information at least annually from suppliers

Innovation and collaboration

✓ Collaborate with suppliers on innovations to reduce environmental impacts in products and services

(5.11.7.4) Upstream value chain coverage

Select all that apply

✓ Tier 1 suppliers

(5.11.7.5) % of tier 1 suppliers by procurement spend covered by engagement

Select from:

☑ 76-99%

(5.11.7.6) % of tier 1 supplier-related scope 3 emissions covered by engagement

Select from:

✓ 51-75%

(5.11.7.9) Describe the engagement and explain the effect of your engagement on the selected environmental action

Aptar engaged resin vendors for primary data collection on the CO2 impact from the production of raw materials. In addition, we are asking information about actions planned to promote the decarbonization of processes and products. Annually we complete this process thanks to external tool like CDP Supply Chain module and Ecovadis tool. Our team support also the training of suppliers, educating them about methology to calculate emissions and report the performance. Quantitative thresholds has been defined in 90% of engagement.

(5.11.7.10) Engagement is helping your tier 1 suppliers meet an environmental requirement related to this environmental issue

Select from:

☑ Yes, please specify the environmental requirement: GHG reduction and compliance with non financial disclosure regulatory requirement.

(5.11.7.11) Engagement is helping your tier 1 suppliers engage with their own suppliers on the selected action

Select from:

Unknown

Water

(5.11.7.2) Action driven by supplier engagement

Select from:

▼ Total water withdrawal volumes reduction.

(5.11.7.3) Type and details of engagement

Information collection

- ☑ Collect targets information at least annually from suppliers
- ☑ Collect water quantity information at least annually from suppliers (e.g., withdrawal and discharge volumes)

Innovation and collaboration

✓ Incentivize collaborative sustainable water management in river basins

(5.11.7.4) Upstream value chain coverage

☑ Tier 1 suppliers

(5.11.7.5) % of tier 1 suppliers by procurement spend covered by engagement

Select from:

☑ 76-99%

(5.11.7.7) % tier 1 suppliers with substantive impacts and/or dependencies related to this environmental issue covered by engagement

Select from:

✓ 51-75%

(5.11.7.9) Describe the engagement and explain the effect of your engagement on the selected environmental action

Aptar engaged resin vendors for primary data collection on the water management and water consumptions related to the production of raw materials. In addition, we are asking information about actions planned to promote the water conservation measures. Annually we complete this process thanks to external tool like CDP Supply Chain module and Ecovadis tool. In addition, our team promote the incentivization of collaboration for the biodiversity road map on which we are planning to engage suppliers to a sustainable water management in the river basins. Quantitative thresholds has been defined in 90% of engagement.

(5.11.7.10) Engagement is helping your tier 1 suppliers meet an environmental requirement related to this environmental issue

Select from:

✓ Yes, please specify the environmental requirement: Water consumption reduction and compliance with local regulatory wastewater pollutants

(5.11.7.11) Engagement is helping your tier 1 suppliers engage with their own suppliers on the selected action

Select from:

✓ Unknown

Plastics

(5.11.7.2) Action driven by supplier engagement

Select from:

✓ Circular economy

(5.11.7.3) Type and details of engagement

Innovation and collaboration

- ✓ Collaborate with suppliers on innovations to reduce environmental impacts in products and services
- ✓ Collaborate with suppliers to develop reuse infrastructure and reuse models

(5.11.7.4) Upstream value chain coverage

Select all that apply

☑ Tier 1 suppliers

(5.11.7.5) % of tier 1 suppliers by procurement spend covered by engagement

Select from:

✓ 76-99%

(5.11.7.9) Describe the engagement and explain the effect of your engagement on the selected environmental action

Aptar engaged resin vendors for the investigation of new sustainable materials following innovation to reuse and circular economy principle (recycled biofeedstock and renewables). In addition, we are asking information about actions planned to promote the circular economy measures. Annually we complete this process thanks to external tool like CDP Supply Chain module and Ecovadis tool. In addition, our team promote the incentivization of collaboration for the development of reuse models that can promote green product's solutions. Quantitative thresholds has been defined in 90% of engagement.

(5.11.7.11) Engagement is helping your tier 1 suppliers engage with their own suppliers on the selected action

Select from:

✓ Unknown

[Add row]

(5.11.9) Provide details of any environmental engagement activity with other stakeholders in the value chain.

Climate change

(5.11.9.1) Type of stakeholder

Select from:

Customers

(5.11.9.2) Type and details of engagement

Education/Information sharing

- ☑ Share information about your products and relevant certification schemes
- ☑ Share information on environmental initiatives, progress and achievements

Innovation and collaboration

- ☑ Align your organization's goals to support customers' targets and ambitions
- ☑ Collaborate with stakeholders in creation and review of your climate transition plan
- ✓ Collaborate with stakeholders on innovations to reduce environmental impacts in products and services
- ☑ Engage with stakeholders to advocate for policy or regulatory change

(5.11.9.3) % of stakeholder type engaged

Select from:

☑ 51-75%

(5.11.9.4) % stakeholder-associated scope 3 emissions

Select from:

☑ 76-99%

(5.11.9.5) Rationale for engaging these stakeholders and scope of engagement

Aptar engaged customers in the alignment process to decarbonization goals and science based targets thanks to ecodesign innovation of products and services. The rationale is related to the support of customer's strategy and commitment, increase market share and increase sales revenue of sustainable products. The scope is based on the GHG reduction, energy management renewables, circular economy, ecodesign, and biodiversity actions.

(5.11.9.6) Effect of engagement and measures of success

The effect of engagement is based on the major customer fidelization and we are measuring the success with the number of customers engaged in sustainability project and commitments (for example submit SBT or other sustainability claiming). Quantitative thresholds has been defined in 90% of engagement.

Water

(5.11.9.1) Type of stakeholder

Select from:

Customers

(5.11.9.2) Type and details of engagement

Education/Information sharing

- ✓ Share information about your products and relevant certification schemes
- ✓ Share information on environmental initiatives, progress and achievements

Innovation and collaboration

- ☑ Align your organization's goals to support customers' targets and ambitions
- ☑ Collaborate with stakeholders on innovations to reduce environmental impacts in products and services
- ✓ Incentivize collaborative sustainable water management in river basins

(5.11.9.3) % of stakeholder type engaged

Select from:

✓ 51-75%

(5.11.9.5) Rationale for engaging these stakeholders and scope of engagement

Aptar planned the engagement of our customers in the alignment process to water management and biodiversity topic thanks to innovation of products and services for the reduction of water consumptions and wastewater pollution. The rationale is related to the support of customer's strategy and commitment, increase market share and increase sales revenue of sustainable products. The scope is based on the water management and biodiversity aspects related to freshwater conservation from river basins at risk.

(5.11.9.6) Effect of engagement and measures of success

The effect of engagement is based on the major customer fidelization and we are measuring the success with the number of customers engaged in sustainability project and commitments (for example submit SBT for nature or other sustainability claiming). Quantitative thresholds has been defined in 90% of engagement. [Add row]

(5.12) Indicate any mutually beneficial environmental initiatives you could collaborate on with specific CDP Supply Chain members.

Row 1

(5.12.1) Requesting member

Select from:

(5.12.2) Environmental issues the initiative relates to

Select all that apply

✓ Climate change

(5.12.4) Initiative category and type

Innovation

✓ New product or service that has a lower upstream emissions footprint

(5.12.5) Details of initiative

Aptar, in collaboration with customer, is planning to increase the use of post consumer recycled materials in the finished products. Climate-related projects are referred to the increase of recycled content into the finished product purchased by customer. Our conversion plan can support the reduction of GHG emissions and

the promotion of circular economy business model along value chain. In addition, thanks to the use of post consumer resin recycled, we can contribute to the reduction of resources depletion (non renewable fossil based). The potential financial impact of this project in terms of costs VS savings is neutral. The strategy related to the use of PCR in our finished product, can support customer's goals and targets to reduce their indirect GHG emissions from purchased goods and services. More in accuracy, the conversion plan will take into consideration some components realized in oil-based plastics. The total weight of recycled content has been defined in a range 20-100% of total finished product weight. Timeline for final approval from customer has been defined by end of 2023/2024. During the reporting year the status of these new products is under testing / validation. Please note that CO2 saving is quantified per year (from 2023) and it is related to different products converted.

(5.12.6) Expected benefits

Select all that apply

☑ Reduction of downstream value chain emissions (own scope 3)

(5.12.7) Estimated timeframe for realization of benefits

Select from:

✓ 1-3 years

(5.12.8) Are you able to estimate the lifetime CO2e and/or water savings of this initiative?

Select from:

✓ Yes, lifetime CO2e savings only

(5.12.9) Estimated lifetime CO2e savings

618

(5.12.11) Please explain

Calculation method based on ISO 1404/14044

Row 2

(5.12.1) Requesting member

Select from:

(5.12.2) Environmental issues the initiative relates to

Select all that apply

✓ Climate change

(5.12.4) Initiative category and type

Innovation

✓ New product or service that has a lower upstream emissions footprint

(5.12.5) Details of initiative

Aptar, in collaboration with customer, is planning to increase the use of post consumer recycled materials in the finished products. Climate-related projects are referred to the increase of recycled content into the finished product purchased by customer. Our conversion plan can support the reduction of GHG emissions and the promotion of circular economy business model along value chain. In addition, thanks to the use of post consumer resin recycled, we can contribute to the reduction of resources depletion (non renewable fossil based). The potential financial impact of this project in terms of costs VS savings is neutral. The strategy related to the use of PCR in our finished product, can support customer's goals and targets to reduce their indirect GHG emissions from purchased goods and services. More in accuracy, the conversion plan will take into consideration some components realized in oil-based plastics. The total weight of recycled content has been defined in a range 20-100% of total finished product weight. Timeline for final approval from customer has been defined by end of 2023. During the reporting year the status of these new products is under testing / validation. Please note that CO2 calculation is under investigation during the reporting year, so, more details will be shared along 2024

(5.12.6) Expected benefits

Select all that apply

☑ Reduction of downstream value chain emissions (own scope 3)

(5.12.7) Estimated timeframe for realization of benefits

Select from:

✓ 1-3 years

(5.12.8) Are you able to estimate the lifetime CO2e and/or water savings of this initiative?

Select from:

V No

(5.12.11) Please explain

Calculation of CO2 impact under investigation

Row 3

(5.12.1) Requesting member

Select from:

(5.12.2) Environmental issues the initiative relates to

Select all that apply

✓ Climate change

(5.12.4) Initiative category and type

Innovation

✓ New product or service that has a lower upstream emissions footprint

(5.12.5) Details of initiative

Aptar, in collaboration with customer, is planning to increase the use of post consumer recycled materials in the finished products. Climate-related projects are referred to the increase of recycled content into the finished product purchased by customer. Our conversion plan can support the reduction of GHG emissions and the promotion of circular economy business model along value chain. In addition, thanks to the use of post consumer resin recycled, we can contribute to the reduction of resources depletion (non renewable fossil based). The potential financial impact of this project in terms of costs VS savings is neutral. The strategy related to the use of PCR in our finished product, can support customer's goals and targets to reduce their indirect GHG emissions from purchased goods and services. More in accuracy, the conversion plan will take into consideration some components realized in oil-based plastics. The total weight of recycled content has been defined in a range 20-100% of total finished product weight. Timeline for final approval from customer has been defined by end of 2023.

(5.12.6) Expected benefits

Select all that apply

☑ Reduction of downstream value chain emissions (own scope 3)

(5.12.7) Estimated timeframe for realization of benefits

Select from:

✓ 1-3 years

(5.12.8) Are you able to estimate the lifetime CO2e and/or water savings of this initiative?

Select from:

✓ Yes, lifetime CO2e savings only

(5.12.9) Estimated lifetime CO2e savings

1.33

(5.12.11) Please explain

Calculation based on the ISO 14040/14044

Row 4

(5.12.1) Requesting member

Select from:

(5.12.2) Environmental issues the initiative relates to

Select all that apply

✓ Climate change

(5.12.4) Initiative category and type

Innovation

✓ New product or service that reduces customers' products/services operational emissions

(5.12.5) Details of initiative

Aptar, in collaboration with customer, is planning to increase the use recyclability of finished products. Climate-related projects are referred to the use of monomaterial product that will maximize the recyclability of full product by customer. Our eco-design solution can support the reduction of GHG emissions and the promotion of circular economy business model along value chain. In addition, thanks to the maximization of recyclability at the end of life, we can contribute to the reduction of resources depletion (non renewable fossil based). The potential financial impact of this project in terms of costs VS savings is neutral. The strategy related to the use of this new ecodesign solution in our finished product, can support customer's goals and targets to reduce their indirect GHG emissions related to the end of life. More in accuracy, the ecodesign solution is based on pump 100% PE monomaterial. Timeline for final approval from customer has been defined by end of 2023. During the reporting year the status of these new products is ongoing. Please note that CO2 saving is related to the comparative analysis between monomaterial solution and standard solution (from cradle to grave) and has been calculated considering annual volume 2022. Finally, considering absolute CO2 comparison, we have -76% CO2 respect standard solution (multimaterial).

(5.12.6) Expected benefits

Select all that apply

✓ Other, please specify:increase recyclability

(5.12.7) Estimated timeframe for realization of benefits

Select from:

✓ 1-3 years

(5.12.8) Are you able to estimate the lifetime CO2e and/or water savings of this initiative?

Select from:

✓ No

(5.12.11) Please explain

Product ecodesign solutions that can improve the recyclability at end of life

Row 5

(5.12.1) Requesting member

(5.12.2) Environmental issues the initiative relates to

Select all that apply

✓ Climate change

(5.12.4) Initiative category and type

Innovation

✓ New product or service that reduces customers' products/services operational emissions

(5.12.5) Details of initiative

Aptar, in collaboration with customer, is planning to increase the use recyclability of finished products. Climate-related projects are referred to the use of monomaterial product that will maximize the recyclability of full product by customer. Our eco-design solution can support the reduction of GHG emissions and the promotion of circular economy business model along value chain. In addition, thanks to the maximization of recyclability at the end of life, we can contribute to the reduction of resources depletion (non renewable fossil based). The potential financial impact of this project in terms of costs VS savings is neutral. The strategy related to the use of this new ecodesign solution in our finished product, can support customer's goals and targets to reduce their indirect GHG emissions related to the end of life. More in accuracy, the ecodesign solution is based on pump 100% PE monomaterial. Timeline for final approval from customer has been defined by end of 2023-2024. During the reporting year the status of these new products is ongoing. Please note that CO2 saving is related to the comparative analysis between monomaterial solution and standard solution (from cradle to grave) and has been calculated considering annual volume 2022. Finally, considering absolute CO2 comparison, we have -76% CO2 respect standard solution (multimaterial)

(5.12.6) Expected benefits

Select all that apply

✓ Other, please specify:increase recyclability

(5.12.7) Estimated timeframe for realization of benefits

Select from:

1-3 years

(5.12.8) Are you able to estimate the lifetime CO2e and/or water savings of this initiative?

Select from:

✓ No

(5.12.11) Please explain

CO2 calculation in progress

Row 6

(5.12.1) Requesting member

Select from:

(5.12.2) Environmental issues the initiative relates to

Select all that apply

✓ Climate change

(5.12.4) Initiative category and type

Innovation

✓ New product or service that has a lower upstream emissions footprint

(5.12.5) Details of initiative

Aptar, in collaboration with customer, is planning to increase the use of post consumer recycled materials in the finished products. Climate-related projects are referred to the increase of recycled content into the finished product purchased by customer. Our conversion plan can support the reduction of GHG emissions and the promotion of circular economy business model along value chain. In addition, thanks to the use of post consumer resin recycled, we can contribute to the reduction of resources depletion (non renewable fossil based). The potential financial impact of this project in terms of costs VS savings is neutral. The strategy related to the use of PCR in our finished product, can support customer's goals and targets to reduce their indirect GHG emissions from purchased goods and services. More in accuracy, the conversion plan will take into consideration some components realized in oil-based plastics. The total weight of recycled content has been defined in a range 20-100% of total finished product weight. Timeline for final approval from customer has been defined by end of 2024/2025. During the reporting year the status of these new products is under testing / validation. Please note that CO2 saving is quantified per year (from 2022) and it is related to different products converted.

Select all that apply ✓ Reduction of downstream value chain emissions (own scope 3)	
(5.12.7) Estimated timeframe for realization of benefits	
Select from: ✓ 1-3 years	
(5.12.8) Are you able to estimate the lifetime CO2e and/or	water savings of this initiative?
Select from: ☑ No	
(5.12.11) Please explain	
CO2 calculation in progress [Add row]	
(5.13) Has your organization already implemented any muto Chain member engagement?	ually beneficial environmental initiatives due to CDP Supply
	Environmental initiatives implemented due to CDP Supply Chain member engagement
	Select from: ✓ Yes
[Fixed row]	

226

(5.12.6) Expected benefits

(5.13.1) Specify the CDP Supply Chain members that have prompted your implementation of mutually beneficial environmental initiatives and provide information on the initiatives.

Row 1

(5.13.1.1) Requesting member

Select from:

(5.13.1.2) Environmental issues the initiative relates to

Select all that apply

✓ Climate change

(5.13.1.4) Initiative ID

Select from:

✓ Ini1

(5.13.1.5) Initiative category and type

Innovation

✓ New product or service that has a lower upstream emissions footprint

(5.13.1.6) Details of initiative

Climate-related projects are referred to the increase of recycled content into the finished product. Our conversion plan can support the reduction of GHG emissions and the promotion of circular economy business model. In addition, thanks to the use of post consumer resin recycled, we can contribute to the reduction of resources depletion (non renewable fossil based). The potential financial impact of this project in terms of costs VS savings is neutral. The strategy related to the use of PCR in our finished product, can support customer's goals and targets to reduce their indirect GHG emissions from purchased goods and services. The above climate-related projects mentioned have been developed in different Aptar regions and facilities: Aptar Mukwonago (NAM), Cary South (NAM), Verneuil (EMEA). Products involved are listed here: closure Gloss classic and Purity, micropump Euromist,

(5.13.1.7) Benefits achieved

☑ Reduction of downstream value chain emissions (own scope 3)

(5.13.1.8) Are you able to provide figures for emissions savings or water savings in the reporting year?

Select from:

✓ Yes, emissions savings only

(5.13.1.9) Estimated savings in the reporting year in metric tons of CO2e

36

(5.13.1.11) Please explain how success for this initiative is measured

Product life cycle emission calculation in compliance with ISO 14040/14044

(5.13.1.12) Would you be happy for CDP Supply Chain members to highlight this work in their external communication?

Select from:

✓ Yes

Row 2

(5.13.1.1) Requesting member

Select from:

(5.13.1.2) Environmental issues the initiative relates to

Select all that apply

✓ Climate change

(5.13.1.4) Initiative ID

Select from:

✓ Ini2

(5.13.1.5) Initiative category and type

Innovation

✓ New product or service that has a lower upstream emissions footprint

(5.13.1.6) Details of initiative

Climate-related projects are referred to the increase of recycled content into the finished product. Our conversion plan can support the reduction of GHG emissions and the promotion of circular economy business model. In addition, thanks to the use of post consumer resin recycled, we can contribute to the reduction of resources depletion (non renewable fossil based). The potential financial impact of this project in terms of costs VS savings is neutral. The strategy related to the use of PCR in our finished product, can support customer's goals and targets to reduce their indirect GHG emissions from purchased goods and services. The above climate-related projects mentioned have been developed in different Aptar regions and facilities: Aptar Chieti (EMEA). Products involved are listed here: Pump Dispenser GS

(5.13.1.7) Benefits achieved

Select all that apply

☑ Reduction of downstream value chain emissions (own scope 3)

(5.13.1.8) Are you able to provide figures for emissions savings or water savings in the reporting year?

Select from:

Yes, emissions savings only

(5.13.1.9) Estimated savings in the reporting year in metric tons of CO2e

0.3

(5.13.1.11) Please explain how success for this initiative is measured

Product life cycle emission calculation in compliance with ISO 14040/14044

(5.13.1.12) Would you be happy for CDP Supply Chain members to highlight this work in their external communication?

Select from:

Yes

Row 3

(5.13.1.1) Requesting member

Select from:

(5.13.1.2) Environmental issues the initiative relates to

Select all that apply

✓ Climate change

(5.13.1.4) Initiative ID

Select from:

✓ Ini3

(5.13.1.5) Initiative category and type

Innovation

✓ New product or service that has a lower upstream emissions footprint

(5.13.1.6) Details of initiative

Climate-related projects are referred to the increase of recycled content into the finished product. Our conversion plan can support the reduction of GHG emissions and the promotion of circular economy business model. In addition, thanks to the use of post consumer resin recycled, we can contribute to the reduction of resources depletion (non renewable fossil based). The potential financial impact of this project in terms of costs VS savings is neutral. The strategy related to the use of PCR in our finished product, can support customer's goals and targets to reduce their indirect GHG emissions from purchased goods and services. The above climate-related projects mentioned have been developed in different Aptar regions and facilities: Aptar Cary South (NAM) and Eatontown (NAM). Products involved are listed here: Pump Euromist and Dispenser Evolution

(5.13.1.7) Benefits achieved

Select	all	that	ар	ply
--------	-----	------	----	-----

☑ Reduction of downstream value chain emissions (own scope 3)

(5.13.1.8) Are you able to provide figures for emissions savings or water savings in the reporting year?

Select from:

✓ Yes, emissions savings only

(5.13.1.9) Estimated savings in the reporting year in metric tons of CO2e

287

(5.13.1.11) Please explain how success for this initiative is measured

LCA methodology calculated

(5.13.1.12) Would you be happy for CDP Supply Chain members to highlight this work in their external communication?

Select from:

✓ Yes

Row 4

(5.13.1.1) Requesting member

Select from:

(5.13.1.2) Environmental issues the initiative relates to

Select all that apply

✓ Climate change

(5.13.1.4) Initiative ID

Select from:

✓ Ini4

(5.13.1.5) Initiative category and type

Innovation

✓ New product or service that has a lower upstream emissions footprint

(5.13.1.6) Details of initiative

Climate-related projects are referred to the increase of recycled content into the finished product. Our conversion plan can support the reduction of GHG emissions and the promotion of circular economy business model. In addition, thanks to the use of post consumer resin recycled, we can contribute to the reduction of resources depletion (non renewable fossil based). The potential financial impact of this project in terms of costs VS savings is neutral. The strategy related to the use of PCR in our finished product, can support customer's goals and targets to reduce their indirect GHG emissions from purchased goods and services. The above climate-related projects mentioned have been developed in different Aptar regions and facilities: Aptar Chieti (EMEA) and Oyonnax (EMEA). Products involved are listed here: Dispenser GS and GSA

(5.13.1.7) Benefits achieved

Select all that apply

☑ Reduction of downstream value chain emissions (own scope 3)

(5.13.1.8) Are you able to provide figures for emissions savings or water savings in the reporting year?

Select from:

✓ Yes, emissions savings only

(5.13.1.9) Estimated savings in the reporting year in metric tons of CO2e

23

(5.13.1.11) Please explain how success for this initiative is measured

Calculation based on the LCA methodology

(5.13.1.12) Would you be happy for CDP Supply Chain members to highlight this work in their external communication?

Select from:

✓ Yes [Add row]

C6. Environmental Performance - Consolidation Approach

(6.1) Provide details on your chosen consolidation approach for the calculation of environmental performance data.

	Consolidation approach used	Provide the rationale for the choice of consolidation approach
Climate change	Select from: ☑ Operational control	Aptar choose the same consolidation approach used in our financial accounting.
Water	Select from: ☑ Operational control	Aptar choose the same consolidation approach used in our financial accounting.
Plastics	Select from: ☑ Operational control	Aptar choose the same consolidation approach used in our financial accounting.
Biodiversity	Select from: ✓ Operational control	Aptar choose the same consolidation approach used in our financial accounting.

[Fixed row]

C7. Environmental	performance -	Climate	Change
-------------------	---------------	---------	--------

(7.1.1) Has your organization undergone any structural changes in the reporting year, or are any previous structu	ıral
changes being accounted for in this disclosure of emissions data?	

Has there been a structural change?
Select all that apply ☑ No

[Fixed row]

(7.1.2) Has your emissions accounting methodology, boundary, and/or reporting year definition changed in the reporting year?

Change(s) in methodology, boundary, and/or reporting year definition?
Select all that apply ☑ No

[Fixed row]

(7.3) Describe your organization's approach to reporting Scope 2 emissions.

Scope 2, location-based	Scope 2, market-based	Comment
Select from: ✓ We are reporting a Scope 2, location-based figure	Select from: ✓ We are reporting a Scope 2, market-based figure	Our official Scope 2 target is calculated with market based approach

[Fixed row]

(7.5) Provide your base year and base year emissions.

Scope 1

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

23515.0

(7.5.3) Methodological details

Measurement approach is based on the direct observation of inputs used in our direct operations (e.g. fuels and natural gas invoices). Emission factors are based on the database listed in section 7.2, we have mapped the main direct energy sources used in our plants, in agreement with GHG Protocol standards.

Scope 2 (location-based)

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

(7.5.3) Methodological details

Measurement approach is based on the direct observation of inputs used in our direct operations (e.g. electricity invoices). Emission factors are based on the database listed in section 7.2, we have mapped the main direct electricity sources used in our plants, in agreement with GHG Protocol standards.

Scope 2 (market-based)

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

112703.0

(7.5.3) Methodological details

Measurement approach is based on the direct observation of inputs used in our direct operations (e.g. electricity invoices). Emission factors are based on the primary data from electricity suppliers, we have mapped the main direct electricity sources used in our plants, in agreement with GHG Protocol standards.

Scope 3 category 1: Purchased goods and services

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

340526

(7.5.3) Methodological details

Measurement approach is based on the direct observation of purchased goods and services spend during the reporting year for our direct operations (e.g. raw materials). Emission factors are based on the database listed in section 7.2, we have mapped the most material purchased goods and services used in our plants, in agreement with GHG Protocol standards.

Scope 3 category 2: Capital goods

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

0.0

(7.5.3) Methodological details

Not relevant and significance Scope 3 category for Aptar as per approval of SBT target audit.

Scope 3 category 3: Fuel-and-energy-related activities (not included in Scope 1 or 2)

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

11477.0

(7.5.3) Methodological details

Measurement approach is based on the direct observation of inputs used in our direct operations (e.g. electricity invoices). Emission factors are based on the primary data from electricity suppliers, we have mapped the main direct electricity sources used in our plants, in agreement with GHG Protocol standards.

Scope 3 category 4: Upstream transportation and distribution

(7.5.1) Base year end

(7.5.2) Base year emissions (metric tons CO2e)

13567.0

(7.5.3) Methodological details

Measurement approach is based on the direct observation of upstream transportation reports from our main suppliers. Emission factors are based on the database provided by our suppliers, we have mapped the top suppliers covering more than 80% of shipments with detailed routes and transportation means..

Scope 3 category 5: Waste generated in operations

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

16133.0

(7.5.3) Methodological details

Measurement approach is based on the direct observation of waste generated in our operations (e.g. waste amount reported). Emission factors are based on the database listed in section 7.2, we have mapped the main waste treatment scenarios related to waste produced in our plants, in agreement with GHG Protocol standards.

Scope 3 category 6: Business travel

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

4982.0

(7.5.3) Methodological details

Measurement approach is based on the direct observation of travel reports received from our travel agencies. Emission factors are based on the database like DEFRA, we have mapped the main business travel for employees with distance and transportation means.

Scope 3 category 7: Employee commuting

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

7735.0

(7.5.3) Methodological details

Measurement approach is based on the estimation of employee commuting travel for sites located in different regions. Emission factors are based on the database like DEFRA, we have mapped the number of employees (e.g. M&P) with average distance and transportation means.

Scope 3 category 8: Upstream leased assets

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

0.0

(7.5.3) Methodological details

Not relevant and significance Scope 3 category for Aptar as per approval of SBT target audit.

Scope 3 category 9: Downstream transportation and distribution

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

9044.0

(7.5.3) Methodological details

Measurement approach is based on the direct observation of downstream transportation reports from our main suppliers. Emission factors are based on the database provided by our suppliers, we have mapped the top suppliers covering more than 80% of shipments with detailed routes and transportation means.

Scope 3 category 10: Processing of sold products

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

4833.0

(7.5.3) Methodological details

Measurement approach is based on the direct observation of processing of sold products emissions (intensity KPIs) from report of Aptar customers. Main suppliers data has been collected. Emission factors are based on the primary data released by Aptar customer in their corporate sustainability reporting.

Scope 3 category 11: Use of sold products

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

(7.5.3) Methodological details

Not relevant and significance Scope 3 category for Aptar as per approval of SBT target audit.

Scope 3 category 12: End of life treatment of sold products

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

3502.0

(7.5.3) Methodological details

Measurement approach is based on the estimation of Aptar products end of life waste (e.g. end of life in different countries). Emission factors are based on the database listed in section 7.2, we have mapped the main waste treatment scenarios related to product end of life in agreement with GHG Protocol standards and national statistic about waste management scenarios.

Scope 3 category 13: Downstream leased assets

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

0.0

(7.5.3) Methodological details

Not relevant and significance Scope 3 category for Aptar as per approval of SBT target audit.

Scope 3 category 14: Franchises

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

0.0

(7.5.3) Methodological details

Not relevant and significance Scope 3 category for Aptar as per approval of SBT target audit.

Scope 3 category 15: Investments

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

15.0

(7.5.3) Methodological details

Measurement approach is based on the direct observation of direct and indirect emissions generated by company where Aptar has financial investments. All the investments has been collected and considered. Emission factors are based on the secondary datasets and sustainability reporting.

Scope 3: Other (upstream)

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

(7.5.3) Methodological details

Not relevant and significance Scope 3 category for Aptar as per approval of SBT target audit.

Scope 3: Other (downstream)

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

0.0

(7.5.3) Methodological details

Not relevant and significance Scope 3 category for Aptar as per approval of SBT target audit. [Fixed row]

(7.6) What were your organization's gross global Scope 1 emissions in metric tons CO2e?

Reporting year

(7.6.1) Gross global Scope 1 emissions (metric tons CO2e)

24660

(7.6.3) Methodological details

Scope 1 has been calculated considering the main direct emissions generated in our operations: natural gas, fuels, refrigerants. The measurement approach is direct observation of invoices and data. Emission factors based on secondary dataset like DEFRA database.

[Fixed row]

(7.7) What were your organization's gross global Scope 2 emissions in metric tons CO2e?

Reporting year

(7.7.1) Gross global Scope 2, location-based emissions (metric tons CO2e)

189709

(7.7.2) Gross global Scope 2, market-based emissions (metric tons CO2e) (if applicable)

7169

(7.7.4) Methodological details

Aptar is monitoring Scope 2 emissions thanks to the direct observation of electricity consumed in each operation, invoices are registered in dedicated tool. Emission factors are based on the primary and secondary datasets, from official national source. Renewable Energy Certificates are used for the market-based emissions. [Fixed row]

(7.8) Account for your organization's gross global Scope 3 emissions, disclosing and explaining any exclusions.

Purchased goods and services

(7.8.1) Evaluation status

Select from:

✓ Relevant, calculated

(7.8.2) Emissions in reporting year (metric tons CO2e)

355531

(7.8.3) Emissions calculation methodology

Select all that apply

✓ Spend-based method

(7.8.4) Percentage of emissions calculated using data obtained from suppliers or value chain partners

100

(7.8.5) Please explain

Data are based on the raw materials purchased by Aptar and transformed in our operations. The data source is based on the SAP database, where we can calculate per each raw material the quantity purchased from specific vendor. We are considering plastics, metals, rubbers, and other chemicals. Emission factors are based on the secondary datasets IPCC AR5 and GWP100. The rationale behind the identification of these raw materials is linked to the fact that raw materials like plastics, metals, rubbers and other chemicals are the most important purchased goods and services consumed by our company core processes. The boundary of our reporting is from cradle to Aptar's gate. We do not have particular assumptions to declare and allocation method. Data has been third party verified (limited data assurance in compliance with ISO 14064-1).

Capital goods

(7.8.1) Evaluation status

Select from:

✓ Not relevant, explanation provided

(7.8.5) Please explain

Upstream emissions of purchased capital goods (such as injection molding press, compressors, buildings and other equipment) are not contributing significantly (1.0%) due to the fact that their emissions are allocated considering the entire life cycle of these capital goods (long term).

Fuel-and-energy-related activities (not included in Scope 1 or 2)

(7.8.1) Evaluation status

Select from:

☑ Relevant, calculated

(7.8.2) Emissions in reporting year (metric tons CO2e)

(7.8.3) Emissions calculation methodology

Select all that apply

☑ Supplier-specific method

(7.8.4) Percentage of emissions calculated using data obtained from suppliers or value chain partners

100

(7.8.5) Please explain

Activity data based on market based electrical energy info considering the total electricity consumption for each plant and total energy consumption for fuels and natural gas consumed in each plant not included in Scope 1 and Scope 2. 96% of emissions is based on the primary data representative of technology used by Aptar in RECs certificates. Emission factors for non-renewable energy are based on secondary database: International Energy Agency and DEFRA dataset. Data has been third party verified (limited data assurance in compliance with ISO 14064-1).

Upstream transportation and distribution

(7.8.1) Evaluation status

Select from:

✓ Relevant, calculated

(7.8.2) Emissions in reporting year (metric tons CO2e)

16240

(7.8.3) Emissions calculation methodology

Select all that apply

- ✓ Fuel-based method
- ✓ Distance-based method

(7.8.4) Percentage of emissions calculated using data obtained from suppliers or value chain partners

100

(7.8.5) Please explain

Activity data based on the transportation and distribution of raw materials, semi-finished components and finished products to customers paid for by Aptar. Data collection based on incoterms included into the supplier's contracts and sustainability reporting from our main suppliers (covering 60% of total spend). Distance and transportation means collected from database considering delivery notes and invoices. Emission factors for transportation by road, by sea, by rail and by air based on primary data calculation by suppliers. Emission factors are based on the secondary datasets IPCC AR5 and GWP100. Calculation is based on the WtW methodology. Data has been third party verified (limited data assurance in compliance with ISO 14064-1).

Waste generated in operations

(7.8.1) Evaluation status

Select from:

✓ Relevant, calculated

(7.8.2) Emissions in reporting year (metric tons CO2e)

14718

(7.8.3) Emissions calculation methodology

Select all that apply

✓ Waste-type-specific method

(7.8.4) Percentage of emissions calculated using data obtained from suppliers or value chain partners

100

(7.8.5) Please explain

Activity data based on the waste produced in our operations. Activity data based on internal data collection on which each site reports total quantity of hazardous and not hazardous waste with treatment scenarios to disposal or to recycle. Average emissions data for recovery and disposal process have been considered with

DEFRA and GaBi database about waste treatment scenarios. Annual data collected as reported in internal section of Operational Eco-efficiency tool. Emission factors are based on the secondary datasets IPCC AR5 and GWP100. Data has been third party verified (limited data assurance in compliance with ISO 14064-1).

Business travel

(7.8.1) Evaluation status

Select from:

✓ Not relevant, calculated

(7.8.2) Emissions in reporting year (metric tons CO2e)

1323

(7.8.3) Emissions calculation methodology

Select all that apply

✓ Distance-based method

(7.8.4) Percentage of emissions calculated using data obtained from suppliers or value chain partners

100

(7.8.5) Please explain

Activity data based on the business travel monitored by travel agency considering travel per each Aptar plant and region. We are mapping more than 70% of business travel, the remain part of business travels are not mapped in a dedicated tool. The CO2 calculation is based on the secondary dataset IPCC AR5 and GWP100. During the reporting year 2023 our business travels have been planned (even if not as into the period pre-Covid). The significance of this category is

Employee commuting

(7.8.1) Evaluation status

Select from:

✓ Not relevant, calculated

(7.8.2) Emissions in reporting year (metric tons CO2e)

6440

(7.8.3) Emissions calculation methodology

Select all that apply

- ✓ Fuel-based method
- Distance-based method

(7.8.4) Percentage of emissions calculated using data obtained from suppliers or value chain partners

100

(7.8.5) Please explain

Activity data based on the local community monitoring by HR department. We are mapping Aptar employee categories in production and offices estimating that in south east asia and north east asia regions the use of vehicles to go to work are not used very often. The CO2 calculation is based on the secondary dataset IPCC AR5 and GWP100. Data collection based on the employee categories and regions with estimation of fuel based method and distance based method. The significance of this category is

Upstream leased assets

(7.8.1) Evaluation status

Select from:

✓ Not relevant, explanation provided

(7.8.5) Please explain

No assets leased by reporting company during reporting year not already included in scope 1 or scope 2 categories

Downstream transportation and distribution

(7.8.1) Evaluation status

Select from:

✓ Relevant, calculated

(7.8.2) Emissions in reporting year (metric tons CO2e)

12034

(7.8.3) Emissions calculation methodology

Select all that apply

- ▼ Fuel-based method
- Distance-based method

(7.8.4) Percentage of emissions calculated using data obtained from suppliers or value chain partners

100

(7.8.5) Please explain

Activity data based on the transportation and distribution of raw materials, semi-finished components and finished products to customers paid for by Aptar. Data collection based on incoterms included into the supplier's contracts and sustainability reporting from our main suppliers (covering 60% of total spend). Distance and transportation means collected from database considering delivery notes and invoices. Emission factors for transportation by road, by sea, by rail and by air based on primary data calculation by suppliers. Emission factors are based on the secondary datasets IPCC AR5 and GWP100. Calculation is based on the WtW methodology. Data has been third party verified (limited data assurance in compliance with ISO 14064-1).

Processing of sold products

(7.8.1) Evaluation status

Select from:

✓ Not relevant, calculated

(7.8.2) Emissions in reporting year (metric tons CO2e)

4833

(7.8.3) Emissions calculation methodology

Select all that apply

✓ Site-specific method

(7.8.4) Percentage of emissions calculated using data obtained from suppliers or value chain partners

100

(7.8.5) Please explain

Activity data based on the public KPIs reported by our B2B customers on the processing of Aptar sold products. The significance of this category is about 1% but we are monitoring this impact along our value chain with the main goal related to the increase of data collection accuracy. Data has been third party verified (limited data assurance in compliance with ISO 14064-1).

Use of sold products

(7.8.1) Evaluation status

Select from:

✓ Not relevant, explanation provided

(7.8.5) Please explain

Aptar products is not included into the "Direct use-phase emissions" because they are not directly consuming energy (fuels or electricity) during use phase and they do not contain or form GHG that are emitted during use phase. Data has been third party verified (limited data assurance in compliance with ISO 14064-1).

End of life treatment of sold products

(7.8.1) Evaluation status

Select from:

✓ Not relevant, calculated

(7.8.2) Emissions in reporting year (metric tons CO2e)

(7.8.3) Emissions calculation methodology

Select all that apply

Average data method

(7.8.4) Percentage of emissions calculated using data obtained from suppliers or value chain partners

100

(7.8.5) Please explain

Data collection is based on the recyclability in practice and at scale KPIs reported in the New Plastic Economy Global Commitment (Ellen MacArthur Foundation). End of Life scenarios of Aptar products are strictly related (and influenced) by the final packaging of our customers (B2C) considering also the countries where the full packaging (with Aptar product) will be sold and used by the end-users. We do not have a major influence on emissions from disposal of sold final products at the end of life. The CO2 calculation is based on the secondary dataset IPCC AR5 and GWP100, and EoL scenarios has been estimated considering different materials composition and recyclability in practice and at scale. Note: we are planning actions to investigate how maximize (and influence) the recyclability of our product and full packaging. Data has been third party verified (limited data assurance in compliance with ISO 14064-1).

Downstream leased assets

(7.8.1) Evaluation status

Select from:

✓ Not relevant, explanation provided

(7.8.5) Please explain

Aptar is not acting as lessor, so, we do not have GHG emissions from the operation of assets that are owned by us and leased to other entities.

Franchises

(7.8.1) Evaluation status

Select from:

✓ Not relevant, explanation provided

(7.8.5) Please explain

Aptar is not franchisor, so, we are not granting licenses to other entities to sell or distribute goods. No emissions for this category.

Investments

(7.8.1) Evaluation status

Select from:

✓ Not relevant, calculated

(7.8.2) Emissions in reporting year (metric tons CO2e)

9

(7.8.3) Emissions calculation methodology

Select all that apply

☑ Supplier-specific method

(7.8.4) Percentage of emissions calculated using data obtained from suppliers or value chain partners

100

(7.8.5) Please explain

Data collection is based on the Aptar portfolio share % in company with financial control. Their total emissions of Scope 1 and Scope 2 has been allocated to the Aptar share % and reported in Scope 3 category. Activity data related to direct emissions has been collected with primary data based on the electricity and energy invoices. Emissions factors are based on the IPCC AR5 and GWP100 values. Data has been third party verified (limited data assurance in compliance with ISO 14064-1).

Other (upstream)

(7.8.1) Evaluation status

Select from:

✓ Not relevant, calculated

(7.8.2) Emissions in reporting year (metric tons CO2e)

163

(7.8.3) Emissions calculation methodology

Select all that apply

✓ Site-specific method

(7.8.4) Percentage of emissions calculated using data obtained from suppliers or value chain partners

100

(7.8.5) Please explain

Data collection is based on the Aptar water withdrawn from third party used in company. Activity data related to emissions has been collected with primary data based on the water withdrawn consumption invoiced. Emissions factors are based on the IPCC AR5 and GWP100 values. Data has been third party verified (limited data assurance in compliance with ISO 14064-1).

Other (downstream)

(7.8.1) Evaluation status

Select from:

✓ Not relevant, calculated

(7.8.2) Emissions in reporting year (metric tons CO2e)

132

(7.8.3) Emissions calculation methodology

Select all that apply

✓ Site-specific method

(7.8.4) Percentage of emissions calculated using data obtained from suppliers or value chain partners

100

(7.8.5) Please explain

Data collection is based on the Aptar water discharged to third party from the company. Activity data related to emissions has been collected with primary data based on the water discharged to third party invoiced. Emissions factors are based on the IPCC AR5 and GWP100 values. Data has been third party verified (limited data assurance in compliance with ISO 14064-1).
[Fixed row]

(7.9) Indicate the verification/assurance status that applies to your reported emissions.

	Verification/assurance status
Scope 1	Select from: ☑ Third-party verification or assurance process in place
Scope 2 (location-based or market-based)	Select from: ☑ Third-party verification or assurance process in place
Scope 3	Select from: ☑ Third-party verification or assurance process in place

[Fixed row]

(7.9.1) Provide further details of the verification/assurance undertaken for your Scope 1 emissions, and attach the relevant statements.

Row 1

(7.9.1.1) Verification or assurance cycle in place

Select from:

✓ Annual process

(7.9.1.2) Status in the current reporting year

Select from:

Complete

(7.9.1.3) Type of verification or assurance

Select from:

✓ Reasonable assurance

(7.9.1.4) Attach the statement

ISO 14064-1 Statement- Aptargroup - 2024.pdf

(7.9.1.5) Page/section reference

1

(7.9.1.6) Relevant standard

Select from:

✓ ISO14064-1

(7.9.1.7) Proportion of reported emissions verified (%)

(7.9.2) Provide further details of the verification/assurance undertaken for your Scope 2 emissions and attach the relevant statements.

Row 1

(7.9.2.1) Scope 2 approach

Select from:

✓ Scope 2 location-based

(7.9.2.2) Verification or assurance cycle in place

Select from:

Annual process

(7.9.2.3) Status in the current reporting year

Select from:

Complete

(7.9.2.4) Type of verification or assurance

Select from:

✓ Reasonable assurance

(7.9.2.5) Attach the statement

ISO 14064-1 Statement- Aptargroup - 2024.pdf

(7.9.2.6) Page/ section reference

(7.9.2.7) Relevant standard

Select from:

☑ ISO14064-1

(7.9.2.8) Proportion of reported emissions verified (%)

100

Row 2

(7.9.2.1) Scope 2 approach

Select from:

✓ Scope 2 market-based

(7.9.2.2) Verification or assurance cycle in place

Select from:

Annual process

(7.9.2.3) Status in the current reporting year

Select from:

Complete

(7.9.2.4) Type of verification or assurance

Select from:

✓ Reasonable assurance

(7.9.2.5) Attach the statement

(7.9.2.6) Page/ section reference

1

(7.9.2.7) Relevant standard

Select from:

✓ ISO14064-1

(7.9.2.8) Proportion of reported emissions verified (%)

100 [Add row]

(7.9.3) Provide further details of the verification/assurance undertaken for your Scope 3 emissions and attach the relevant statements.

Row 1

(7.9.3.1) Scope 3 category

Select all that apply

✓ Scope 3: Investments

✓ Scope 3: Business travel

☑ Scope 3: Employee commuting

☑ Scope 3: Processing of sold products

☑ Scope 3: Purchased goods and services

✓ Scope 3: Waste generated in operations

✓ Scope 3: End-of-life treatment of sold products

✓ Scope 3: Upstream transportation and distribution

☑ Scope 3: Downstream transportation and distribution

☑ Scope 3: Fuel and energy-related activities (not included in Scopes 1 or 2)

(7.9.3.2) Verification or assurance cycle in place

Select from:

✓ Annual process

(7.9.3.3) Status in the current reporting year

Select from:

Complete

(7.9.3.4) Type of verification or assurance

Select from:

✓ Limited assurance

(7.9.3.5) Attach the statement

ISO 14064-1 Statement- Aptargroup - 2024.pdf

(7.9.3.6) Page/section reference

1

(7.9.3.7) Relevant standard

Select from:

☑ ISO14064-1

(7.9.3.8) Proportion of reported emissions verified (%)

100 [Add row]

(7.10.1) Identify the reasons for any change in your gross global emissions (Scope 1 and 2 combined), and for each of them specify how your emissions compare to the previous year.

Change in renewable energy consumption

(7.10.1.1) Change in emissions (metric tons CO2e)

1477

(7.10.1.2) Direction of change in emissions

Select from:

Decreased

(7.10.1.3) Emissions value (percentage)

17.09

(7.10.1.4) Please explain calculation

Additional Renewable Energy Certificate (RECs) was purchased for one of our site.

Other emissions reduction activities

(7.10.1.1) Change in emissions (metric tons CO2e)

876

(7.10.1.2) Direction of change in emissions

Select from:

Decreased

(7.10.1.3) Emissions value (percentage)

7.57

(7.10.1.4) Please explain calculation

Emissions reduction from low natural gas consumption and project implementation on low emission equipment/processes

Divestment

(7.10.1.1) Change in emissions (metric tons CO2e)

0

(7.10.1.2) Direction of change in emissions

Select from:

✓ No change

(7.10.1.3) Emissions value (percentage)

0

(7.10.1.4) Please explain calculation

no change

Acquisitions

(7.10.1.1) Change in emissions (metric tons CO2e)

0

(7.10.1.2) Direction of change in emissions

Select from:

✓ No change

(7.10.1.3) Emissions value (percentage)

0

(7.10.1.4) Please explain calculation

Mergers

(7.10.1.1) Change in emissions (metric tons CO2e)

0

(7.10.1.2) Direction of change in emissions

Select from:

✓ No change

(7.10.1.3) Emissions value (percentage)

0

(7.10.1.4) Please explain calculation

no change

Change in output

(7.10.1.1) Change in emissions (metric tons CO2e)

0

(7.10.1.2) Direction of change in emissions

Select from:

✓ No change

(7.10.1.3) Emissions value (percentage)

0

(7.10.1.4) Please explain calculation

no change

Change in methodology

(7.10.1.1) Change in emissions (metric tons CO2e)

0

(7.10.1.2) Direction of change in emissions

Select from:

✓ No change

(7.10.1.3) Emissions value (percentage)

0

(7.10.1.4) Please explain calculation

no change

Change in boundary

(7.10.1.1) Change in emissions (metric tons CO2e)

0

(7.10.1.2) Direction of change in emissions

Select from:

✓ No change

(7.10.1.3) Emissions value (percentage)

(7.10.1.4) Please explain calculation

no change

Change in physical operating conditions

(7.10.1.1) Change in emissions (metric tons CO2e)

0

(7.10.1.2) Direction of change in emissions

Select from:

✓ No change

(7.10.1.3) Emissions value (percentage)

0

(7.10.1.4) Please explain calculation

no change

Unidentified

(7.10.1.1) Change in emissions (metric tons CO2e)

0

(7.10.1.2) Direction of change in emissions

Select from:

✓ No change

(7.10.1.3) Emissions value (percentage)

0

(7.10.1.4) Please explain calculation

no change

Other

(7.10.1.1) Change in emissions (metric tons CO2e)

412

(7.10.1.2) Direction of change in emissions

Select from:

Decreased

(7.10.1.3) Emissions value (percentage)

25

(7.10.1.4) Please explain calculation

Low Refrigerant leak/recharge; Low Fuel (Biogenic) [Fixed row]

(7.15.1) Break down your total gross global Scope 1 emissions by greenhouse gas type and provide the source of each used global warming potential (GWP).

Row 1

(7.15.1.1) Greenhouse gas

Sel	lect	from:
001	-cc	II OIII.

✓ CO2

(7.15.1.2) Scope 1 emissions (metric tons of CO2e)

23901

(7.15.1.3) **GWP** Reference

Select from:

✓ IPCC Fifth Assessment Report (AR5 – 100 year)

Row 2

(7.15.1.1) Greenhouse gas

Select from:

✓ CH4

(7.15.1.2) Scope 1 emissions (metric tons of CO2e)

216

(7.15.1.3) **GWP** Reference

Select from:

✓ IPCC Fifth Assessment Report (AR5 – 100 year)

Row 3

(7.15.1.1) **Greenhouse gas**

Select from:

☑ N20

(7.15.1.2) Scope 1 emissions (metric tons of CO2e)

42

(7.15.1.3) **GWP** Reference

Select from:

✓ IPCC Fifth Assessment Report (AR5 – 100 year)

Row 4

(7.15.1.1) **Greenhouse gas**

Select from:

✓ HFCs

(7.15.1.2) Scope 1 emissions (metric tons of CO2e)

501

(7.15.1.3) **GWP** Reference

Select from:

☑ IPCC Fifth Assessment Report (AR5 – 100 year) [Add row]

(7.16) Break down your total gross global Scope 1 and 2 emissions by country/area.

Argentina

(7.16.1) Scope 1 emissions (metric tons CO2e)

100.06

(7.16.2) Scope 2, location-based (metric tons CO2e)
1975.24
(7.16.3) Scope 2, market-based (metric tons CO2e)
1975.24
Bahrain
(7.16.1) Scope 1 emissions (metric tons CO2e)
0.001
(7.16.2) Scope 2, location-based (metric tons CO2e)
2390.95
(7.16.3) Scope 2, market-based (metric tons CO2e)
1.71
Brazil
(7.16.1) Scope 1 emissions (metric tons CO2e)
419.08
(7.16.2) Scope 2, location-based (metric tons CO2e)
2580.52
(7.16.3) Scope 2, market-based (metric tons CO2e)
183.13

China

(7.16.1) Scope 1 emissions (metric tons CO2e)

378.16

(7.16.2) Scope 2, location-based (metric tons CO2e)

18142.39

(7.16.3) Scope 2, market-based (metric tons CO2e)

136.86

Colombia

(7.16.1) Scope 1 emissions (metric tons CO2e)

22.35

(7.16.2) Scope 2, location-based (metric tons CO2e)

98.37

(7.16.3) Scope 2, market-based (metric tons CO2e)

98.37

Czechia

(7.16.1) Scope 1 emissions (metric tons CO2e)

176.42

(7.16.2) Scope 2, location-based (metric tons CO2e)

(7.16.3) Scope 2, market-based (metric tons CO2e)

4.53

France

(7.16.1) Scope 1 emissions (metric tons CO2e)

13800.7

(7.16.2) Scope 2, location-based (metric tons CO2e)

20057.18

(7.16.3) Scope 2, market-based (metric tons CO2e)

80.07

Germany

(7.16.1) Scope 1 emissions (metric tons CO2e)

2030.51

(7.16.2) Scope 2, location-based (metric tons CO2e)

47449.02

(7.16.3) Scope 2, market-based (metric tons CO2e)

34.62

India

(7.16.1) Scope 1 emissions (metric tons CO2e) 151.43 (7.16.2) Scope 2, location-based (metric tons CO2e) 5594.72 (7.16.3) Scope 2, market-based (metric tons CO2e) 34.92 Indonesia (7.16.1) Scope 1 emissions (metric tons CO2e) 0.001 (7.16.2) Scope 2, location-based (metric tons CO2e) 1008.87 (7.16.3) Scope 2, market-based (metric tons CO2e) 1008.87 Italy (7.16.1) Scope 1 emissions (metric tons CO2e) 3693.24 (7.16.2) Scope 2, location-based (metric tons CO2e)

7611.08

(7.16.3) Scope 2, market-based (metric tons CO2e)
7.99
Mexico
(7.16.1) Scope 1 emissions (metric tons CO2e)
148.4
(7.16.2) Scope 2, location-based (metric tons CO2e)
9702.77
(7.16.3) Scope 2, market-based (metric tons CO2e)
146.21
Russian Federation
(7.16.1) Scope 1 emissions (metric tons CO2e)
(7.16.1) Scope 1 emissions (metric tons CO2e) 335.78
335.78
335.78 (7.16.2) Scope 2, location-based (metric tons CO2e)
335.78 (7.16.2) Scope 2, location-based (metric tons CO2e) 2267.73
335.78 (7.16.2) Scope 2, location-based (metric tons CO2e) 2267.73 (7.16.3) Scope 2, market-based (metric tons CO2e)

(7.16.2) Scope 2, location-based (metric tons CO2e) 1871.39 (7.16.3) Scope 2, market-based (metric tons CO2e) 3.39 **Switzerland** (7.16.1) Scope 1 emissions (metric tons CO2e) 29.41 (7.16.2) Scope 2, location-based (metric tons CO2e) 91.61 (7.16.3) Scope 2, market-based (metric tons CO2e) 13.63 **United Kingdom of Great Britain and Northern Ireland** (7.16.1) Scope 1 emissions (metric tons CO2e) 8.03 (7.16.2) Scope 2, location-based (metric tons CO2e) 1817.95

(7.16.3) Scope 2, market-based (metric tons CO2e)

United States of America

(7.16.1) Scope 1 emissions (metric tons CO2e)

3387.99

(7.16.2) Scope 2, location-based (metric tons CO2e)

60713.61

(7.16.3) Scope 2, market-based (metric tons CO2e)

1150.07 [Fixed row]

(7.17.2) Break down your total gross global Scope 1 emissions by business facility.

Row 1

(7.17.2.1) Facility

Aptar Annecy

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

7421.63

(7.17.2.3) Latitude

45.884

(7.17.2.1) Facility

Aptar Charleval

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

6.13

(7.17.2.3) Latitude

49.374

(7.17.2.4) Longitude

1.371

Row 4

(7.17.2.1) Facility

Aptar Chavanod (Reboul)

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

28.99

(7.17.2.3) Latitude

45.893

(7.17.2.1) Facility

Aptar Chieti

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

62.19

(7.17.2.3) Latitude

42.304

(7.17.2.4) Longitude

14.052

Row 6

(7.17.2.1) Facility

Aptar Dortmund

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

50.31

(7.17.2.3) Latitude

51.529

_	
DAW	•
RUW	•

(7.17.2.1) Facility

Aptar Le Neubourg

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

94.37

(7.17.2.3) Latitude

49.158

(7.17.2.4) Longitude

0.907

Row 8

(7.17.2.1) Facility

Aptar Menden

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

119.84

(7.17.2.3) Latitude

51.451

(7.17.2.1) Facility

Aptar Oyonnax Groissiat

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

259.96

(7.17.2.3) Latitude

46.247

(7.17.2.4) Longitude

5.645

Row 10

(7.17.2.1) Facility

Aptar Oyonnax Evron

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

73.31

(7.17.2.3) Latitude

46.247

(7.17.2.1) Facility

Aptar Oyonnax Bellignat

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

24.39

(7.17.2.3) Latitude

46.247

(7.17.2.4) Longitude

5.645

Row 12

(7.17.2.1) Facility

Aptar Oyonnax BeOne

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

1555.21

(7.17.2.3) Latitude

46.247

(7.17.2.1) Facility

Aptar Pescara

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

3631.05

(7.17.2.3) Latitude

42.304

(7.17.2.4) Longitude

14.052

Row 14

(7.17.2.1) Facility

Aptar Verneuil

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

431.85

(7.17.2.3) Latitude

48.746

Row	15

(7.17.2.1) Facility

Aptar Villingen

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

416.46

(7.17.2.3) Latitude

48.083

(7.17.2.4) Longitude

8.505

Row 16

(7.17.2.1) Facility

Aptar Barcelona

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

29.62

(7.17.2.3) Latitude

41.475

(7.17.2.1) Facility

Aptar Hyderabad

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

145.35

(7.17.2.3) Latitude

17.623

(7.17.2.4) Longitude

78.511

Row 18

(7.17.2.1) Facility

Aptar Berazategui

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

100.06

(7.17.2.3) Latitude

-34.871

(7.17.2.1) Facility

Aptar Cajamar

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

0.37

(7.17.2.3) Latitude

-23.346

(7.17.2.4) Longitude

-46.854

Row 20

(7.17.2.1) Facility

Aptar Cali

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

22.35

(7.17.2.3) Latitude

3.562

(7.17.2.1) Facility

Aptar Jundiai

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

414.63

(7.17.2.3) Latitude

-23.221

(7.17.2.4) Longitude

-46.877

Row 22

(7.17.2.1) Facility

Aptar Camacari

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

3.81

(7.17.2.3) Latitude

-12.733

(7.17.2.1) Facility

Aptar Cary North

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

46.22

(7.17.2.3) Latitude

42.226

(7.17.2.4) Longitude

-88.249

Row 24

(7.17.2.1) Facility

Aptar Cary South

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

380.95

(7.17.2.3) Latitude

42.226

(7.17.2.1) Facility

Aptar Libertyville

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

16.31

(7.17.2.3) Latitude

42.293

(7.17.2.4) Longitude

-87.99

Row 26

(7.17.2.1) Facility

Aptar McHenry

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

61.49

(7.17.2.3) Latitude

42.226

(7.17.2.1) Facility

Aptar Eatontown

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

100.88

(7.17.2.3) Latitude

40.272

(7.17.2.4) Longitude

-74.07

Row 28

(7.17.2.1) Facility

Aptar Fusion Dallas

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

20.06

(7.17.2.3) Latitude

32.822

(7.17.2.1) Facility

Aptar Fusion Paramus

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

4.78

(7.17.2.3) Latitude

32.822

(7.17.2.4) Longitude

-96.834

Row 30

(7.17.2.1) Facility

Aptar Fusion Los Angeles

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

2.87

(7.17.2.3) Latitude

32.822

(7.17.2.1) Facility

Aptar Elgin DC

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

584.22

(7.17.2.3) Latitude

42.101

(7.17.2.4) Longitude

-88.341

Row 32

(7.17.2.1) Facility

Aptar Howell

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

69.43

(7.17.2.3) Latitude

40.22

(7.17.2.1) Facility

Aptar Suzhou Bh

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

135.27

(7.17.2.3) Latitude

31.283

(7.17.2.4) Longitude

120.769

Row 34

(7.17.2.1) Facility

Aptar Radolfzell

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

249.61

(7.17.2.3) Latitude

47.75

(7.17.2.1) Facility

Aptar Brecey

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

1110.19

(7.17.2.3) Latitude

48.727

(7.17.2.4) Longitude

-1.163

Row 36

(7.17.2.1) Facility

Aptar Eigeltingen

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

443.35

(7.17.2.3) Latitude

47.854

R	ΩW	3	7
11	UVV	J	•

(7.17.2.1) Facility

Aptar Granville

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

1639.42

(7.17.2.3) Latitude

48.838

(7.17.2.4) Longitude

-1.562

Row 38

(7.17.2.1) Facility

Aptar Le Vaudreuil

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

431.16

(7.17.2.3) Latitude

49.26

(7.17.2.1) Facility

Aptar Mezzovico

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

29

(7.17.2.3) Latitude

46.094

(7.17.2.4) Longitude

8.924

Row 40

(7.17.2.1) Facility

Aptar Val De Reuil

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

675.01

(7.17.2.3) Latitude

49.265

(7.17.2.1) Facility

Aptar Villepinte

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

0

(7.17.2.3) Latitude

48.968

(7.17.2.4) Longitude

2.51

Row 42

(7.17.2.1) Facility

Aptar Congers

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

470.98

(7.17.2.3) Latitude

41.165

-73.936

R	οw	43
	~ • • •	τ

(7.17.2.1) Facility

Aptar Gateway Analytical

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

11.71

(7.17.2.3) Latitude

40.617

(7.17.2.4) Longitude

-79.947

Row 44

(7.17.2.1) Facility

Aptar Mumbai

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

6.07

(7.17.2.3) Latitude

19.114

(7.17.2.1) Facility

Aptar Suzhou Pha

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

0

(7.17.2.3) Latitude

31.283

(7.17.2.4) Longitude

120.769

Row 46

(7.17.2.1) Facility

Aptar Hengyu

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

227.5

(7.17.2.3) Latitude

37.428

(7.17.2.1) Facility

Aptar Ckyne

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

176.42

(7.17.2.3) Latitude

49.113

(7.17.2.4) Longitude

13.837

Row 48

(7.17.2.1) Facility

Aptar Freyung

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

750.95

(7.17.2.3) Latitude

48.822

R	O	W	4	g
	u	~~	_	"

(7.17.2.1) Facility

Aptar Leeds

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

8.03

(7.17.2.3) Latitude

53.745

(7.17.2.4) Longitude

-1.598

Row 50

(7.17.2.1) Facility

Aptar Bahrain

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

0

(7.17.2.3) Latitude

26.174

50.599

R	ΛW	51
	\mathbf{v}	

(7.17.2.1) Facility

Aptar Poincy

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

0

(7.17.2.3) Latitude

48.967

(7.17.2.4) Longitude

2.921

Row 52

(7.17.2.1) Facility

Aptar Torello

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

2.28

(7.17.2.3) Latitude

42.046

(7.17.2.1) Facility

Aptar Vladimir

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

335.78

(7.17.2.3) Latitude

56.097

(7.17.2.4) Longitude

40.353

Row 54

(7.17.2.1) Facility

Aptar Lincolnton

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

282.8

(7.17.2.3) Latitude

35.546

-81.219

R	<u> </u>	W	5	5
	u	•	J	•

(7.17.2.1) Facility

Aptar Midland

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

56.93

(7.17.2.3) Latitude

43.618

(7.17.2.4) Longitude

-84.184

Row 56

(7.17.2.1) Facility

Aptar Mukwonago

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

145.53

(7.17.2.3) Latitude

42.869

(7.17.2.1) Facility

Aptar East Troy 2

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

233.33

(7.17.2.3) Latitude

42.778

(7.17.2.4) Longitude

-88.4

Row 58

(7.17.2.1) Facility

Aptar Guangzhou

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

0

(7.17.2.3) Latitude

23.393

R	ΩV	v	5	g
	v	•	v	_

(7.17.2.1) Facility

Aptar Suzhou Fb

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

15.39

(7.17.2.3) Latitude

31.283

(7.17.2.4) Longitude

120.769

Row 60

(7.17.2.1) Facility

Aptar Maringa

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

0.26

(7.17.2.3) Latitude

-23.451

(7.17.2.1) Facility

Aptar Queretaro

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

148.4

(7.17.2.3) Latitude

20.564

(7.17.2.4) Longitude

-100.259

Row 62

(7.17.2.1) Facility

Aptar Crystal Lake

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

64.23

(7.17.2.3) Latitude

42.234

(7.17.2.1) Facility

Aptar CSP Atlanta

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

7.62

(7.17.2.3) Latitude

33.721

(7.17.2.4) Longitude

-84.575

Row 64

(7.17.2.1) Facility

Aptar CSP Auburn 960

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

726.22

(7.17.2.3) Latitude

32.558

(7.17.2.1) Facility

Aptar CSP Auburn 1000

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

1.23

(7.17.2.3) Latitude

32.558

(7.17.2.4) Longitude

-85.521

Row 66

(7.17.2.1) Facility

Aptar CSP 358

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

100

(7.17.2.3) Latitude

32.558

(7.17.2.1) Facility

Aptar CSP Niederbronn

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

49.07

(7.17.2.3) Latitude

48.9299

(7.17.2.4) Longitude

7.6465 [Add row]

(7.20.2) Break down your total gross global Scope 2 emissions by business facility.

Row 1

(7.20.2.1) Facility

Eigeltingen

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

11547.163

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

(7.20.2.1) Facility

Maringa

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

1647.011

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

116.885

Row 4

(7.20.2.1) Facility

Cali

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

98.367

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

98.367

Row 5

(7.20.2.1) Facility

Annecy

(7.20.2.2) Scope 2, location-based (metric tons CO2e)
1605.656
(7.20.2.3) Scope 2, market-based (metric tons CO2e)
6.41
Row 6
(7.20.2.1) Facility
Eatontown
(7.20.2.2) Scope 2, location-based (metric tons CO2e)
897.942
(7.20.2.3) Scope 2, market-based (metric tons CO2e)
37.453
Row 7
(7.20.2.1) Facility
Jundiai
(7.20.2.2) Scope 2, location-based (metric tons CO2e)
488.51

34.668

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

(7.20.2.1) Facility

Cary Campus (South, North, McHenry)

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

5647.604

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

138.718

Row 9

(7.20.2.1) Facility

Chavanod

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

258.534

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

1.032

Row 10

(7.20.2.1) Facility

Val De Reuil

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

3.036

Row 11

(7.20.2.1) Facility

Verneuil

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

1326.736

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

5.296

Row 12

(7.20.2.1) Facility

Le Neubourg

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

2208.81

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

8.817

Row 13

(7.20.2.1) Facility

Fusion Los Angeles

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

6.039

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

0.192

Row 14

(7.20.2.1) Facility

Cajamar

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

185.551

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

13.168

Row 15

(7.20.2.1) Facility

Poincy

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

1323.076

(7.20.2.3) Scope 2, market-based (metric tons CO2e)
5.282
Row 16
(7.20.2.1) Facility
Fusion Paramus
(7.20.2.2) Scope 2, location-based (metric tons CO2e)
11.468
(7.20.2.3) Scope 2, market-based (metric tons CO2e)
0.342
Row 17
(7.20.2.1) Facility
Suzhou
(7.20.2.2) Scope 2, location-based (metric tons CO2e)
14380.164
(7.20.2.3) Scope 2, market-based (metric tons CO2e)
108.481
Row 18
(7.20.2.1) Facility

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

1791.092

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

13.512

Row 19

(7.20.2.1) Facility

Queretaro

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

9702.766

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

146.206

Row 20

(7.20.2.1) Facility

Barcelona

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

1.024

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

(7.20.2.1) Facility

Hyderabad

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

4247.795

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

26.51

Row 22

(7.20.2.1) Facility

CSP Tech Niederbronn - les - bains

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

1624.098

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

6.483

Row 23

(7.20.2.1) Facility

Howell

(7.20.2.2) Scope 2, location-based (metric tons CO2e) 0 (7.20.2.3) Scope 2, market-based (metric tons CO2e) 0 **Row 24** (7.20.2.1) Facility Guangzhou (7.20.2.2) Scope 2, location-based (metric tons CO2e) 1971.128 (7.20.2.3) Scope 2, market-based (metric tons CO2e) 14.87 **Row 25** (7.20.2.1) Facility Dortmund (7.20.2.2) Scope 2, location-based (metric tons CO2e) 3083.557

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

(7.20.2.1) Facility

Le Vaudreuil

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

4066.188

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

16.232

Row 27

(7.20.2.1) Facility

Granville

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

2468.988

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

9.856

Row 28

(7.20.2.1) Facility

Lincolnton

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

251.539

Row 29

(7.20.2.1) Facility

Evron

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

8.987

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

0.036

Row 30

(7.20.2.1) Facility

Gateway Analytical

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

91.385

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

1.862

Row 31

(7.20.2.1) Facility

Mumbai

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

1346.927

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

8.406

Row 32

(7.20.2.1) Facility

Fusion Dallas

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

81.034

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

1.435

Row 33

(7.20.2.1) Facility

Chieti

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

2358.109

(7.20.2.3) Scope 2, market-based (metric tons CO2e)
2.477
Row 34
(7.20.2.1) Facility
Oyonnax BeOne
(7.20.2.2) Scope 2, location-based (metric tons CO2e)
1576.843
(7.20.2.3) Scope 2, market-based (metric tons CO2e)
6.295
Row 35
(7.20.2.1) Facility
Menden
(7.20.2.2) Scope 2, location-based (metric tons CO2e)
(7.20.2.2) Scope 2, location-based (metric tons CO2e)
(7.20.2.2) Scope 2, location-based (metric tons CO2e) 4199.647
(7.20.2.2) Scope 2, location-based (metric tons CO2e) 4199.647 (7.20.2.3) Scope 2, market-based (metric tons CO2e)

Mukwonago

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

21644.819

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

267.262

Row 37

(7.20.2.1) Facility

Radolfzell

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

3492.422

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

2.548

Row 38

(7.20.2.1) Facility

Chonburi

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

1008.867

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

1008.867

Row 39

(7.20.2.1) Facility

Vladimir

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

2267.73

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

2267.73

Row 40

(7.20.2.1) Facility

Midland

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

1189.678

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

17.042

Row 41

(7.20.2.1) Facility

Congers

(7.20.2.2) Scope 2, location-based (metric tons CO2e)
2348.728
(7.20.2.3) Scope 2, market-based (metric tons CO2e)
69.554
Row 42
(7.20.2.1) Facility
Charleval
(7.20.2.2) Scope 2, location-based (metric tons CO2e)
626.948
(7.20.2.3) Scope 2, market-based (metric tons CO2e)
2.503
Row 43
(7.20.2.1) Facility
Leeds
(7.20.2.2) Scope 2, location-based (metric tons CO2e)
1817.954

21.411

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

Row 44

(7.20.2.1) Facility

Crystal Lake 265

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

43.071

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

43.071

Row 45

(7.20.2.1) Facility

Brecey

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

1970.924

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

7.868

Row 46

(7.20.2.1) Facility

CSP Tech Atlanta

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

3.523

Row 47

(7.20.2.1) Facility

Camacari

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

259.451

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

18.413

Row 48

(7.20.2.1) Facility

Freyung

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

17733.728

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

12.937

Row 49

(7.20.2.1) Facility

Elgin Distribution Center

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

74.799

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

1.837

Row 50

(7.20.2.1) Facility

East Troy 12

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

84.314

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

1.041

Row 51

(7.20.2.1) Facility

Groissat

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

83.264

(7.20.2.3) Scope 2, market-based (metric tons CO2e)
0.332
Row 52
(7.20.2.1) Facility
Mezzovico
(7.20.2.2) Scope 2, location-based (metric tons CO2e)
91.608
(7.20.2.3) Scope 2, market-based (metric tons CO2e)
13.63
Row 53
(7.20.2.1) Facility
Torello
(7.20.2.2) Scope 2, location-based (metric tons CO2e)
1870.366
107 0.300
(7.20.2.3) Scope 2, market-based (metric tons CO2e)
(7.20.2.3) Scope 2, market-based (metric tons CO2e)

CSP Tech Auburn

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

16786.962

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

308.653

Row 55

(7.20.2.1) Facility

Martignat

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

89.941

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

0.359

Row 56

(7.20.2.1) Facility

Pescara

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

5252.971

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

Row 57

(7.20.2.1) Facility

Ckyne

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

6335.206

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

4.534

Row 58

(7.20.2.1) Facility

Bellignat

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

4.525

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

0.018

Row 59

(7.20.2.1) Facility

Milano

Row 62

(7.20.2.1) Facility

Libertyville

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

266.644

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

6.549

Row 63

(7.20.2.1) Facility

Villepinte

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

53.049

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

0.212

Row 64

(7.20.2.1) Facility

Villingen

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

5.393 [Add row]

(7.22) Break down your gross Scope 1 and Scope 2 emissions between your consolidated accounting group and other entities included in your response.

Consolidated accounting group

(7.22.1) Scope 1 emissions (metric tons CO2e)

24660

(7.22.2) Scope 2, location-based emissions (metric tons CO2e)

189709

(7.22.3) Scope 2, market-based emissions (metric tons CO2e)

7169

(7.22.4) Please explain

Emissions certified in compliance with ISO 14064-1

All other entities

(7.22.1) Scope 1 emissions (metric tons CO2e)

0

(7.22.2) Scope 2, location-based emissions (metric tons CO2e)

7.22.3) Scope 2	, market-based emissions (metric tons CO2e)
-----------------	----------------------------	-------------------

0

(7.22.4) Please explain

Not present [Fixed row]

(7.26) Allocate your emissions to your customers listed below according to the goods or services you have sold them in this reporting period.

Row 1

(7.26.1) Requesting member

Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 3

(7.26.3) Scope 3 category(ies)

Select all that apply

✓ Category 1: Purchased goods and services

(7.26.4) Allocation level

Select from:

Facility

(7.26.5) Allocation level detail

Allocation is mass based and it is considering the total amount of finished product produced in the site.

(7.26.6) Allocation method

Select from:

✓ Allocation based on mass of products purchased

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

✓ Metric tons

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

1916

(7.26.9) Emissions in metric tonnes of CO2e

4.2

(7.26.10) Uncertainty (±%)

5

(7.26.11) Major sources of emissions

Emissions based on the raw materials production, from cradle to Aptar's gate. We mapped GHG emissions related to the production of plastics, metals, and rubbers used in our bill of materials.

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

GHG sources have been identified considering the upstream value chain in terms of raw materials production, from cradle to Aptar gate. We have collected primary data in terms of quantity of raw materials used in our products portfolio, but, secondary data about the calculation of environmental impact of raw materials production processes.

(7.26.14) Where published information has been used, please provide a reference

Aptar Corporate Sustainability Report 2023

Row 2

(7.26.1) Requesting member

Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 1

(7.26.4) Allocation level

Select from:

Facility

(7.26.5) Allocation level detail

Allocation is mass based and it is considering the total amount of finished product produced in the site.

(7.26.6) Allocation method

Select from:

✓ Allocation based on the volume of products purchased

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

✓ Other unit, please specify :Number of finished products sold to customer

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

47430437288

(7.26.9) Emissions in metric tonnes of CO2e

86.5

(7.26.10) Uncertainty (±%)

5

(7.26.11) Major sources of emissions

Emissions based on the main inputs used in our operations and production processes, for example fuels, refrigerants leakages, natural gas, and biofuels. Please note that the emissions rate include also Scope 2 market-based.

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

GHG sources have been identified considering operational control of our operations. The major inputs used in the production processes of injection molding, assembling, air compressors, HVAC and auxiliaries activities has been mapped following GHG Protocol Standard and ISO 14064-1 requirements.

(7.26.14) Where published information has been used, please provide a reference

Row 4

(7.26.1) Requesting member

Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 3

(7.26.3) Scope 3 category(ies)

Select all that apply

☑ Category 1: Purchased goods and services

(7.26.4) Allocation level

Select from:

✓ Facility

(7.26.5) Allocation level detail

Allocation is mass based and it is considering the total amount of finished product produced in the site.

(7.26.6) Allocation method

Select from:

✓ Allocation based on mass of products purchased

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

✓ Metric tons

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

148

(7.26.9) Emissions in metric tonnes of CO2e

0.48

(7.26.10) Uncertainty (±%)

5

(7.26.11) Major sources of emissions

Emissions based on the raw materials production, from cradle to Aptar's gate. We mapped GHG emissions related to the production of plastics, metals, and rubbers used in our bill of materials.

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

GHG sources have been identified considering the upstream value chain in terms of raw materials production, from cradle to Aptar gate. We have collected primary data in terms of quantity of raw materials used in our products portfolio, but, secondary data about the calculation of environmental impact of raw materials production processes.

(7.26.14) Where published information has been used, please provide a reference

Aptar Corporate Sustainability Report 2023

Row 5

(7.26.1) Requesting member

(7.26.2) Scope of emissions

Select from:

✓ Scope 1

(7.26.4) Allocation level

Select from:

Facility

(7.26.5) Allocation level detail

Allocation is mass based and it is considering the total amount of finished product produced in the site.

(7.26.6) Allocation method

Select from:

✓ Allocation based on the volume of products purchased

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

✓ Other unit, please specify :Number of finished products sold to customer

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

22242186274

(7.26.9) Emissions in metric tonnes of CO2e

34.24

(7.26.10) Uncertainty (±%)

(7.26.11) Major sources of emissions

Emissions based on the main inputs used in our operations and production processes, for example fuels, refrigerants leakages, natural gas, and biofuels. Please note that the emissions rate include also Scope 2 market-based.

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

GHG sources have been identified considering operational control of our operations. The major inputs used in the production processes of injection molding, assembling, air compressors, HVAC and auxiliaries activities has been mapped following GHG Protocol Standard and ISO 14064-1 requirements.

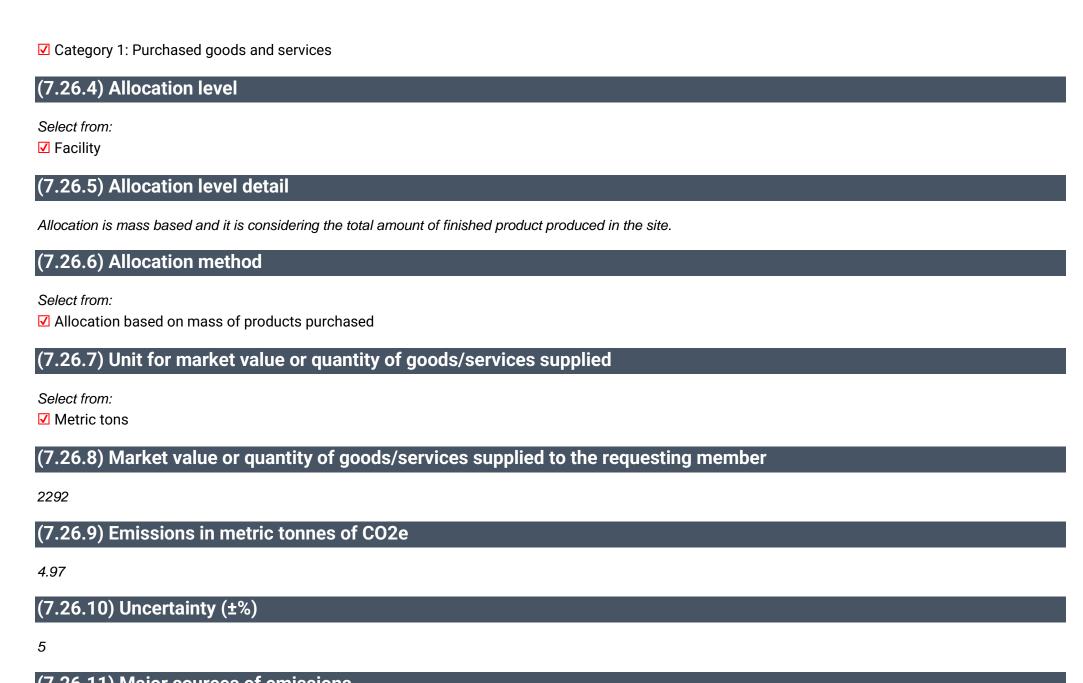
(7.26.14) Where published information has been used, please provide a reference

Aptar Corporate Sustainability Report 2023

Row 7

(7.26.1) Requesting member

Select from:


(7.26.2) Scope of emissions

Select from:

✓ Scope 3

(7.26.3) Scope 3 category(ies)

Select all that apply

(7.26.11) Major sources of emissions

Emissions based on the raw materials production, from cradle to Aptar's gate. We mapped GHG emissions related to the production of plastics, metals, and rubbers used in our bill of materials.

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

GHG sources have been identified considering the upstream value chain in terms of raw materials production, from cradle to Aptar gate. We have collected primary data in terms of quantity of raw materials used in our products portfolio, but, secondary data about the calculation of environmental impact of raw materials production processes.

(7.26.14) Where published information has been used, please provide a reference

Aptar Corporate Sustainability Report 2023

Row 8

(7.26.1) Requesting member

Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 1

(7.26.4) Allocation level

Select from:

Facility

(7.26.5) Allocation level detail

Allocation is mass based and it is considering the total amount of finished product produced in the site.

(7.26.6) Allocation method

Select from:

✓ Allocation based on the volume of products purchased

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

✓ Other unit, please specify :Number of finished products sold to customer

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

53132285329

(7.26.9) Emissions in metric tonnes of CO2e

725

(7.26.10) Uncertainty (±%)

5

(7.26.11) Major sources of emissions

Emissions based on the main inputs used in our operations and production processes, for example fuels, refrigerants leakages, natural gas, and biofuels. Please note that the emissions rate include also Scope 2 market-based.

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

GHG sources have been identified considering operational control of our operations. The major inputs used in the production processes of injection molding, assembling, air compressors, HVAC and auxiliaries activities has been mapped following GHG Protocol Standard and ISO 14064-1 requirements.

(7.26.14) Where published information has been used, please provide a reference

Aptar Corporate Sustainability Report 2023

Row 10

(7.26.1) Requesting member

Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 3

(7.26.3) Scope 3 category(ies)

Select all that apply

☑ Category 1: Purchased goods and services

(7.26.4) Allocation level

Select from:

Facility

(7.26.5) Allocation level detail

Allocation is mass based and it is considering the total amount of finished product produced in the site.

(7.26.6) Allocation method

Select from:

✓ Allocation based on mass of products purchased

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

Metric tons

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

82

(7.26.9) Emissions in metric tonnes of CO2e

0.37

(7.26.10) Uncertainty (±%)

5

(7.26.11) Major sources of emissions

Emissions based on the raw materials production, from cradle to Aptar's gate. We mapped GHG emissions related to the production of plastics, metals, and rubbers used in our bill of materials.

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

GHG sources have been identified considering the upstream value chain in terms of raw materials production, from cradle to Aptar gate. We have collected primary data in terms of quantity of raw materials used in our products portfolio, but, secondary data about the calculation of environmental impact of raw materials production processes.

(7.26.14) Where published information has been used, please provide a reference

Aptar Corporate Sustainability Report 2023

Row 11

(7.26.1) Requesting member

Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 1

(7.26.4) Allocation level

Select from:

Facility

(7.26.5) Allocation level detail

Allocation is mass based and it is considering the total amount of finished product produced in the site.

(7.26.6) Allocation method

Select from:

✓ Allocation based on the volume of products purchased

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

✓ Other unit, please specify: Number of finished products sold to customer

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

30304253126

(7.26.9) Emissions in metric tonnes of CO2e

56.46

(7.26.10) Uncertainty (±%)

5

(7.26.11) Major sources of emissions

Emissions based on the main inputs used in our operations and production processes, for example fuels, refrigerants leakages, natural gas, and biofuels. Please note that the emissions rate include also Scope 2 market-based.

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

GHG sources have been identified considering operational control of our operations. The major inputs used in the production processes of injection molding, assembling, air compressors, HVAC and auxiliaries activities has been mapped following GHG Protocol Standard and ISO 14064-1 requirements.

(7.26.14) Where published information has been used, please provide a reference

Aptar Corporate Sustainability Report 2023

Row 13

(7.26.1) Requesting member

Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 3

(7.26.3) Scope 3 category(ies)

Select all that apply

☑ Category 1: Purchased goods and services

(7.26.4) Allocation level

Select from:

✓ Facility

(7.26.5) Allocation level detail

Allocation is mass based and it is considering the total amount of finished product produced in the site.

(7.26.6) Allocation method

Select from:

✓ Allocation based on mass of products purchased

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

✓ Metric tons

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

(7.26.9) Emissions in metric tonnes of CO2e

1.37

(7.26.10) Uncertainty (±%)

5

(7.26.11) Major sources of emissions

Emissions based on the raw materials production, from cradle to Aptar's gate. We mapped GHG emissions related to the production of plastics, metals, and rubbers used in our bill of materials.

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

GHG sources have been identified considering the upstream value chain in terms of raw materials production, from cradle to Aptar gate. We have collected primary data in terms of quantity of raw materials used in our products portfolio, but, secondary data about the calculation of environmental impact of raw materials production processes.

(7.26.14) Where published information has been used, please provide a reference

Aptar Corporate Sustainability Report 2023

Row 14

(7.26.1) Requesting member

Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 1

(7.26.4) Allocation level

Select from:

✓ Facility

(7.26.5) Allocation level detail

Allocation is mass based and it is considering the total amount of finished product produced in the site.

(7.26.6) Allocation method

Select from:

✓ Allocation based on the volume of products purchased

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

✓ Other unit, please specify :Number of finished products sold to customer

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

40250483924

(7.26.9) Emissions in metric tonnes of CO2e

17.3

(7.26.10) Uncertainty (±%)

5

(7.26.11) Major sources of emissions

Emissions based on the main inputs used in our operations and production processes, for example fuels, refrigerants leakages, natural gas, and biofuels. Please note that the emissions rate include also Scope 2 market-based.

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

GHG sources have been identified considering operational control of our operations. The major inputs used in the production processes of injection molding, assembling, air compressors, HVAC and auxiliaries activities has been mapped following GHG Protocol Standard and ISO 14064-1 requirements.

(7.26.14) Where published information has been used, please provide a reference

Aptar Corporate Sustainability Report 2023

Row 16

(7.26.1) Requesting member

Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 3

(7.26.3) Scope 3 category(ies)

Select all that apply

☑ Category 1: Purchased goods and services

(7.26.4) Allocation level

Select from:

Facility

(7.26.5) Allocation level detail

Allocation is mass based and it is considering the total amount of finished product produced in the site.

(7.26.6) Allocation method

Select from:

☑ Allocation based on mass of products purchased

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

✓ Metric tons

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

4533

(7.26.9) Emissions in metric tonnes of CO2e

10.28

(7.26.10) Uncertainty (±%)

5

(7.26.11) Major sources of emissions

Emissions based on the raw materials production, from cradle to Aptar's gate. We mapped GHG emissions related to the production of plastics, metals, and rubbers used in our bill of materials.

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

GHG sources have been identified considering the upstream value chain in terms of raw materials production, from cradle to Aptar gate. We have collected primary data in terms of quantity of raw materials used in our products portfolio, but, secondary data about the calculation of environmental impact of raw materials production processes.

(7.26.14) Where published information has been used, please provide a reference

Aptar Corporate Sustainability Report 2023

Row 17

(7.26.1) Requesting member

Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 1

(7.26.4) Allocation level

Select from:

✓ Facility

(7.26.5) Allocation level detail

Allocation is mass based and it is considering the total amount of finished product produced in the site.

(7.26.6) Allocation method

Select from:

✓ Allocation based on the volume of products purchased

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

✓ Other unit, please specify: Number of finished products sold to customer

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

60435630601

(7.26.9) Emissions in metric tonnes of CO2e

589

(7.26.10) Uncertainty (±%)

5

(7.26.11) Major sources of emissions

Emissions based on the main inputs used in our operations and production processes, for example fuels, refrigerants leakages, natural gas, and biofuels. Please note that the emissions rate include also Scope 2 market-based.

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

GHG sources have been identified considering operational control of our operations. The major inputs used in the production processes of injection molding, assembling, air compressors, HVAC and auxiliaries activities has been mapped following GHG Protocol Standard and ISO 14064-1 requirements.

(7.26.14) Where published information has been used, please provide a reference

Aptar Corporate Sustainability Report 2023

Row 19

(7.26.1) Requesting member

Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 3

(7.26.3) Scope 3 category(ies)

Select all that apply

✓ Category 1: Purchased goods and services

(7.26.4) Allocation level

Select from:

Facility

(7.26.5) Allocation level detail

Allocation is mass based and it is considering the total amount of finished product produced in the site.

(7.26.6) Allocation method

Select from:

✓ Allocation based on mass of products purchased

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

✓ Metric tons

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

312

(7.26.9) Emissions in metric tonnes of CO2e

0.81

(7.26.10) Uncertainty (±%)

5

(7.26.11) Major sources of emissions

Emissions based on the raw materials production, from cradle to Aptar's gate. We mapped GHG emissions related to the production of plastics, metals, and rubbers used in our bill of materials.

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

GHG sources have been identified considering the upstream value chain in terms of raw materials production, from cradle to Aptar gate. We have collected primary data in terms of quantity of raw materials used in our products portfolio, but, secondary data about the calculation of environmental impact of raw materials production processes.

(7.26.14) Where published information has been used, please provide a reference

Aptar Corporate Sustainability Report 2023

Row 20

(7.26.1) Requesting member

Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 1

(7.26.4) Allocation level

Select from:

Facility

(7.26.5) Allocation level detail

Allocation is mass based and it is considering the total amount of finished product produced in the site.

(7.26.6) Allocation method

Select from:

☑ Allocation based on the volume of products purchased

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

✓ Other unit, please specify :Number of finished products sold to customer

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

(7.26.9) Emissions in metric tonnes of CO2e

134

(7.26.10) Uncertainty (±%)

5

(7.26.11) Major sources of emissions

Emissions based on the main inputs used in our operations and production processes, for example fuels, refrigerants leakages, natural gas, and biofuels. Please note that the emissions rate include also Scope 2 market-based.

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

GHG sources have been identified considering operational control of our operations. The major inputs used in the production processes of injection molding, assembling, air compressors, HVAC and auxiliaries activities has been mapped following GHG Protocol Standard and ISO 14064-1 requirements.

(7.26.14) Where published information has been used, please provide a reference

Aptar Corporate Sustainability Report 2023

Row 22

(7.26.1) Requesting member

Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 3

(7.26.3) Scope 3 category(ies)

Select all that apply

☑ Category 1: Purchased goods and services

(7.26.4) Allocation level

Select from:

✓ Facility

(7.26.5) Allocation level detail

Allocation is mass based and it is considering the total amount of finished product produced in the site.

(7.26.6) Allocation method

Select from:

✓ Allocation based on mass of products purchased

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

✓ Metric tons

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

881

(7.26.9) Emissions in metric tonnes of CO2e

(7.26.10) Uncertainty (±%)

5

(7.26.11) Major sources of emissions

Emissions based on the raw materials production, from cradle to Aptar's gate. We mapped GHG emissions related to the production of plastics, metals, and rubbers used in our bill of materials.

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

GHG sources have been identified considering the upstream value chain in terms of raw materials production, from cradle to Aptar gate. We have collected primary data in terms of quantity of raw materials used in our products portfolio, but, secondary data about the calculation of environmental impact of raw materials production processes.

(7.26.14) Where published information has been used, please provide a reference

Aptar Corporate Sustainability Report 2023

Row 23

(7.26.1) Requesting member

Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 1

(7.26.4) Allocation level

Select from:

✓ Facility

(7.26.5) Allocation level detail

Allocation is mass based and it is considering the total amount of finished product produced in the site.

(7.26.6) Allocation method

Select from:

✓ Allocation based on the volume of products purchased

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

✓ Other unit, please specify :Number of finished products sold to customer

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

14724985951

(7.26.9) Emissions in metric tonnes of CO2e

51.68

(7.26.10) Uncertainty (±%)

5

(7.26.11) Major sources of emissions

Emissions based on the main inputs used in our operations and production processes, for example fuels, refrigerants leakages, natural gas, and biofuels. Please note that the emissions rate include also Scope 2 market-based.

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

GHG sources have been identified considering operational control of our operations. The major inputs used in the production processes of injection molding, assembling, air compressors, HVAC and auxiliaries activities has been mapped following GHG Protocol Standard and ISO 14064-1 requirements.

(7.26.14) Where published information has been used, please provide a reference

Aptar Corporate Sustainability Report 2023

Row 24

(7.26.1) Requesting member

Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 3

(7.26.3) Scope 3 category(ies)

Select all that apply

☑ Category 1: Purchased goods and services

(7.26.4) Allocation level

✓ Facility

(7.26.5) Allocation level detail

Allocation is mass based and it is considering the total amount of finished product produced in the site.

(7.26.6) Allocation method

Select from:

✓ Allocation based on mass of products purchased

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

✓ Metric tons

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

99

(7.26.9) Emissions in metric tonnes of CO2e

657

(7.26.10) Uncertainty (±%)

5

(7.26.11) Major sources of emissions

Emissions based on the raw materials production, from cradle to Aptar's gate. We mapped GHG emissions related to the production of plastics, metals, and rubbers used in our bill of materials.

(7.26.12) Allocation verified by a third party?

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

GHG sources have been identified considering the upstream value chain in terms of raw materials production, from cradle to Aptar gate. We have collected primary data in terms of quantity of raw materials used in our products portfolio, but, secondary data about the calculation of environmental impact of raw materials production processes.

(7.26.14) Where published information has been used, please provide a reference

Aptar Corporate Sustainability Report 2023

Row 25

(7.26.1) Requesting member

Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 1

(7.26.4) Allocation level

Select from:

Facility

(7.26.5) Allocation level detail

Allocation is mass based and it is considering the total amount of finished product produced in the site.

(7.26.6) Allocation method

✓ Allocation based on the volume of products purchased

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

✓ Other unit, please specify :Number of finished products sold to customer

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

35764561

(7.26.9) Emissions in metric tonnes of CO2e

6.51

(7.26.10) Uncertainty (±%)

5

(7.26.11) Major sources of emissions

Emissions based on the main inputs used in our operations and production processes, for example fuels, refrigerants leakages, natural gas, and biofuels. Please note that the emissions rate include also Scope 2 market-based.

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

GHG sources have been identified considering operational control of our operations. The major inputs used in the production processes of injection molding, assembling, air compressors, HVAC and auxiliaries activities has been mapped following GHG Protocol Standard and ISO 14064-1 requirements.

(7.26.14) Where published information has been used, please provide a reference

Aptar Corporate Sustainability Report 2023

Row 26

(7.26.1) Requesting member

Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 3

(7.26.3) Scope 3 category(ies)

Select all that apply

✓ Category 1: Purchased goods and services

(7.26.4) Allocation level

Select from:

✓ Facility

(7.26.5) Allocation level detail

Allocation is mass based and it is considering the total amount of finished product produced in the site.

(7.26.6) Allocation method

Select from:

✓ Allocation based on mass of products purchased

(7.26.7) Unit for market value or quantity of goods/services supplied

✓ Metric tons

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

368

(7.26.9) Emissions in metric tonnes of CO2e

862

(7.26.10) Uncertainty (±%)

5

(7.26.11) Major sources of emissions

Emissions based on the raw materials production, from cradle to Aptar's gate. We mapped GHG emissions related to the production of plastics, metals, and rubbers used in our bill of materials.

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

GHG sources have been identified considering the upstream value chain in terms of raw materials production, from cradle to Aptar gate. We have collected primary data in terms of quantity of raw materials used in our products portfolio, but, secondary data about the calculation of environmental impact of raw materials production processes.

(7.26.14) Where published information has been used, please provide a reference

Aptar Corporate Sustainability Report 2023

Row 27

(7.26.1) Requesting member

Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 1

(7.26.4) Allocation level

Select from:

✓ Facility

(7.26.5) Allocation level detail

Allocation is mass based and it is considering the total amount of finished product produced in the site.

(7.26.6) Allocation method

Select from:

✓ Allocation based on the volume of products purchased

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

☑ Other unit, please specify :Number of finished products sold to customer

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

92844085

(7.26.9) Emissions in metric tonnes of CO2e

(7.26.10) Uncertainty (±%)

5

(7.26.11) Major sources of emissions

Emissions based on the main inputs used in our operations and production processes, for example fuels, refrigerants leakages, natural gas, and biofuels. Please note that the emissions rate include also Scope 2 market-based.

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

GHG sources have been identified considering operational control of our operations. The major inputs used in the production processes of injection molding, assembling, air compressors, HVAC and auxiliaries activities has been mapped following GHG Protocol Standard and ISO 14064-1 requirements.

(7.26.14) Where published information has been used, please provide a reference

Aptar Corporate Sustainability Report 2023

Row 28

(7.26.1) Requesting member

Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 3

(7.26.3) Scope 3 category(ies)

Select all that apply

☑ Category 1: Purchased goods and services

(7.26.4) Allocation level

Select from:

Facility

(7.26.5) Allocation level detail

Allocation is mass based and it is considering the total amount of finished product produced in the site.

(7.26.6) Allocation method

Select from:

✓ Allocation based on mass of products purchased

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

Metric tons

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

13

(7.26.9) Emissions in metric tonnes of CO2e

28

(7.26.10) Uncertainty (±%)

5

(7.26.11) Major sources of emissions

Emissions based on the raw materials production, from cradle to Aptar's gate. We mapped GHG emissions related to the production of plastics, metals, and rubbers used in our bill of materials.

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

GHG sources have been identified considering the upstream value chain in terms of raw materials production, from cradle to Aptar gate. We have collected primary data in terms of quantity of raw materials used in our products portfolio, but, secondary data about the calculation of environmental impact of raw materials production processes.

(7.26.14) Where published information has been used, please provide a reference

Aptar Corporate Sustainability Report 2023

Row 29

(7.26.1) Requesting member

Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 1

(7.26.4) Allocation level

Select from:

✓ Facility

(7.26.5) Allocation level detail

Allocation is mass based and it is considering the total amount of finished product produced in the site.

(7.26.6) Allocation method

Select from:

✓ Allocation based on the volume of products purchased

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

✓ Other unit, please specify :Number of finished products sold to customer

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

1317301

(7.26.9) Emissions in metric tonnes of CO2e

0.41

(7.26.10) Uncertainty (±%)

5

(7.26.11) Major sources of emissions

Emissions based on the main inputs used in our operations and production processes, for example fuels, refrigerants leakages, natural gas, and biofuels. Please note that the emissions rate include also Scope 2 market-based.

(7.26.12) Allocation verified by a third party?

Select from:

V No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

GHG sources have been identified considering operational control of our operations. The major inputs used in the production processes of injection molding, assembling, air compressors, HVAC and auxiliaries activities has been mapped following GHG Protocol Standard and ISO 14064-1 requirements.

(7.26.14) Where published information has been used, please provide a reference

Aptar Corporate Sustainability Report 2023 [Add row]

(7.27) What are the challenges in allocating emissions to different customers, and what would help you to overcome these challenges?

Row 1

(7.27.1) Allocation challenges

Select from:

✓ Customer base is too large and diverse to accurately track emissions to the customer level

(7.27.2) Please explain what would help you overcome these challenges

The product sustainability team in order to solve this challenge, during the reporting year started the development of an LCA eco-design tool directly connected to SAP bill of materials and master data. The system, will be able to calculate the CO2 impact of different product families in real time.

Row 2

(7.27.1) Allocation challenges

Select from:

☑ Doing so would require we disclose business sensitive/proprietary information

(7.27.2) Please explain what would help you overcome these challenges

In situations where we are not able to group our LCA results into product family ranges, and particularly with highly customized solutions, it is possible that disclosing LCA data will pose a risk to our business. Customers can help us overcome this issue by treating our LCA results with a high degree of sensitivity and by refraining from comparing our results to similar products from other suppliers who may not be using the same processes or level of accuracy for LCA measurements. This is one of the main reasons why we engaged in the Environmental Product Declaration (EPD) for the GS and GSA pumps -- to provide customers with an accurate and transparent view of our environmental impacts. We intend to use the information we glean from our LCAs to improve future generations of products and hope this information is not used against us.

Row 3

(7.27.1) Allocation challenges

Select from:

✓ Managing the different emission factors of diverse and numerous geographies makes calculating total footprint difficult

(7.27.2) Please explain what would help you overcome these challenges

Aptar has more than 40 operations in different countries and regions, emission factors for Scope 2 makes calculating total footprint difficult but in the latest 3 years, thanks to our energy road map, we have used up to 97% of renewable energy with primary data for emission factor that increased the level of accuracy for the Scope 2 calculation.

Row 4

(7.27.1) Allocation challenges

Select from:

☑ Diversity of product lines makes accurately accounting for each product/product line cost ineffective

(7.27.2) Please explain what would help you overcome these challenges

In 2015 we established a Life Cycle Assessment strategy with a target to assess over 50% of our product families (by volume sold, excluding Pharma products that are highly regulated and difficult to change) by the end of 2016 we surpassed this target, having completed an LCA of 69% of product families. In the future we will continue to prioritize and conduct LCAs on the remainder of our product families. In addition, we continue to evaluate partnerships with customers specifically requesting LCAs. We are prioritizing the product families to include in our assessments by focusing on the volumes of products we supplied to key customers, including all customers requesting a response from us through the CDP Supply Chain questionnaire. Due to the diversity of our products, we believe an approach

based on product ranges is most effective. The analysis of every product in every product family and every Aptar location would be time consuming and cost prohibitive, and we believe the analysis of ranges will provide a close depiction of current state. Our customers can help us overcome this challenge by accepting the results of our LCAs at the product family range and by accepting our assumptions. Product sustainability team is investigating solutions in order to integrate LCA tool with SAP system on which thanks to the Bill of Material will be possible to have carbon footprint analysis for the entire products portfolio.

[Add row]

(7.28) Do you plan to develop your capabilities to allocate emissions to your customers in the future?

Do you plan to develop your capabilities to allocate emissions to your customers in the future?	Describe how you plan to develop your capabilities
Select from: ✓ Yes	Aptar Product Sustainability Team developed an internal LCA tool that is able to calculate in real time LCA data from SKU purchased by customers.

[Fixed row]

(7.30) Select which energy-related activities your organization has undertaken.

	Indicate whether your organization undertook this energy-related activity in the reporting year	
Consumption of fuel (excluding feedstocks)	Select from: ✓ Yes	
Consumption of purchased or acquired electricity	Select from: ✓ Yes	
Consumption of purchased or acquired heat	Select from: ☑ No	

	Indicate whether your organization undertook this energy-related activity in the reporting year
Consumption of purchased or acquired steam	Select from: ☑ No
Consumption of purchased or acquired cooling	Select from: ☑ No
Generation of electricity, heat, steam, or cooling	Select from: ✓ Yes

[Fixed row]

(7.30.1) Report your organization's energy consumption totals (excluding feedstocks) in MWh.

Consumption of fuel (excluding feedstock)

(7.30.1.1) Heating value

Select from:

✓ LHV (lower heating value)

(7.30.1.2) MWh from renewable sources

0

(7.30.1.3) MWh from non-renewable sources

117484

(7.30.1.4) Total (renewable and non-renewable) MWh

Consumption of purchased or acquired electricity

(7.30.1.1) Heating value

Select from:

✓ LHV (lower heating value)

(7.30.1.2) MWh from renewable sources

529984

(7.30.1.3) MWh from non-renewable sources

16154

(7.30.1.4) Total (renewable and non-renewable) MWh

546138

Consumption of self-generated non-fuel renewable energy

(7.30.1.1) Heating value

Select from:

✓ LHV (lower heating value)

(7.30.1.2) MWh from renewable sources

0

(7.30.1.4) Total (renewable and non-renewable) MWh

0

Total energy consumption

(7.30.1.1) Heating value

Select from:

☑ LHV (lower heating value)

(7.30.1.2) MWh from renewable sources

529984

(7.30.1.3) MWh from non-renewable sources

133638

(7.30.1.4) Total (renewable and non-renewable) MWh

663622 [Fixed row]

(7.30.6) Select the applications of your organization's consumption of fuel.

	Indicate whether your organization undertakes this fuel application
Consumption of fuel for the generation of electricity	Select from: ☑ No
Consumption of fuel for the generation of heat	Select from: ✓ Yes
Consumption of fuel for the generation of steam	Select from:

	Indicate whether your organization undertakes this fuel application
	✓ Yes
Consumption of fuel for the generation of cooling	Select from: ☑ No
Consumption of fuel for co-generation or tri-generation	Select from: ✓ Yes

[Fixed row]

(7.30.7) State how much fuel in MWh your organization has consumed (excluding feedstocks) by fuel type.

Sustainable biomass

(7.30.7.1) Heating value

Select from:

✓ LHV

(7.30.7.2) Total fuel MWh consumed by the organization

0

(7.30.7.4) MWh fuel consumed for self-generation of heat

0

(7.30.7.5) MWh fuel consumed for self-generation of steam

0

(7.30.7.8) Comment

No energy input used

Other renewable fuels (e.g. renewable hydrogen)

(7.30.7.1) Heating value

Select from:

✓ LHV

(7.30.7.2) Total fuel MWh consumed by the organization

0

(7.30.7.4) MWh fuel consumed for self-generation of heat

0

(7.30.7.5) MWh fuel consumed for self-generation of steam

0

(7.30.7.6) MWh fuel consumed for self-generation of cooling

0

(7.30.7.7) MWh fuel consumed for self-cogeneration or self-trigeneration

0

(7.30.7.8) Comment

No energy input used

Coal

(7.30.7.1) Heating value

Select from:

✓ LHV

(7.30.7.2) Total fuel MWh consumed by the organization

0

(7.30.7.4) MWh fuel consumed for self-generation of heat

0

(7.30.7.5) MWh fuel consumed for self-generation of steam

0

(7.30.7.6) MWh fuel consumed for self-generation of cooling

0

(7.30.7.7) MWh fuel consumed for self- cogeneration or self-trigeneration

0

(7.30.7.8) Comment

No energy input used

Oil

(7.30.7.1) Heating value

Select from:

1./	_	4 V	,
10		ı١	,

(7.30.7.2) Total fuel MWh consumed by the organization

8355.45

(7.30.7.4) MWh fuel consumed for self-generation of heat

0

(7.30.7.5) MWh fuel consumed for self-generation of steam

0

(7.30.7.6) MWh fuel consumed for self-generation of cooling

0

(7.30.7.7) MWh fuel consumed for self-cogeneration or self-trigeneration

0

(7.30.7.8) Comment

Fuel oils used in operations

Gas

(7.30.7.1) Heating value

Select from:

✓ LHV

(7.30.7.2) Total fuel MWh consumed by the organization

109127.8

(7.30.7.4) MWh fuel consumed for self-generation of heat 0 (7.30.7.5) MWh fuel consumed for self-generation of steam 0 (7.30.7.6) MWh fuel consumed for self-generation of cooling 0 (7.30.7.7) MWh fuel consumed for self-cogeneration or self-trigeneration (7.30.7.8) Comment Natural gas used in operations Other non-renewable fuels (e.g. non-renewable hydrogen) (7.30.7.1) Heating value Select from: ✓ LHV (7.30.7.2) Total fuel MWh consumed by the organization (7.30.7.4) MWh fuel consumed for self-generation of heat 0 (7.30.7.5) MWh fuel consumed for self-generation of steam

(7.30.7.6) MWh fuel consumed for self-generation of cooling

0

(7.30.7.7) MWh fuel consumed for self-cogeneration or self-trigeneration

0

(7.30.7.8) Comment

No energy input used

Total fuel

(7.30.7.1) Heating value

Select from:

✓ LHV

(7.30.7.2) Total fuel MWh consumed by the organization

117483.25

(7.30.7.4) MWh fuel consumed for self-generation of heat

0

(7.30.7.5) MWh fuel consumed for self-generation of steam

0

(7.30.7.6) MWh fuel consumed for self-generation of cooling

0

(7.30.7.7) MWh fuel consumed for self- cogeneration or self-trigeneration

0

(7.30.7.8) Comment

Total fuels energy used in operations [Fixed row]

(7.30.9) Provide details on the electricity, heat, steam, and cooling your organization has generated and consumed in the reporting year.

Electricity

(7.30.9.1) Total Gross generation (MWh)

68880.87

(7.30.9.2) Generation that is consumed by the organization (MWh)

68880.87

(7.30.9.3) Gross generation from renewable sources (MWh)

529984.82

(7.30.9.4) Generation from renewable sources that is consumed by the organization (MWh)

529984.82

Heat

(7.30.9.1) Total Gross generation (MWh)

(7.30.9.2) Generation that is consumed by the organization (MWh) (7.30.9.3) Gross generation from renewable sources (MWh) 0 (7.30.9.4) Generation from renewable sources that is consumed by the organization (MWh) 0 **Steam** (7.30.9.1) Total Gross generation (MWh) 0 (7.30.9.2) Generation that is consumed by the organization (MWh) (7.30.9.3) Gross generation from renewable sources (MWh) 0 (7.30.9.4) Generation from renewable sources that is consumed by the organization (MWh) 0

Cooling

(7.30.9.1) Total Gross generation (MWh)

(7.30.9.2) Generation that is consumed by the organization (MWh)

0

(7.30.9.3) Gross generation from renewable sources (MWh)

0

(7.30.9.4) Generation from renewable sources that is consumed by the organization (MWh)

0 [Fixed row]

(7.30.14) Provide details on the electricity, heat, steam, and/or cooling amounts that were accounted for at a zero or near-zero emission factor in the market-based Scope 2 figure reported in 7.7.

Row 1

(7.30.14.1) Country/area

Select from:

France

(7.30.14.2) Sourcing method

Select from:

✓ Unbundled procurement of energy attribute certificates (EACs)

(7.30.14.3) Energy carrier

Select from:

☑ Electricity

(7.30.14.4) Low-carbon technology type Select from: Solar (7.30.14.5) Low-carbon energy consumed via selected sourcing method in the reporting year (MWh) 280000 (7.30.14.6) Tracking instrument used

Select from:

✓ I-REC

(7.30.14.7) Country/area of origin (generation) of the low-carbon energy or energy attribute

Select from:

✓ France

(7.30.14.8) Are you able to report the commissioning or re-powering year of the energy generation facility?

Select from:

✓ No

(7.30.14.10) Comment

No Comment

Row 2

(7.30.14.1) Country/area

Select from:

✓ United States of America

(7.30.14.2) Sourcing method Select from: ✓ Unbundled procurement of energy attribute certificates (EACs)

(7.30.14.3) Energy carrier

Select from:

Electricity

(7.30.14.4) Low-carbon technology type

Select from:

✓ Wind

(7.30.14.5) Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)

127000

(7.30.14.6) Tracking instrument used

Select from:

✓ I-REC

(7.30.14.7) Country/area of origin (generation) of the low-carbon energy or energy attribute

Select from:

✓ United States of America

(7.30.14.8) Are you able to report the commissioning or re-powering year of the energy generation facility?

Select from:

✓ No

(7.30.14.10) Comment

Row 3

(7.30.14.1) Country/area

Select from:

✓ United States of America

(7.30.14.2) Sourcing method

Select from:

✓ Unbundled procurement of energy attribute certificates (EACs)

(7.30.14.3) Energy carrier

Select from:

✓ Electricity

(7.30.14.4) Low-carbon technology type

Select from:

☑ Hydropower (capacity unknown)

(7.30.14.5) Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)

8200

(7.30.14.6) Tracking instrument used

Select from:

✓ I-REC

(7.30.14.7) Country/area of origin (generation) of the low-carbon energy or energy attribute

Select from: ☑ United States of America
(7.30.14.8) Are you able to report the commissioning or re-powering year of the energy generation facility?
Select from: ☑ No
(7.30.14.10) Comment
No Comment
Row 4
(7.30.14.1) Country/area
Select from: ☑ United States of America
(7.30.14.2) Sourcing method
Select from: ☑ Unbundled procurement of energy attribute certificates (EACs)
(7.30.14.3) Energy carrier
Select from: ☑ Electricity
(7.30.14.4) Low-carbon technology type
Select from: ☑ Wind

(7.30.14.5) Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)

(7.30.14.6) Tracking instrument used

Select from:

✓ I-REC

(7.30.14.7) Country/area of origin (generation) of the low-carbon energy or energy attribute

Select from:

✓ United States of America

(7.30.14.8) Are you able to report the commissioning or re-powering year of the energy generation facility?

Select from:

✓ No

(7.30.14.10) Comment

No Comment

Row 5

(7.30.14.1) Country/area

Select from:

China

(7.30.14.2) Sourcing method

Select from:

✓ Unbundled procurement of energy attribute certificates (EACs)

(7.30.14.3) Energy carrier

Select from: ☑ Electricity
(7.30.14.4) Low-carbon technology type
Select from: ☑ Hydropower (capacity unknown)
(7.30.14.5) Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)
40000
(7.30.14.6) Tracking instrument used
Select from: ☑ I-REC
(7.30.14.7) Country/area of origin (generation) of the low-carbon energy or energy attribute
Select from: ☑ China
(7.30.14.8) Are you able to report the commissioning or re-powering year of the energy generation facility?
Select from: ✓ No
(7.30.14.10) Comment
No Comment

Row 6

(7.30.14.1) Country/area

Select from: ☑ India
(7.30.14.2) Sourcing method
Select from: ☑ Unbundled procurement of energy attribute certificates (EACs)
(7.30.14.3) Energy carrier
Select from: ☑ Electricity
(7.30.14.4) Low-carbon technology type
Select from: ✓ Hydropower (capacity unknown)
(7.30.14.5) Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)
8300
(7.30.14.6) Tracking instrument used
Select from: ☑ I-REC
(7.30.14.7) Country/area of origin (generation) of the low-carbon energy or energy attribute
Select from: ✓ India
(7.30.14.8) Are you able to report the commissioning or re-powering year of the energy generation facility?
Select from:

V No

(7.30.14.10) Comment
-------------	-----------

No Comment

Row 7

(7.30.14.1) Country/area

Select from:

Mexico

(7.30.14.2) Sourcing method

Select from:

✓ Unbundled procurement of energy attribute certificates (EACs)

(7.30.14.3) Energy carrier

Select from:

✓ Electricity

(7.30.14.4) Low-carbon technology type

Select from:

Wind

(7.30.14.5) Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)

26000

(7.30.14.6) Tracking instrument used

Select from:

✓ I-REC

(7.30.14.7) Country/area of origin (generation) of the low-carbon energy or energy attribute

Select from:

✓ Mexico

(7.30.14.8) Are you able to report the commissioning or re-powering year of the energy generation facility?

Select from:

✓ No

(7.30.14.10) Comment

No Comment

Row 8

(7.30.14.1) Country/area

Select from:

Switzerland

(7.30.14.2) Sourcing method

Select from:

✓ Unbundled procurement of energy attribute certificates (EACs)

(7.30.14.3) **Energy carrier**

Select from:

Electricity

(7.30.14.4) Low-carbon technology type

Select from: ☑ Solar
(7.30.14.5) Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)
3170
(7.30.14.6) Tracking instrument used
Select from: ☑ I-REC
(7.30.14.7) Country/area of origin (generation) of the low-carbon energy or energy attribute
Select from: ✓ Switzerland
(7.30.14.8) Are you able to report the commissioning or re-powering year of the energy generation facility?
Select from: ☑ No
(7.30.14.10) Comment
No Comment
Row 9
(7.30.14.1) Country/area
Select from: ☑ United Kingdom of Great Britain and Northern Ireland

(7.30.14.2) Sourcing method

✓ Unbundled procurement of energy attribute certificates (EACs)

(7.30.14.3) **Energy carrier**

Select from:

Electricity

(7.30.14.4) Low-carbon technology type

Select from:

Wind

(7.30.14.5) Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)

4979

(7.30.14.6) Tracking instrument used

Select from:

✓ I-REC

(7.30.14.7) Country/area of origin (generation) of the low-carbon energy or energy attribute

Select from:

✓ United Kingdom of Great Britain and Northern Ireland

(7.30.14.8) Are you able to report the commissioning or re-powering year of the energy generation facility?

Select from:

✓ No

(7.30.14.10) Comment

No Comment

Row 10

(7.30.14.1) Country/area

Select from:

✓ Brazil

(7.30.14.2) Sourcing method

Select from:

✓ Unbundled procurement of energy attribute certificates (EACs)

(7.30.14.3) Energy carrier

Select from:

☑ Electricity

(7.30.14.4) Low-carbon technology type

Select from:

Wind

(7.30.14.5) Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)

28285

(7.30.14.6) Tracking instrument used

Select from:

✓ I-REC

(7.30.14.7) Country/area of origin (generation) of the low-carbon energy or energy attribute

Select from:

✓ Brazil

(7.30.14.8) Are you able to report the commissioning or re-powering year of the energy generation facility?
(7.30.14.8) Are you able to report the commissioning or re-powering year of the energy generation facility:
Select from:
☑ No
(7.30.14.10) Comment
No Comment
Row 11
(7.30.14.1) Country/area
Select from:
☑ Bahrain
(7.30.14.2) Sourcing method
Select from:
☑ Default delivered electricity from the grid (e.g. standard product offering by an energy supplier), supported by energy attribute certificates
(7.30.14.3) Energy carrier
Select from:
☑ Electricity
(7.30.14.4) Low-carbon technology type
Select from:
✓ Solar

(7.30.14.5) Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)

(7.30.14.6) Tracking instrument used
Select from: ☑ I-REC
(7.30.14.7) Country/area of origin (generation) of the low-carbon energy or energy attribute
Select from: ☑ United Arab Emirates
(7.30.14.8) Are you able to report the commissioning or re-powering year of the energy generation facility?
Select from: ☑ No
(7.30.14.10) Comment
No Comment [Add row]
(7.30.16) Provide a breakdown by country/area of your electricity/heat/steam/cooling consumption in the reporting year.
Argentina
(7.30.16.1) Consumption of purchased electricity (MWh)
7004.00

7261.92

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

7261.92

Bahrain

(7.30.16.1) Consumption of purchased electricity (MWh)

3425.43

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

3425.43

Brazil

(7.30.16.1) Consumption of purchased electricity (MWh)

(7.30.16.2) Consumption of self-generated electricity (MWh) 0 (7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh) 0 (7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh) 0 (7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh) 27747.57 China (7.30.16.1) Consumption of purchased electricity (MWh) 31828.75 (7.30.16.2) Consumption of self-generated electricity (MWh) 0 (7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh) 0 (7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh) 0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh) 31828.75 Colombia (7.30.16.1) Consumption of purchased electricity (MWh) 429.55 (7.30.16.2) Consumption of self-generated electricity (MWh) 0 (7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh) 0 (7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh) 0 (7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh) 429.55 Czechia (7.30.16.1) Consumption of purchased electricity (MWh) 9086.64 (7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh) 0 (7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh) 0 (7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh) 9086.64 **France** (7.30.16.1) Consumption of purchased electricity (MWh) 160457.43 (7.30.16.2) Consumption of self-generated electricity (MWh) 0 (7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh) (7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh) 0 (7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh) 160457.43 **Germany**

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

8120.06

Indonesia

(7.30.16.1) Consumption of purchased electricity (MWh)

2141.97

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

2141.97

Italy

(7.30.16.1) Consumption of purchased electricity (MWh)

9139.09

(7.30.16.2) Consumption of self-generated electricity (MWh)

22152.43

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh) 0 (7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh) 0 (7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh) 16019.96 **Mexico** (7.30.16.1) Consumption of purchased electricity (MWh) 22152.43 (7.30.16.2) Consumption of self-generated electricity (MWh) 0 (7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh) 0 (7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh) 0 (7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

Russian Federation

(7.30.16.1) Consumption of purchased electricity (MWh)

6316.79

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

6316.79

Spain

(7.30.16.1) Consumption of purchased electricity (MWh)

6802.58

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh) 0 (7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh) 6802.58 **Switzerland** (7.30.16.1) Consumption of purchased electricity (MWh) 3169.84 (7.30.16.2) Consumption of self-generated electricity (MWh) 0 (7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh) 0 (7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh) (7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh) 3169.84 **United Kingdom of Great Britain and Northern Ireland** (7.30.16.1) Consumption of purchased electricity (MWh) 4979.33

(7.30.16.2) Consumption of self-generated electricity (MWh)
0
(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)
0
(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)
0
(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)
4979.33
United States of America
(7.30.16.1) Consumption of purchased electricity (MWh)
166828.6
(7.30.16.2) Consumption of self-generated electricity (MWh)
0
(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)
0
(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)
0
(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

(7.45) Describe your gross global combined Scope 1 and 2 emissions for the reporting year in metric tons CO2e per unit currency total revenue and provide any additional intensity metrics that are appropriate to your business operations.

Row 1

(7.45.1) Intensity figure

0.32

(7.45.2) Metric numerator (Gross global combined Scope 1 and 2 emissions, metric tons CO2e)

31827

(7.45.3) Metric denominator

Select from:

✓ unit of production

(7.45.4) Metric denominator: Unit total

98896641661

(7.45.5) Scope 2 figure used

Select from:

✓ Market-based

(7.45.6) % change from previous year

25

(7.45.7) Direction of change

Select from:

Decreased

(7.45.8) Reasons for change

Select all that apply

- ☑ Change in renewable energy consumption
- ☑ Other emissions reduction activities
- ☑ Change in output

(7.45.9) Please explain

Aptar during the reporting period increased the renewables ratio, increase production of outputs and implemented energy conservation measures. [Add row]

(7.52) Provide any additional climate-related metrics relevant to your business.

Row 1

(7.52.1) Description

Select from:

✓ Energy usage

(7.52.2) Metric value

7

(7.52.3) Metric numerator

kWh

(7.52.4) Metric denominator (intensity metric only)

total finished product produced

(7.52.5) % change from previous year

15

(7.52.6) Direction of change

Select from:

Decreased

(7.52.7) Please explain

Aptar increased the production of finished products and implemented energy conservation measures, so, the intensity KPI improved respect the previous reporting year.

Row 2

(7.52.1) Description

Select from:

✓ Waste

(7.52.2) Metric value

50471

(7.52.3) Metric numerator

tons

(7.52.4) Metric denominator (intensity metric only)

intensity metric not calculated

(7.52.5) % change from previous year

0.1

(7.52.6) Direction of change

Select from:

Decreased

(7.52.7) Please explain

Aptar during the reporting year decreased the total quantity of waste produced in operations thanks to the increase of efficiency level [Add row]

(7.53.1) Provide details of your absolute emissions targets and progress made against those targets.

Row 1

(7.53.1.1) Target reference number

Select from:

✓ Abs 1

(7.53.1.2) Is this a science-based target?

Select from:

✓ Yes, and this target has been approved by the Science Based Targets initiative

(7.53.1.3) Science Based Targets initiative official validation letter

SBTi Certificate_AptarGroup.pdf

(7.53.1.4) Target ambition

(7.53.1.5) Date target was set

01/31/2023

(7.53.1.6) Target coverage

Select from:

✓ Organization-wide

(7.53.1.7) Greenhouse gases covered by target

Select all that apply

- ✓ Methane (CH4)
- ✓ Nitrous oxide (N2O)
- ✓ Carbon dioxide (CO2)
- ✓ Perfluorocarbons (PFCs)
- Pernuorocarbons (PFCs)
- ☑ Hydrofluorocarbons (HFCs)

✓ Sulphur hexafluoride (SF6)

✓ Nitrogen trifluoride (NF3)

(7.53.1.8) Scopes

Select all that apply

- ✓ Scope 1
- ✓ Scope 2

(7.53.1.9) Scope 2 accounting method

Select from:

✓ Market-based

(7.53.1.11) End date of base year

(7.53.1.12) Base year Scope 1 emissions covered by target (metric tons CO2e)

23515

(7.53.1.13) Base year Scope 2 emissions covered by target (metric tons CO2e)

112703

(7.53.1.31) Base year total Scope 3 emissions covered by target (metric tons CO2e)

0.000

(7.53.1.32) Total base year emissions covered by target in all selected Scopes (metric tons CO2e)

136218.000

(7.53.1.33) Base year Scope 1 emissions covered by target as % of total base year emissions in Scope 1

99.72

(7.53.1.34) Base year Scope 2 emissions covered by target as % of total base year emissions in Scope 2

99.72

(7.53.1.53) Base year emissions covered by target in all selected Scopes as % of total base year emissions in all selected Scopes

99.72

(7.53.1.54) End date of target

12/30/2030

(7.53.1.55) Targeted reduction from base year (%)

(7.53.1.56) Total emissions at end date of target covered by target in all selected Scopes (metric tons CO2e)

24519.240

(7.53.1.57) Scope 1 emissions in reporting year covered by target (metric tons CO2e)

24660

(7.53.1.58) Scope 2 emissions in reporting year covered by target (metric tons CO2e)

7167

(7.53.1.77) Total emissions in reporting year covered by target in all selected scopes (metric tons CO2e)

31827.000

(7.53.1.78) Land-related emissions covered by target

Select from:

✓ No, it does not cover any land-related emissions (e.g. non-FLAG SBT)

(7.53.1.79) % of target achieved relative to base year

93.46

(7.53.1.80) Target status in reporting year

Select from:

Achieved

(7.53.1.82) Explain target coverage and identify any exclusions

The target cover all scope 1 and 2 emissions in the company's GHG inventory, developed in line with the GHG Protocol Corporate Standardard. The GHG emissions inventory covers all relevant GHG emissions, from all relevant sources and subsidiaries. The GHG inventory is composed exclusively of fossil based emissions, and no biogenic emissions have been reported alongside the GHG inventory.

(7.53.1.83) Target objective

the objective of the target is to reduce the GHG emissions and energy consumption, with an increase of renewables.

(7.53.1.85) Target derived using a sectoral decarbonization approach

Select from:

✓ No

(7.53.1.86) List the emissions reduction initiatives which contributed most to achieving this target

The main contributors to the progress in the achievement of SBT target for Scope 12 are the increase of renewables energy uses, decrease of natural gas uses in our operations, and implementation of energy conservation measures in our energy intensive plants.

Row 2

(7.53.1.1) Target reference number

Select from:

✓ Abs 2

(7.53.1.2) Is this a science-based target?

Select from:

✓ Yes, and this target has been approved by the Science Based Targets initiative

(7.53.1.3) Science Based Targets initiative official validation letter

SBTi Certificate_AptarGroup.pdf

(7.53.1.4) Target ambition

Select from:

✓ 2°C aligned

(7.53.1.5) Date target was set

01/31/2023

(7.53.1.6) Target coverage

Select from:

✓ Organization-wide

(7.53.1.7) Greenhouse gases covered by target

Select all that apply

✓ Methane (CH4)

✓ Nitrous oxide (N2O)

✓ Carbon dioxide (CO2)

✓ Perfluorocarbons (PFCs)

☑ Hydrofluorocarbons (HFCs)

✓ Sulphur hexafluoride (SF6)

✓ Nitrogen trifluoride (NF3)

(7.53.1.8) Scopes

Select all that apply

✓ Scope 3

(7.53.1.10) Scope 3 categories

Select all that apply

✓ Scope 3, Category 1 – Purchased goods and services

☑ Scope 3, Category 4 – Upstream transportation and distribution

☑ Scope 3, Category 5 – Waste generated in operations

☑ Scope 3, Category 9 – Downstream transportation and distribution

(7.53.1.11) End date of base year

12/30/2019

(7.53.1.14) Base year Scope 3, Category 1: Purchased goods and services emissions covered by target (metric tons CO2e)

245761.0

(7.53.1.17) Base year Scope 3, Category 4: Upstream transportation and distribution emissions covered by target (metric tons CO2e)

13567.0

(7.53.1.18) Base year Scope 3, Category 5: Waste generated in operations emissions covered by target (metric tons CO2e)

16133.0

(7.53.1.22) Base year Scope 3, Category 9: Downstream transportation and distribution emissions covered by target (metric tons CO2e)

9045

(7.53.1.31) Base year total Scope 3 emissions covered by target (metric tons CO2e)

284506.000

(7.53.1.32) Total base year emissions covered by target in all selected Scopes (metric tons CO2e)

284506.000

(7.53.1.35) Base year Scope 3, Category 1: Purchased goods and services emissions covered by target as % of total base year emissions in Scope 3, Category 1: Purchased goods and services (metric tons CO2e)

86.0

(7.53.1.38) Base year Scope 3, Category 4: Upstream transportation and distribution covered by target as % of total base year emissions in Scope 3, Category 4: Upstream transportation and distribution (metric tons CO2e)

5.0

(7.53.1.39) Base year Scope 3, Category 5: Waste generated in operations emissions covered by target as % of total base year emissions in Scope 3, Category 5: Waste generated in operations (metric tons CO2e)

6.0

(7.53.1.43) Base year Scope 3, Category 9: Downstream transportation and distribution emissions covered by target as % of total base year emissions in Scope 3, Category 9: Downstream transportation and distribution (metric tons CO2e)

3.0

(7.53.1.52) Base year total Scope 3 emissions covered by target as % of total base year emissions in Scope 3 (in all Scope 3 categories)

71.6

(7.53.1.53) Base year emissions covered by target in all selected Scopes as % of total base year emissions in all selected Scopes

100.0

(7.53.1.54) End date of target

12/30/2030

(7.53.1.55) Targeted reduction from base year (%)

14

(7.53.1.56) Total emissions at end date of target covered by target in all selected Scopes (metric tons CO2e)

(7.53.1.59) Scope 3, Category 1: Purchased goods and services emissions in reporting year covered by target (metric tons CO2e)

244032

(7.53.1.62) Scope 3, Category 4: Upstream transportation and distribution emissions in reporting year covered by target (metric tons CO2e)

16240

(7.53.1.63) Scope 3, Category 5: Waste generated in operations emissions in reporting year covered by target (metric tons CO2e)

15530

(7.53.1.67) Scope 3, Category 9: Downstream transportation and distribution emissions in reporting year covered by target (metric tons CO2e)

12034

(7.53.1.76) Total Scope 3 emissions in reporting year covered by target (metric tons CO2e)

287836.000

(7.53.1.77) Total emissions in reporting year covered by target in all selected scopes (metric tons CO2e)

287836.000

(7.53.1.78) Land-related emissions covered by target

Select from:

☑ No, it does not cover any land-related emissions (e.g. non-FLAG SBT)

(7.53.1.79) % of target achieved relative to base year

-8.36

(7.53.1.80) Target status in reporting year

Select from:

Underway

(7.53.1.82) Explain target coverage and identify any exclusions

A complete screening has been carried out with scope 3 GHG emissions accounting for 75% of the total emissions, and a scope 3 target has been set. The GHG emissions inventory covers all relevant GHG emissions, from all relevant sources and subsidiaries. The GHG inventory is composed exclusively of fossil based emissions, and no biogenic emissions have been reported alongside the GHG inventory.

(7.53.1.83) Target objective

the objective of the target is to reduce the indirect GHG emissions related to plastics raw materials, waste generated in operations, and upstream and downstream transportation.

(7.53.1.84) Plan for achieving target, and progress made to the end of the reporting year

Aptar defined appropriate conversion plan and chemical phase out in order to reduce the consumption of non-renewables raw materials, increasing the recycled content and biofeedstock supporting the reduction of GHG emissions. In addition, we planned several partnership with our suppliers along value chain for the optimization of transportations, logistic routes and use of sustainable fuels. From management of waste produced in our operations, our sites increased the best practices for the reuse of waste and increased the recycling scenarios for the non hazardous waste. During the reporting year, for the first time since baseline year, the GHG emissions related to plastics raw materials decreased, thanks to the ecodesign approaches and new sustainable materials used.

(7.53.1.85) Target derived using a sectoral decarbonization approach

Select from:

V No

[Add row]

(7.54.1) Provide details of your targets to increase or maintain low-carbon energy consumption or production.

Row 1

(7.54.1.1) Target reference number

Select from:

✓ Low 1

(7.54.1.2) Date target was set

01/31/2023

(7.54.1.3) Target coverage

Select from:

✓ Organization-wide

(7.54.1.4) Target type: energy carrier

Select from:

✓ Electricity

(7.54.1.5) Target type: activity

Select from:

Production

(7.54.1.6) Target type: energy source

Select from:

☑ Renewable energy source(s) only

(7.54.1.7) End date of base year

01/31/2023

(7.54.1.8) Consumption or production of selected energy carrier in base year (MWh)

316062

(7.54.1.9) % share of low-carbon or renewable energy in base year

57

(7.54.1.10) End date of target

08/18/2030

(7.54.1.11) % share of low-carbon or renewable energy at end date of target

100

(7.54.1.12) % share of low-carbon or renewable energy in reporting year

97

(7.54.1.13) % of target achieved relative to base year

93.02

(7.54.1.14) Target status in reporting year

Select from:

Underway

(7.54.1.16) Is this target part of an emissions target?

Yes, it is supporting the reduction target for Scope 2 market based in 1.5C scenario

(7.54.1.17) Is this target part of an overarching initiative?

Select all that apply

✓ Science Based Targets initiative

(7.54.1.18) Science Based Targets initiative official validation letter

SBTi Certificate_AptarGroup.pdf

(7.54.1.19) Explain target coverage and identify any exclusions

Target covers 100% of electrical energy usage in operations.

(7.54.1.20) Target objective

the objective of the target is to reduce the indirect GHG emissions related to the use of electricity thanks to the increase of renewables sources.

(7.54.1.21) Plan for achieving target, and progress made to the end of the reporting year

Aptar increased the purchase of Renewable Energy Certificates to 97% of coverage and in parallel, we have entered into contract of virtual PPA with solar farm for a portion of EMEA electrical energy uses.

[Add row]

(7.54.2) Provide details of any other climate-related targets, including methane reduction targets.

Row 1

(7.54.2.1) Target reference number

Select from:

✓ Oth 1

(7.54.2.2) Date target was set

12/31/2019

(7.54.2.3) Target coverage

Select from: ✓ Organization-wide
(7.54.2.4) Target type: absolute or intensity
Select from: ☑ Intensity
(7.54.2.5) Target type: category & Metric (target numerator if reporting an intensity target)
Energy productivity ☑ megawatt hours (MWh)
(7.54.2.6) Target denominator (intensity targets only)
Select from: ✓ unit of production
(7.54.2.7) End date of base year
12/31/2019
(7.54.2.8) Figure or percentage in base year
6.7
(7.54.2.9) End date of target

12/30/2025

(7.54.2.10) Figure or percentage at end of date of target

5.7

(7.54.2.11) Figure or percentage in reporting year

(7.54.2.12) % of target achieved relative to base year

120.0000000000

(7.54.2.13) Target status in reporting year

Select from:

Achieved

(7.54.2.15) Is this target part of an emissions target?

Yes, it is supporting the market based scope 2 reduction target

(7.54.2.16) Is this target part of an overarching initiative?

Select all that apply

✓ No, it's not part of an overarching initiative

(7.54.2.18) Please explain target coverage and identify any exclusions

Target covers the entire organization with all operations.

(7.54.2.19) Target objective

the objective of the target is to reduce the indirect GHG emissions related to the use of electricity thanks to the implementation of energy conservation measures.

(7.54.2.21) List the actions which contributed most to achieving this target

Energy conservation measures related to the use of electrical presses for the injection molding, optimization of HVAC system, compressed air uses and compressors. [Add row]

(7.54.3) Provide details of your net-zero target(s).

Row 1

(7.54.3.1) Target reference number

Select from:

✓ NZ1

(7.54.3.2) Date target was set

01/31/2023

(7.54.3.3) Target Coverage

Select from:

✓ Organization-wide

(7.54.3.4) Targets linked to this net zero target

Select all that apply

✓ Abs1

(7.54.3.5) End date of target for achieving net zero

12/30/2030

(7.54.3.6) Is this a science-based target?

Select from:

✓ Yes, and this target has been approved by the Science Based Targets initiative

(7.54.3.7) Science Based Targets initiative official validation letter

SBTi Certificate_AptarGroup.pdf

(7.54.3.8) Scopes

Select all that apply

- ✓ Scope 1
- ✓ Scope 2

(7.54.3.9) Greenhouse gases covered by target

Select all that apply

- ✓ Methane (CH4)
- ✓ Nitrous oxide (N20)
- ✓ Carbon dioxide (CO2)
- ✓ Perfluorocarbons (PFCs)
- ☑ Hydrofluorocarbons (HFCs)

- ✓ Sulphur hexafluoride (SF6)
- ✓ Nitrogen trifluoride (NF3)

(7.54.3.10) Explain target coverage and identify any exclusions

The target cover all scope 1 and 2 emissions in the company's GHG inventory, developed in line with the GHG Protocol Corporate Standardard. The GHG emissions inventory covers all relevant GHG emissions, from all relevant sources and subsidiaries. The GHG inventory is composed exclusively of fossil based emissions, and no biogenic emissions have been reported alongside the GHG inventory.

(7.54.3.11) Target objective

the objective of the target is to reduce the GHG emissions and energy consumption, with an increase of renewables.

(7.54.3.12) Do you intend to neutralize any residual emissions with permanent carbon removals at the end of the target?

Select from:

Unsure

(7.54.3.13) Do you plan to mitigate emissions beyond your value chain?

Select from:

✓ No, but we plan to within the next two years

(7.54.3.17) Target status in reporting year

(7.54.3.19) Process for reviewing target

Aptar defined an internal process for the annual review of target achievement, we monitor performances and our cabon transition plan progress with external energy data assurance in compliance with ISO 14064-1 standard.

[Add row]

(7.55.1) Identify the total number of initiatives at each stage of development, and for those in the implementation stages, the estimated CO2e savings.

	Number of initiatives	Total estimated annual CO2e savings in metric tonnes CO2e (only for rows marked *)
Under investigation	18	`Numeric input
To be implemented	7	85
Implementation commenced	1	5
Implemented	7	986
Not to be implemented	5	`Numeric input

[Fixed row]

(7.55.2) Provide details on the initiatives implemented in the reporting year in the table below.

Row 1

(7.55.2.1) Initiative category & Initiative type

Energy efficiency in buildings

Lighting

(7.55.2.2) Estimated annual CO2e savings (metric tonnes CO2e)

15

(7.55.2.3) Scope(s) or Scope 3 category(ies) where emissions savings occur

Select all that apply

- ✓ Scope 2 (location-based)
- ✓ Scope 2 (market-based)

(7.55.2.4) Voluntary/Mandatory

Select from:

✓ Voluntary

(7.55.2.5) Annual monetary savings (unit currency – as specified in C0.4)

240000

(7.55.2.6) Investment required (unit currency – as specified in C0.4)

200000

(7.55.2.7) Payback period

Select from:

(7.55.2.8) Estimated lifetime of the initiative

Select from:

(7.55.2.9) Comment

No Comment

Row 2

(7.55.2.1) Initiative category & Initiative type

Energy efficiency in buildings

✓ Maintenance program

(7.55.2.2) Estimated annual CO2e savings (metric tonnes CO2e)

120

(7.55.2.3) Scope(s) or Scope 3 category(ies) where emissions savings occur

Select all that apply

- ✓ Scope 1
- ✓ Scope 2 (location-based)
- ✓ Scope 2 (market-based)

(7.55.2.4) Voluntary/Mandatory

Select from:

✓ Voluntary

(7.55.2.5) Annual monetary savings (unit currency – as specified in C0.4)

500000

(7.55.2.6) Investment required (unit currency – as specified in C0.4)

(7.55.2.7) Payback period

Select from:

(7.55.2.8) Estimated lifetime of the initiative

Select from:

(7.55.2.9) Comment

No Comment

Row 3

(7.55.2.1) Initiative category & Initiative type

Energy efficiency in production processes

✓ Waste heat recovery

(7.55.2.2) Estimated annual CO2e savings (metric tonnes CO2e)

200

(7.55.2.3) Scope(s) or Scope 3 category(ies) where emissions savings occur

Select all that apply

✓ Scope 1

(7.55.2.4) Voluntary/Mandatory

Select from: ☑ Voluntary
(7.55.2.5) Annual monetary savings (unit currency – as specified in C0.4)
145999
(7.55.2.6) Investment required (unit currency – as specified in C0.4)
123000
(7.55.2.7) Payback period
Select from: ✓ 1-3 years
(7.55.2.8) Estimated lifetime of the initiative
Select from: ☑ 6-10 years
(7.55.2.9) Comment
No Comment
Row 4
(7.55.2.1) Initiative category & Initiative type
Low-carbon energy consumption ☑ Solar PV

(7.55.2.2) Estimated annual CO2e savings (metric tonnes CO2e)

(7.55.2.3) Scope(s) or Scope 3 category(ies) where emissions savings occur

Select all that apply

✓ Scope 2 (location-based)

✓ Scope 2 (market-based)

(7.55.2.4) Voluntary/Mandatory

Select from:

✓ Voluntary

(7.55.2.5) Annual monetary savings (unit currency – as specified in C0.4)

200000

(7.55.2.6) Investment required (unit currency – as specified in C0.4)

1415000

(7.55.2.7) Payback period

Select from:

(7.55.2.8) Estimated lifetime of the initiative

Select from:

✓ 11-15 years

(7.55.2.9) Comment

No Comment

Row 5

(7.55.2.1) Initiative category & Initiative type

Energy efficiency in buildings

☑ Heating, Ventilation and Air Conditioning (HVAC)

(7.55.2.2) Estimated annual CO2e savings (metric tonnes CO2e)

123

(7.55.2.3) Scope(s) or Scope 3 category(ies) where emissions savings occur

Select all that apply

- ✓ Scope 1
- ✓ Scope 2 (location-based)
- ✓ Scope 2 (market-based)

(7.55.2.4) Voluntary/Mandatory

Select from:

✓ Voluntary

(7.55.2.5) Annual monetary savings (unit currency – as specified in C0.4)

156000

(7.55.2.6) Investment required (unit currency – as specified in C0.4)

730538

(7.55.2.7) Payback period

Select from:

(7.55.2.8) Estimated lifetime of the initiative

Select from:

(7.55.2.9) Comment

No Comment

Row 6

(7.55.2.1) Initiative category & Initiative type

Energy efficiency in production processes

✓ Compressed air

(7.55.2.2) Estimated annual CO2e savings (metric tonnes CO2e)

23

(7.55.2.3) Scope(s) or Scope 3 category(ies) where emissions savings occur

Select all that apply

- ✓ Scope 2 (location-based)
- ✓ Scope 2 (market-based)

(7.55.2.4) Voluntary/Mandatory

Select from:

Voluntary

(7.55.2.5) Annual monetary savings (unit currency – as specified in C0.4)

(7.55.2.6) Investment required (unit currency – as specified in C0.4)

230000

(7.55.2.7) Payback period

Select from:

(7.55.2.8) Estimated lifetime of the initiative

Select from:

(7.55.2.9) Comment

No Comment

Row 7

(7.55.2.1) Initiative category & Initiative type

Energy efficiency in production processes

✓ Process optimization

(7.55.2.2) Estimated annual CO2e savings (metric tonnes CO2e)

500

(7.55.2.3) Scope(s) or Scope 3 category(ies) where emissions savings occur

Select all that apply

✓ Scope 1

(7.55.2.4) Voluntary/Mandatory

Select from:

✓ Voluntary

(7.55.2.5) Annual monetary savings (unit currency – as specified in C0.4)

400000

(7.55.2.6) Investment required (unit currency – as specified in C0.4)

1000000

(7.55.2.7) Payback period

Select from:

✓ 4-10 years

(7.55.2.8) Estimated lifetime of the initiative

Select from:

(7.55.2.9) Comment

No Comment [Add row]

(7.55.3) What methods do you use to drive investment in emissions reduction activities?

Row 1

(7.55.3.1) Method

Select from:

✓ Dedicated budget for energy efficiency

(7.55.3.2) Comment

Aptar sites integrated the energy efficiency budget in the standard budget, so, these projects must go through the same approval process as all others requiring capital investment.

Row 3

(7.55.3.1) Method

Select from:

✓ Other :Rebates

(7.55.3.2) Comment

Aptar sites often rebates or capital investment incentives to drive investment in their emission reduction initiatives. Aptar tax department surveys potential rebates for our locations on an ongoing basis to encourage projects.

Row 4

(7.55.3.1) Method

Select from:

☑ Employee engagement

(7.55.3.2) Comment

Aptar sites integrated energy team as part of EHS&S team. In particular the sites that achieved certification ISO 50001 appointed an energy team dedicated to the management of energy efficiency actions to reduce the main energy uses and consumption.

Row 5

(7.55.3.1) Method

Select from:

✓ Lower return on investment (ROI) specification

(7.55.3.2) Comment

Aptar finance department identified appropriate requirements (based on the Capex amount and payback time) in order to approve energy efficiency actions and projects at site level. It's preferable, for the actions that require large investment, to respect a payback of 3 years. That said, however, the EHS and Global Sustainability Team leaders are involved in the project selection when the project involves energy/emissions reduction, and first evaluate a project proposal to be sure it aligns with our science based targets. If projects have a significant effect on our ability to make improvements toward achieving our SBTs, but have a longer return on investment period, they are still considered for funding approval. In this case, a payback of 3 years is not a firm requirement.

Row 6

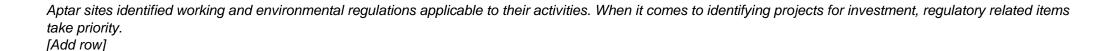
(7.55.3.1) Method

Select from:

✓ Internal incentives/recognition programs

(7.55.3.2) Comment

As sustainability is integrated into our business model, we do not have a dedicated sustainability budget and therefore these projects must go through the same approval process as all others requiring capital investment. Our business leaders must identify the projects that will best align to the overall sustainability strategy and present the business case accordingly. As we have so many internal recognition programs, projects are approved and executed as part of our operating plan.


Row 7

(7.55.3.1) Method

Select from:

☑ Compliance with regulatory requirements/standards

(7.55.3.2) Comment

(7.73.2) Complete the following table for the goods/services for which you want to provide data.

Row 1

(7.73.2.1) Requesting member

Select from:

(7.73.2.2) Name of good/ service

Dispensing systems provided to our CDP Supply Chain requesting members customers

(7.73.2.3) Description of good/ service

Products under investigation are closures, pumps, valves, dispensers product families purchased by customers.

(7.73.2.4) Type of product

Select from:

✓ Final

(7.73.2.5) Unique product identifier

148 tons of finished products produced and sold.

(7.73.2.6) Total emissions in kg CO2e per unit

3.2

(7.73.2.7) ±% change from previous figure supplied

(7.73.2.8) Date of previous figure supplied

12/30/2022

(7.73.2.9) Explanation of change

First year on which we are calculating KPIs referred to tons CO2e per tons of finished product produced and sold to customer. Scope 3 emissions based on the raw materials category.

(7.73.2.10) Methods used to estimate lifecycle emissions

Select from:

☑ ISO 14040 & 14044

Row 2

(7.73.2.1) Requesting member

Select from:

(7.73.2.2) Name of good/ service

Dispensing systems provided to our CDP Supply Chain requesting members customers

(7.73.2.3) Description of good/ service

Products under investigation are closures, pumps, valves, dispensers product families purchased by customers.

(7.73.2.4) Type of product

Select from:

✓ Final

(7.73.2.5) Unique product identifier

2292 tons of finished products produced and sold.

(7.73.2.6) Total emissions in kg CO2e per unit

2.16

(7.73.2.7) ±% change from previous figure supplied

0

(7.73.2.8) Date of previous figure supplied

12/30/2022

(7.73.2.9) Explanation of change

First year on which we are calculating KPIs referred to tons CO2e per tons of finished product produced and sold to customer. Scope 3 emissions based on the raw materials category.

(7.73.2.10) Methods used to estimate lifecycle emissions

Select from:

✓ ISO 14040 & 14044

Row 3

(7.73.2.1) Requesting member

Select from:

(7.73.2.2) Name of good/ service

Dispensing systems provided to our CDP Supply Chain requesting members customers

(7.73.2.3) Description of good/ service

Products under investigation are closures, pumps, valves, dispensers product families purchased by customers.

(7.73.2.4) Type of product

Select from:

✓ Final

(7.73.2.5) Unique product identifier

1916 tons of finished products produced and sold.

(7.73.2.6) Total emissions in kg CO2e per unit

2.19

(7.73.2.7) ±% change from previous figure supplied

0

(7.73.2.8) Date of previous figure supplied

12/30/2022

(7.73.2.9) Explanation of change

First year on which we are calculating KPIs referred to tons CO2e per tons of finished product produced and sold to customer. Scope 3 emissions based on the raw materials category.

(7.73.2.10) Methods used to estimate lifecycle emissions

Select from:

✓ ISO 14040 & 14044

Row 4

(7.73.2.1) Requesting member

Select from:

(7.73.2.2) Name of good/ service

Dispensing systems provided to our CDP Supply Chain requesting members customers

(7.73.2.3) Description of good/ service

Products under investigation are closures, pumps, valves, dispensers product families purchased by customers.

(7.73.2.4) Type of product

Select from:

✓ Final

(7.73.2.5) Unique product identifier

82 tons of finished products produced and sold.

(7.73.2.6) Total emissions in kg CO2e per unit

4.5

(7.73.2.7) ±% change from previous figure supplied

0

(7.73.2.8) Date of previous figure supplied

12/30/2022

(7.73.2.9) Explanation of change

First year on which we are calculating KPIs referred to tons CO2e per tons of finished product produced and sold to customer. Scope 3 emissions based on the raw materials category.

(7.73.2.10) Methods used to estimate lifecycle emissions

Select from:

✓ ISO 14040 & 14044

Row 5

(7.73.2.1) Requesting member

Select from:

(7.73.2.2) Name of good/ service

Dispensing systems provided to our CDP Supply Chain requesting members customers

(7.73.2.3) Description of good/ service

Products under investigation are closures, pumps, valves, dispensers product families purchased by customers.

(7.73.2.4) Type of product

Select from:

✓ Final

(7.73.2.5) Unique product identifier

486 tons of finished products produced and sold.

(7.73.2.6) Total emissions in kg CO2e per unit

2.8

(7.73.2.7) ±% change from previous figure supplied

0

(7.73.2.8) Date of previous figure supplied

12/30/2022

(7.73.2.9) Explanation of change

First year on which we are calculating KPIs referred to tons CO2e per tons of finished product produced and sold to customer. Scope 3 emissions based on the raw materials category.

(7.73.2.10) Methods used to estimate lifecycle emissions

Select from:

✓ ISO 14040 & 14044

Row 6

(7.73.2.1) Requesting member

Select from:

(7.73.2.2) Name of good/ service

Dispensing systems provided to our CDP Supply Chain requesting members customers

(7.73.2.3) Description of good/ service

Products under investigation are closures, pumps, valves, dispensers product families purchased by customers.

(7.73.2.4) Type of product

Select from:

✓ Final

(7.73.2.5) Unique product identifier

4533 tons of finished products produced and sold.

(7.73.2.6) Total emissions in kg CO2e per unit

2.2

(7.73.2.7) ±% change from previous figure supplied

0

(7.73.2.8) Date of previous figure supplied

12/30/2022

(7.73.2.9) Explanation of change

First year on which we are calculating KPIs referred to tons CO2e per tons of finished product produced and sold to customer. Scope 3 emissions based on the raw materials category.

(7.73.2.10) Methods used to estimate lifecycle emissions

Select from:

✓ ISO 14040 & 14044

Row 7

(7.73.2.1) Requesting member

Select from:

(7.73.2.2) Name of good/ service

Dispensing systems provided to our CDP Supply Chain requesting members customers

(7.73.2.3) Description of good/ service

Products under investigation are closures, pumps, valves, dispensers product families purchased by customers.

(7.73.2.4) Type of product

Select from:

✓ Final

(7.73.2.5) Unique product identifier

312 tons of finished products produced and sold.

(7.73.2.6) Total emissions in kg CO2e per unit

2.59

(7.73.2.7) ±% change from previous figure supplied

0

(7.73.2.8) Date of previous figure supplied

12/30/2022

(7.73.2.9) Explanation of change

First year on which we are calculating KPIs referred to tons CO2e per tons of finished product produced and sold to customer. Scope 3 emissions based on the raw materials category.

(7.73.2.10) Methods used to estimate lifecycle emissions

Select from:

✓ ISO 14040 & 14044

Row 8

(7.73.2.1) Requesting member

Select from:

(7.73.2.2) Name of good/ service

Dispensing systems provided to our CDP Supply Chain requesting members customers

(7.73.2.3) Description of good/ service

Products under investigation are closures, pumps, valves, dispensers product families purchased by customers.

(7.73.2.4) Type of product

Select from:

✓ Final

(7.73.2.5) Unique product identifier

881 tons of finished products produced and sold

(7.73.2.6) Total emissions in kg CO2e per unit

1.75

(7.73.2.7) ±% change from previous figure supplied

0

(7.73.2.8) Date of previous figure supplied

12/30/2022

(7.73.2.9) Explanation of change

First year on which we are calculating KPIs referred to tons CO2e per tons of finished product produced and sold to customer. Scope 3 emissions based on the raw materials category.

(7.73.2.10) Methods used to estimate lifecycle emissions

Select from:

✓ ISO 14040 & 14044

Row 9

(7.73.2.1) Requesting member

Select from:

(7.73.2.2) Name of good/ service

Dispensing systems provided to our CDP Supply Chain requesting members customers

(7.73.2.3) Description of good/ service

Products under investigation are closures, pumps, valves, dispensers product families purchased by customers.

(7.73.2.4) Type of product

Select from:

✓ Final

(7.73.2.5) Unique product identifier

99 tons of finished products produced and sold

(7.73.2.6) Total emissions in kg CO2e per unit

6.7

(7.73.2.7) ±% change from previous figure supplied

0

(7.73.2.8) Date of previous figure supplied

(7.73.2.9) Explanation of change

First year on which we are calculating KPIs referred to tons CO2e per tons of finished product produced and sold to customer. Scope 3 emissions based on the raw materials category.

(7.73.2.10) Methods used to estimate lifecycle emissions

Select from:

✓ ISO 14040 & 14044

Row 10

(7.73.2.1) Requesting member

Select from:

(7.73.2.2) Name of good/ service

Dispensing systems provided to our CDP Supply Chain requesting members customers

(7.73.2.3) Description of good/ service

Products under investigation are closures, pumps, valves, dispensers product families purchased by customers.

(7.73.2.4) Type of product

Select from:

✓ Final

(7.73.2.5) Unique product identifier

368 tons of finished products produced and sold

(7.73.2.6) Total emissions in kg CO2e per unit

(7.73.2.7) ±% change from previous figure supplied

0

(7.73.2.8) Date of previous figure supplied

12/30/2022

(7.73.2.9) Explanation of change

First year on which we are calculating KPIs referred to tons CO2e per tons of finished product produced and sold to customer. Scope 3 emissions based on the raw materials category.

(7.73.2.10) Methods used to estimate lifecycle emissions

Select from:

✓ ISO 14040 & 14044

Row 11

(7.73.2.1) Requesting member

Select from:

(7.73.2.2) Name of good/ service

Dispensing systems provided to our CDP Supply Chain requesting members customers

(7.73.2.3) Description of good/ service

Products under investigation are closures, pumps, valves, dispensers product families purchased by customers.

(7.73.2.4) Type of product

Sel	lect	from.	•
\mathbf{U}	CUL	II OIII.	

✓ Final

(7.73.2.5) Unique product identifier

13 tons of finished products produced and sold

(7.73.2.6) Total emissions in kg CO2e per unit

2.22

(7.73.2.7) ±% change from previous figure supplied

0

(7.73.2.8) Date of previous figure supplied

12/30/2022

(7.73.2.9) Explanation of change

First year on which we are calculating KPIs referred to tons CO2e per tons of finished product produced and sold to customer. Scope 3 emissions based on the raw materials category.

(7.73.2.10) Methods used to estimate lifecycle emissions

Select from:

☑ ISO 14040 & 14044

[Add row]

(7.73.3) Complete the following table with data for lifecycle stages of your goods and/or services.

Row 1

(7.73.3.1) Requesting member

Select from:

(7.73.3.2) Name of good/ service

Dispensing systems provided to CDP Supply Chain requesting member customers

(7.73.3.3) Scope

Select from:

✓ Scope 1, 2 & 3

(7.73.3.4) Lifecycle stage

Select from:

✓ Cradle to gate

(7.73.3.5) Emissions at the lifecycle stage in kg CO2e per unit

0.004

(7.73.3.6) Lifecycle stage under your ownership or control

Select from:

✓ No

(7.73.3.7) Type of data used

Select from:

✓ Primary and secondary

(7.73.3.8) Data quality

Inventory data collected for the life cycle stages are in compliance with quality criteria such as temporal, geographical, and technological representativeness. Completeness and reliability in compliance with GHG Protocol Life Cycle Accounting Reporting Standard

(7.73.3.9) If applicable, describe the verification/assurance of the product emissions data

In current reporting year we completed energy data assurance for our operations including Scope 1, Scope 2 and Scope 3 data in compliance with standard ISO 14064-1 and GHG Protocol Product Accounting & Reporting Standard. Thanks to this assurance we are able to allocate GHGs emissions from each plant to our finished products produced for our customers. We followed Organizational-LCA method that allowed the identification and quantification of our GHGs emission to be allocated to product families produced in each operations. This new approach ensure much more reliability for the product emissions allocation related to Scope 1, Scope 2 and Scope 3. Please note that we assured the following Scope 3 data category: purchased goods and materials, upstream transportation, downstream transportation, liquid and solid waste, business travel. The above Scope 3 data emissions, in addition to Scope 1 and Scope 2 for each plant, ensure analysis from cradle to gate.

Row 2

(7.73.3.1) Requesting member

Select from:

(7.73.3.2) Name of good/ service

Dispensing systems provided to our CDP Supply Chain requesting members customers

(7.73.3.3) Scope

Select from:

✓ Scope 1, 2 & 3

(7.73.3.4) Lifecycle stage

Select from:

✓ Cradle to gate

(7.73.3.5) Emissions at the lifecycle stage in kg CO2e per unit

0.02

(7.73.3.6) Lifecycle stage under your ownership or control

Select from:

✓ No

(7.73.3.7) Type of data used

Select from:

✓ Primary and secondary

(7.73.3.8) Data quality

Inventory data collected for the life cycle stages are in compliance with quality criteria such as temporal, geographical, and technological representativeness. Completeness and reliability in compliance with GHG Protocol Life Cycle Accounting Reporting Standard

(7.73.3.9) If applicable, describe the verification/assurance of the product emissions data

In current reporting year we completed energy data assurance for our operations including Scope 1, Scope 2 and Scope 3 data in compliance with standard ISO 14064-1 and GHG Protocol Product Accounting & Reporting Standard. Thanks to this assurance we are able to allocate GHGs emissions from each plant to our finished products produced for our customers. We followed Organizational-LCA method that allowed the identification and quantification of our GHGs emission to be allocated to product families produced in each operations. This new approach ensure much more reliability for the product emissions allocation related to Scope 1, Scope 2 and Scope 3. Please note that we assured the following Scope 3 data category: purchased goods and materials, upstream transportation, downstream transportation, liquid and solid waste, business travel. The above Scope 3 data emissions, in addition to Scope 1 and Scope 2 for each plant, ensure analysis from cradle to gate.

Row 3

(7.73.3.1) Requesting member

Select from:

(7.73.3.2) Name of good/ service

Dispensing systems provided to our CDP Supply Chain requesting members customers

(7.73.3.3) Scope

Select from:

✓ Scope 1, 2 & 3

(7.73.3.4) Lifecycle stage

Select from:

✓ Cradle to gate

(7.73.3.5) Emissions at the lifecycle stage in kg CO2e per unit

0.005

(7.73.3.6) Lifecycle stage under your ownership or control

Select from:

✓ No

(7.73.3.7) Type of data used

Select from:

✓ Primary and secondary

(7.73.3.8) Data quality

Inventory data collected for the life cycle stages are in compliance with quality criteria such as temporal, geographical, and technological representativeness. Completeness and reliability in compliance with GHG Protocol Life Cycle Accounting Reporting Standard

(7.73.3.9) If applicable, describe the verification/assurance of the product emissions data

In current reporting year we completed energy data assurance for our operations including Scope 1, Scope 2 and Scope 3 data in compliance with standard ISO 14064-1 and GHG Protocol Product Accounting & Reporting Standard. Thanks to this assurance we are able to allocate GHGs emissions from each plant to our finished products produced for our customers. We followed Organizational-LCA method that allowed the identification and quantification of our GHGs emission to be allocated to product families produced in each operations. This new approach ensure much more reliability for the product emissions allocation related to Scope 1, Scope 2 and Scope 3. Please note that we assured the following Scope 3 data category: purchased goods and materials, upstream transportation, downstream transportation, liquid and solid waste, business travel. The above Scope 3 data emissions, in addition to Scope 1 and Scope 2 for each plant, ensure analysis from cradle to gate.

Row 4

(7.73.3.1) Requesting member

(7.73.3.2) Name of good/ service

Dispensing systems provided to our CDP Supply Chain requesting members customers

(7.73.3.3) Scope

Select from:

✓ Scope 1, 2 & 3

(7.73.3.4) Lifecycle stage

Select from:

✓ Cradle to gate

(7.73.3.5) Emissions at the lifecycle stage in kg CO2e per unit

0.006

(7.73.3.6) Lifecycle stage under your ownership or control

Select from:

✓ No

(7.73.3.7) Type of data used

Select from:

✓ Primary and secondary

(7.73.3.8) Data quality

Inventory data collected for the life cycle stages are in compliance with quality criteria such as temporal, geographical, and technological representativeness. Completeness and reliability in compliance with GHG Protocol Life Cycle Accounting Reporting Standard

(7.73.3.9) If applicable, describe the verification/assurance of the product emissions data

In current reporting year we completed energy data assurance for our operations including Scope 1, Scope 2 and Scope 3 data in compliance with standard ISO 14064-1 and GHG Protocol Product Accounting & Reporting Standard. Thanks to this assurance we are able to allocate GHGs emissions from each plant to our finished products produced for our customers. We followed Organizational-LCA method that allowed the identification and quantification of our GHGs emission to be allocated to product families produced in each operations. This new approach ensure much more reliability for the product emissions allocation related to Scope 1, Scope 2 and Scope 3. Please note that we assured the following Scope 3 data category: purchased goods and materials, upstream transportation, downstream transportation, liquid and solid waste, business travel. The above Scope 3 data emissions, in addition to Scope 1 and Scope 2 for each plant, ensure analysis from cradle to gate.

Row 5

(7.73.3.1) Requesting member

Select from:

(7.73.3.2) Name of good/ service

Dispensing systems provided to our CDP Supply Chain requesting members customers

(7.73.3.3) Scope

Select from:

✓ Scope 1, 2 & 3

(7.73.3.4) Lifecycle stage

Select from:

✓ Cradle to gate

(7.73.3.5) Emissions at the lifecycle stage in kg CO2e per unit

0.017

(7.73.3.6) Lifecycle stage under your ownership or control

Select from:

✓ No

(7.73.3.7) Type of data used

Select from:

✓ Primary and secondary

(7.73.3.8) Data quality

Inventory data collected for the life cycle stages are in compliance with quality criteria such as temporal, geographical, and technological representativeness. Completeness and reliability in compliance with GHG Protocol Life Cycle Accounting Reporting Standard

(7.73.3.9) If applicable, describe the verification/assurance of the product emissions data

In current reporting year we completed energy data assurance for our operations including Scope 1, Scope 2 and Scope 3 data in compliance with standard ISO 14064-1 and GHG Protocol Product Accounting & Reporting Standard. Thanks to this assurance we are able to allocate GHGs emissions from each plant to our finished products produced for our customers. We followed Organizational-LCA method that allowed the identification and quantification of our GHGs emission to be allocated to product families produced in each operations. This new approach ensure much more reliability for the product emissions allocation related to Scope 1, Scope 2 and Scope 3. Please note that we assured the following Scope 3 data category: purchased goods and materials, upstream transportation, downstream transportation, liquid and solid waste, business travel. The above Scope 3 data emissions, in addition to Scope 1 and Scope 2 for each plant, ensure analysis from cradle to gate.

Row 6

(7.73.3.1) Requesting member

Select from:

(7.73.3.2) Name of good/ service

Dispensing systems provided to our CDP Supply Chain requesting members customers

(7.73.3.3) Scope

Select from:

✓ Scope 1, 2 & 3

(7.73.3.4) Lifecycle stage

Select from:

✓ Cradle to gate

(7.73.3.5) Emissions at the lifecycle stage in kg CO2e per unit

0.01

(7.73.3.6) Lifecycle stage under your ownership or control

Select from:

✓ No

(7.73.3.7) Type of data used

Select from:

✓ Primary and secondary

(7.73.3.8) Data quality

Inventory data collected for the life cycle stages are in compliance with quality criteria such as temporal, geographical, and technological representativeness. Completeness and reliability in compliance with GHG Protocol Life Cycle Accounting Reporting Standard

(7.73.3.9) If applicable, describe the verification/assurance of the product emissions data

In current reporting year we completed energy data assurance for our operations including Scope 1, Scope 2 and Scope 3 data in compliance with standard ISO 14064-1 and GHG Protocol Product Accounting & Reporting Standard. Thanks to this assurance we are able to allocate GHGs emissions from each plant to our finished products produced for our customers. We followed Organizational-LCA method that allowed the identification and quantification of our GHGs emission to be allocated to product families produced in each operations. This new approach ensure much more reliability for the product emissions allocation related to Scope 1, Scope 2 and Scope 3. Please note that we assured the following Scope 3 data category: purchased goods and materials, upstream transportation, downstream transportation, liquid and solid waste, business travel. The above Scope 3 data emissions, in addition to Scope 1 and Scope 2 for each plant, ensure analysis from cradle to gate.

Row 7

(7.73.3.1) Requesting member

Select from:

(7.73.3.2) Name of good/ service

Dispensing systems provided to our CDP Supply Chain requesting members customers

(7.73.3.3) Scope

Select from:

✓ Scope 1, 2 & 3

(7.73.3.4) Lifecycle stage

Select from:

✓ Cradle to gate

(7.73.3.5) Emissions at the lifecycle stage in kg CO2e per unit

0.01

(7.73.3.6) Lifecycle stage under your ownership or control

Select from:

✓ No

(7.73.3.7) Type of data used

Select from:

✓ Primary and secondary

(7.73.3.8) Data quality

Inventory data collected for the life cycle stages are in compliance with quality criteria such as temporal, geographical, and technological representativeness. Completeness and reliability in compliance with GHG Protocol Life Cycle Accounting Reporting Standard

(7.73.3.9) If applicable, describe the verification/assurance of the product emissions data

In current reporting year we completed energy data assurance for our operations including Scope 1, Scope 2 and Scope 3 data in compliance with standard ISO 14064-1 and GHG Protocol Product Accounting & Reporting Standard. Thanks to this assurance we are able to allocate GHGs emissions from each plant to our finished products produced for our customers. We followed Organizational-LCA method that allowed the identification and quantification of our GHGs emission to be allocated to product families produced in each operations. This new approach ensure much more reliability for the product emissions allocation related to Scope 1, Scope 2 and Scope 3. Please note that we assured the following Scope 3 data category: purchased goods and materials, upstream transportation, downstream transportation, liquid and solid waste, business travel. The above Scope 3 data emissions, in addition to Scope 1 and Scope 2 for each plant, ensure analysis from cradle to gate.

Row 8

(7.73.3.1) Requesting member

Select from:

(7.73.3.2) Name of good/ service

Dispensing systems provided to our CDP Supply Chain requesting members customers

(7.73.3.3) Scope

Select from:

✓ Scope 1, 2 & 3

(7.73.3.4) Lifecycle stage

Select from:

✓ Cradle to gate

(7.73.3.5) Emissions at the lifecycle stage in kg CO2e per unit

0.004

(7.73.3.6) Lifecycle stage under your ownership or control

Select from:

✓ No

(7.73.3.7) Type of data used

Select from:

✓ Primary and secondary

(7.73.3.8) Data quality

Inventory data collected for the life cycle stages are in compliance with quality criteria such as temporal, geographical, and technological representativeness. Completeness and reliability in compliance with GHG Protocol Life Cycle Accounting Reporting Standard

(7.73.3.9) If applicable, describe the verification/assurance of the product emissions data

In current reporting year we completed energy data assurance for our operations including Scope 1, Scope 2 and Scope 3 data in compliance with standard ISO 14064-1 and GHG Protocol Product Accounting & Reporting Standard. Thanks to this assurance we are able to allocate GHGs emissions from each plant to our finished products produced for our customers. We followed Organizational-LCA method that allowed the identification and quantification of our GHGs emission to be allocated to product families produced in each operations. This new approach ensure much more reliability for the product emissions allocation related to Scope 1, Scope 2 and Scope 3. Please note that we assured the following Scope 3 data category: purchased goods and materials, upstream transportation, downstream transportation, liquid and solid waste, business travel. The above Scope 3 data emissions, in addition to Scope 1 and Scope 2 for each plant, ensure analysis from cradle to gate.

Row 9

(7.73.3.1) Requesting member

Select from:

(7.73.3.2) Name of good/ service

Dispensing systems provided to our CDP Supply Chain requesting members customers

(7.73.3.3) Scope

Select from:

✓ Scope 1, 2 & 3

(7.73.3.4) Lifecycle stage

Select from:

✓ Cradle to gate

(7.73.3.5) Emissions at the lifecycle stage in kg CO2e per unit

0.018

(7.73.3.6) Lifecycle stage under your ownership or control

Select from:

✓ No

(7.73.3.7) Type of data used

Select from:

✓ Primary and secondary

(7.73.3.8) Data quality

Inventory data collected for the life cycle stages are in compliance with quality criteria such as temporal, geographical, and technological representativeness. Completeness and reliability in compliance with GHG Protocol Life Cycle Accounting Reporting Standard

(7.73.3.9) If applicable, describe the verification/assurance of the product emissions data

In current reporting year we completed energy data assurance for our operations including Scope 1, Scope 2 and Scope 3 data in compliance with standard ISO 14064-1 and GHG Protocol Product Accounting & Reporting Standard. Thanks to this assurance we are able to allocate GHGs emissions from each plant to our finished products produced for our customers. We followed Organizational-LCA method that allowed the identification and quantification of our GHGs emission to be allocated to product families produced in each operations. This new approach ensure much more reliability for the product emissions allocation related to Scope 1, Scope 2 and Scope 3. Please note that we assured the following Scope 3 data category: purchased goods and materials, upstream transportation, downstream transportation, liquid and solid waste, business travel. The above Scope 3 data emissions, in addition to Scope 1 and Scope 2 for each plant, ensure analysis from cradle to gate.

Row 10

(7.73.3.1) Requesting member

(7.73.3.2) Name of good/ service

Dispensing systems provided to our CDP Supply Chain requesting members customers

(7.73.3.3) Scope

Select from:

✓ Scope 1, 2 & 3

(7.73.3.4) Lifecycle stage

Select from:

✓ Cradle to gate

(7.73.3.5) Emissions at the lifecycle stage in kg CO2e per unit

0.009

(7.73.3.6) Lifecycle stage under your ownership or control

Select from:

✓ No

(7.73.3.7) Type of data used

Select from:

✓ Primary and secondary

(7.73.3.8) Data quality

Inventory data collected for the life cycle stages are in compliance with quality criteria such as temporal, geographical, and technological representativeness. Completeness and reliability in compliance with GHG Protocol Life Cycle Accounting Reporting Standard

(7.73.3.9) If applicable, describe the verification/assurance of the product emissions data

In current reporting year we completed energy data assurance for our operations including Scope 1, Scope 2 and Scope 3 data in compliance with standard ISO 14064-1 and GHG Protocol Product Accounting & Reporting Standard. Thanks to this assurance we are able to allocate GHGs emissions from each plant to our finished products produced for our customers. We followed Organizational-LCA method that allowed the identification and quantification of our GHGs emission to be allocated to product families produced in each operations. This new approach ensure much more reliability for the product emissions allocation related to Scope 1, Scope 2 and Scope 3. Please note that we assured the following Scope 3 data category: purchased goods and materials, upstream transportation, downstream transportation, liquid and solid waste, business travel. The above Scope 3 data emissions, in addition to Scope 1 and Scope 2 for each plant, ensure analysis from cradle to gate.

Row 11

(7.73.3.1) Requesting member

Select from:

(7.73.3.2) Name of good/ service

Dispensing systems provided to our CDP Supply Chain requesting members customers

(7.73.3.3) Scope

Select from:

✓ Scope 1, 2 & 3

(7.73.3.4) Lifecycle stage

Select from:

✓ Cradle to gate

(7.73.3.5) Emissions at the lifecycle stage in kg CO2e per unit

0.021

(7.73.3.6) Lifecycle stage under your ownership or control

Select from:

✓ No

(7.73.3.7) Type of data used

Select from:

✓ Primary and secondary

(7.73.3.8) Data quality

Inventory data collected for the life cycle stages are in compliance with quality criteria such as temporal, geographical, and technological representativeness. Completeness and reliability in compliance with GHG Protocol Life Cycle Accounting Reporting Standard

(7.73.3.9) If applicable, describe the verification/assurance of the product emissions data

In current reporting year we completed energy data assurance for our operations including Scope 1, Scope 2 and Scope 3 data in compliance with standard ISO 14064-1 and GHG Protocol Product Accounting & Reporting Standard. Thanks to this assurance we are able to allocate GHGs emissions from each plant to our finished products produced for our customers. We followed Organizational-LCA method that allowed the identification and quantification of our GHGs emission to be allocated to product families produced in each operations. This new approach ensure much more reliability for the product emissions allocation related to Scope 1, Scope 2 and Scope 3. Please note that we assured the following Scope 3 data category: purchased goods and materials, upstream transportation, downstream transportation, liquid and solid waste, business travel. The above Scope 3 data emissions, in addition to Scope 1 and Scope 2 for each plant, ensure analysis from cradle to gate.

[Add row]

(7.73.4) Please detail emissions reduction initiatives completed or planned for this product.

Row 1

(7.73.4.1) Name of good/ service

Product dispensing systems (closures and pump)

(7.73.4.2) Initiative ID

Select from:

✓ Initiative 1

(7.73.4.3) Description of initiative

Climate-related projects are referred to the increase of recycled content into the finished product. Our conversion plan can support the reduction of GHG emissions and the promotion of circular economy business model. In addition, thanks to the use of post consumer resin recycled, we can contribute to the reduction of resources depletion (non renewable fossil based). The potential financial impact of this project in terms of costs VS savings is neutral. The strategy related to the use of PCR in our finished product, can support customer's goals and targets to reduce their indirect GHG emissions from purchased goods and services.

(7.73.4.4) Completed or planned

Select from:

Ongoing

(7.73.4.5) Emission reductions in kg CO2e per unit

0.02 [Add row]

(7.73.6) Explain which initiatives have been driven by requesting members.

Row 1

(7.73.6.1) Requesting member

Select from:

(7.73.6.2) Name of good/service

Climate-related projects are referred to the increase of recycled content into the finished product. Our conversion plan can support the reduction of GHG emissions and the promotion of circular economy business model. In addition, thanks to the use of post consumer resin recycled, we can contribute to the reduction of resources depletion (non renewable fossil based). The potential financial impact of this project in terms of costs VS savings is neutral. The strategy related to the use of PCR in our finished product, can support customer's goals and targets to reduce their indirect GHG emissions from purchased goods and services.

(7.73.6.3) Initiative ID

Select from:

✓ Initiative 1

Row 2

(7.73.6.1) Requesting member

Select from:

(7.73.6.2) Name of good/service

Climate-related projects are referred to the increase of recycled content into the finished product. Our conversion plan can support the reduction of GHG emissions and the promotion of circular economy business model. In addition, thanks to the use of post consumer resin recycled, we can contribute to the reduction of resources depletion (non renewable fossil based). The potential financial impact of this project in terms of costs VS savings is neutral. The strategy related to the use of PCR in our finished product, can support customer's goals and targets to reduce their indirect GHG emissions from purchased goods and services.

(7.73.6.3) Initiative ID

Select from:

✓ Initiative 1

Row 3

(7.73.6.1) Requesting member

Select from:

(7.73.6.2) Name of good/service

Climate-related projects are referred to the increase of recycled content into the finished product. Our conversion plan can support the reduction of GHG emissions and the promotion of circular economy business model. In addition, thanks to the use of post consumer resin recycled, we can contribute to the reduction of resources depletion (non renewable fossil based). The potential financial impact of this project in terms of costs VS savings is neutral. The strategy related to the use of PCR in our finished product, can support customer's goals and targets to reduce their indirect GHG emissions from purchased goods and services.

(7.73.6.3) Initiative ID

Select from:

✓ Initiative 1

Row 4

(7.73.6.1) Requesting member

Select from:

(7.73.6.2) Name of good/service

Climate-related projects are referred to the increase of recycled content into the finished product. Our conversion plan can support the reduction of GHG emissions and the promotion of circular economy business model. In addition, thanks to the use of post consumer resin recycled, we can contribute to the reduction of resources depletion (non renewable fossil based). The potential financial impact of this project in terms of costs VS savings is neutral. The strategy related to the use of PCR in our finished product, can support customer's goals and targets to reduce their indirect GHG emissions from purchased goods and services.

(7.73.6.3) Initiative ID

Select from:

✓ Initiative 1

[Add row]

(7.74.1) Provide details of your products and/or services that you classify as low-carbon products.

Row 1

(7.74.1.1) Level of aggregation

Select from:

☑ Group of products or services

(7.74.1.2) Taxonomy used to classify product(s) or service(s) as low-carbon

Select from:

✓ No taxonomy used to classify product(s) or service(s) as low carbon

(7.74.1.3) Type of product(s) or service(s)

Other

✓ Other, please specify: Use of low carbon raw materials like post consumer recycled resin and bio-feedstock

(7.74.1.4) Description of product(s) or service(s)

Aptar Product Sustainability Team support the investigation and application of sustainable materials to the entire Aptar product portfolio. The use of post consumer recycled materials and bio-feedstock is leading our conversion plan to the transition to low carbon products. Our customers are constantly in contact with our Expert Centers looking for the best solution that can reduce the environmental impact of the full packaging. These products can be classified as low-carbon products because manufacturing of them requires less conventional raw materials and therefore less GHG emissions are embedded in the products. During the reporting year we have converted 974 tons of conventional resins to recycled resin.

(7.74.1.5) Have you estimated the avoided emissions of this low-carbon product(s) or service(s)

Select from:

Yes

(7.74.1.6) Methodology used to calculate avoided emissions

Select from:

✓ Other, please specify: ISO 14040 and 14044 for product LCA

(7.74.1.7) Life cycle stage(s) covered for the low-carbon product(s) or services(s)

Select from:

✓ Cradle-to-gate

(7.74.1.8) Functional unit used

1 ml of finished product dispensed with PCR materials

(7.74.1.9) Reference product/service or baseline scenario used

Product solutions produced 100% with conventional plastics.

(7.74.1.10) Life cycle stage(s) covered for the reference product/service or baseline scenario

Select from:

✓ Cradle-to-gate

(7.74.1.11) Estimated avoided emissions (metric tons CO2e per functional unit) compared to reference product/service or baseline scenario

0.00106

(7.74.1.12) Explain your calculation of avoided emissions, including any assumptions

We followed an consequential approach to our LCA and measured the difference in total cradle-to Aptar gate emissions between our product with PCR and conventional. We used the following Global Warming Potential 100 (GWP100) factors from the IPCC 5th assessment report: Carbon Dioxide (CO2): 1,Methane (CH4): 102,Nitrous Oxide (N2O): 264,Sulfur Hexafluoride (SF6): 17,500,HFC-134a: 3,710,Nitrogen Trifluoride (NF3): 12,800,Black Carbon: 3,385,Organic Carbon: -128,Sulfur Dioxide (SO2): -274,Nitrogen Oxide (NOx) 122We used a mass-based allocation for energy and resource inputs where multiple products were being produced. To allocate the impacts from the recycled material we followed the most common 100-0 cut-off approach, where the environmental impacts are only included for one lifecycle of the product. In other words, recycled material is not allocated to any of the impacts associated with the conventional plastic sourcing or processing, but only the impacts of the mechanical plastic recycling process. We identified a representative set of mechanical plastic recycling across our region for which recycling level data is available. Our data is then averaged across all the plastic recycling producing the same PCR grade in the region. We also used environmental data from government to calculate some of the environmental impacts. We then compared these averages to our data to calculate avoided emissions. The estimation of avoided emissions is based on the differences that arise from our higher content of recycled material:PP emission factors 1.76 kg CO2e/kg PCR emission factors 0.73 kg CO2e/kg CO2 avoided emissions (1.76 kg CO2e/kg - 0.73 kg CO2e/kg) x 974 t 1003 t CO2e

(7.74.1.13) Revenue generated from low-carbon product(s) or service(s) as % of total revenue in the reporting year

0.5 [Add row]

C9. Environmental performance - Water security

(9.2) Across all your operations, what proportion of the following water aspects are regularly measured and monitored?

Water withdrawals - total volumes

(9.2.1) % of sites/facilities/operations

Select from:

100%

(9.2.2) Frequency of measurement

Select from:

Monthly

(9.2.3) Method of measurement

The method of water data collection is based on primary data check from the water meter in our operations.

(9.2.4) Please explain

Our response in this row relates to our different geographic operations. Aptar monitors total volumes of water withdrawals from operations, sales offices, warehouses and corporate offices. The frequency of water data collection is monthly based on water invoices from water supplier. Each user upload data in internal software that calculate KPIs for water consumed. The method of water data collection is based on primary data check from the water meter in our operations.

Water withdrawals - volumes by source

(9.2.1) % of sites/facilities/operations

Select from:

✓ 100%

(9.2.2) Frequency of measurement

Select from:

Monthly

(9.2.3) Method of measurement

The method of water data collection is based on primary data check from the water meter in our operations.

(9.2.4) Please explain

Aptar monitors volumes by source in all operations, sales offices, warehouses and corporate offices. The frequency of water data collection is monthly based on water invoices from water supplier. Each user upload data in internal software that calculate KPIs for water consumed. The method of water data collection is based on primary data check from the water meter in our operations.

Water withdrawals quality

(9.2.1) % of sites/facilities/operations

Select from:

✓ Not relevant

(9.2.4) Please explain

For the use of water in our core processes (cooling moulds) the quality of water (physical, chemical, biological and organoleptic) is not relevant or it can't generate problem to the quality of our finished product. For the majority of our operations, water is not directly in contact with Aptar's products and it is not an ingredient for our processes but considering anodizing process (only 2/59 Aptar sites) by the nature of the process the water withdrawal quality is not vital and we do not anticipate changes into processes for the next 0-3 years.

Water discharges – total volumes

(9.2.1) % of sites/facilities/operations

Select from:

✓ 100%

(9.2.2) Frequency of measurement

Select from:

Monthly

(9.2.3) Method of measurement

The method of water data collection is based on primary data check from the water meter in our operations.

(9.2.4) Please explain

Aptar monitors total volumes of water discharged in all operations, sales offices, warehouses and corporate offices. The frequency of water data collection is quarterly based on water invoices from water supplier. Each user upload data in internal software that calculate KPIs for water consumed.

Water discharges - volumes by destination

(9.2.1) % of sites/facilities/operations

Select from:

☑ 100%

(9.2.2) Frequency of measurement

Select from:

Monthly

(9.2.3) Method of measurement

The method of water data collection is based on primary data check from the water meter in our operations.

(9.2.4) Please explain

Aptar monitors total volumes of water discharged by destination in all operations, sales offices, warehouses and corporate offices. The frequency of water data collection is quarterly based on water invoices from water supplier. Each user upload data in internal software that calculate KPIs for water consumed.

Water discharges - volumes by treatment method

(9.2.1) % of sites/facilities/operations

Select from:

100%

(9.2.2) Frequency of measurement

Select from:

Monthly

(9.2.3) Method of measurement

The method of water data collection is based on primary data check from the water meter in our operations.

(9.2.4) Please explain

Aptar monitors total volumes of water discharged by destination in all operations, sales offices, warehouses and corporate offices. The frequency of water data collection is quarterly based on water invoices from water supplier. Each user upload data in internal software that calculate KPIs for water consumed.

Water discharge quality – by standard effluent parameters

(9.2.1) % of sites/facilities/operations

Select from:

☑ 100%

(9.2.2) Frequency of measurement

Select from:

Yearly

(9.2.3) Method of measurement

The method of sample is in compliance with ISO standard in order to analyze thresholds for PH, BOD, TSS and other pollutants as defined in the local permissions and licenses.

(9.2.4) Please explain

our plants are closing monitoring about the water discharged quality in alignment with operating permits. The frequency of data collection is at least yearly (in compliance with local regulation).

Water discharge quality – emissions to water (nitrates, phosphates, pesticides, and/or other priority substances)

(9.2.1) % of sites/facilities/operations

Select from:

✓ 100%

(9.2.2) Frequency of measurement

Select from:

Yearly

(9.2.3) Method of measurement

The method of sample is in compliance with ISO standard in order to analyze thresholds for PH, BOD, TSS and other pollutants as defined in the local permissions and licenses.

(9.2.4) Please explain

Our plants are closing monitoring about the water discharged quality in alignment with operating permits. The frequency of data collection is at least yearly (in compliance with local regulation). Please note that only few sites are monitoring nitrates, the major part of the sites are monitoring parameters in compliance with regulatory aspects that are not considering phosphates, pesticides and other EU substances listed because our process is not generating these type of substances.

Water discharge quality – temperature

(9.2.1) % of sites/facilities/operations

Select from:

100%

(9.2.2) Frequency of measurement

Select from:

Yearly

(9.2.3) Method of measurement

The method of sample is in compliance with ISO standard in order to analyze thresholds for temperature as defined in the local permissions and licenses.

(9.2.4) Please explain

Our plants are closing monitoring about the water discharged quality (temperature) in alignment with operating permits. The frequency of data collection is at least yearly (in compliance with local regulation).

Water consumption - total volume

(9.2.1) % of sites/facilities/operations

Select from:

☑ 100%

(9.2.2) Frequency of measurement

Select from:

Monthly

(9.2.3) Method of measurement

The method of water data collection is based on primary data check from the water meter in our operations.

(9.2.4) Please explain

Aptar monitors total volumes of water consumed in all operations, sales offices, warehouses and corporate offices. Each user upload data in internal software that calculate KPIs for water consumed. The frequency of water data collection is monthly based on water invoices from water supplier.

Water recycled/reused

(9.2.1) % of sites/facilities/operations

Select from:

√ 76-99

(9.2.2) Frequency of measurement

Select from:

Monthly

(9.2.3) Method of measurement

The method of water data collection is based on primary data check from the water meter in our operations and assumptions/estimations in case primary data not available.

(9.2.4) Please explain

The recycle of water is completed only in the anodizing process (2/59 sites) where the wastewater in output is treated in the appropriate depurator system before to recycle it into internal processes. More in accuracy, these 2 sites are recycling about 75% of the total water. Other sites in total are reusing water 99% thanks to closed loop system (for cooling system).

The provision of fully-functioning, safely managed WASH services to all workers

(9.2.1) % of sites/facilities/operations

Select from:

☑ 100%

(9.2.2) Frequency of measurement

Select from:

Monthly

(9.2.3) Method of measurement

Aptar implemented a global EHS&S policy and management system

(9.2.4) Please explain

Aptar implemented a global EHS&S policy and management system. In all Aptar plants the employees has the access to clean toilet facilities and drinking water. [Fixed row]

(9.2.2) What are the total volumes of water withdrawn, discharged, and consumed across all your operations, how do they compare to the previous reporting year, and how are they forecasted to change?

Total withdrawals

(9.2.2.1) Volume (megaliters/year)

4001

(9.2.2.2) Comparison with previous reporting year

Select from:

Higher

(9.2.2.3) Primary reason for comparison with previous reporting year

Select from:

✓ Mergers and acquisitions

(9.2.2.4) Five-year forecast

Select from:

✓ Lower

(9.2.2.5) Primary reason for forecast

Select from:

✓ Investment in water-smart technology/process

(9.2.2.6) Please explain

Our water withdrawals are decreasing due to the implementation of our water stewardship programs and training. In the next five years, Aptar expects our water withdrawals to continue decrease as we implement more water saving measures and training. Annual water risk assessments aid in short and long-term business planning, and support our Water Roadmap to ensure an effective water stewardship strategy. Through our water risk assessment, we identified four sites we found to be at high physical risk. These water-scarce sites are developing contingency plans in case local water supplies fall below the level needed to maintain operations. We have provided training with examples of actions site leaders can take to reduce water consumption, to help reduce water risks at all of our sites, and to help measure, monitor, and report on their water use. We believe that now is the time to act and plan to address potential water risks and stay ahead of risk and potential legislation in this area.

Total discharges

(9.2.2.1) Volume (megaliters/year)

3659

(9.2.2.2) Comparison with previous reporting year

Select from:

✓ About the same

(9.2.2.3) Primary reason for comparison with previous reporting year

Select from:

✓ Increase/decrease in business activity

(9.2.2.4) Five-year forecast

Select from:

✓ Lower

(9.2.2.5) Primary reason for forecast

Select from:

✓ Investment in water-smart technology/process

(9.2.2.6) Please explain

Water discharge is expected to decrease as consumption and withdrawal is expected to decrease. Our risk assessment has identified water-scarce sites that are developing contingency plans in case local water supplies fall below the level needed to maintain operations. We have provided training with examples of actions site leaders can take to reduce water consumption, to help reduce water risks at all of our sites, and to help measure, monitor, and report on their water use.

Total consumption

(9.2.2.1) Volume (megaliters/year)

342

(9.2.2.2) Comparison with previous reporting year

Select from:

Higher

(9.2.2.3) Primary reason for comparison with previous reporting year

Select from:

✓ Mergers and acquisitions

(9.2.2.4) Five-year forecast

Select from:

Lower

(9.2.2.5) Primary reason for forecast

Select from:

✓ Investment in water-smart technology/process

(9.2.2.6) Please explain

Water consumption is calculated by subtracting water discharged from water withdrawn, as reported by all Aptar sites on a monthly basis into our EHStar system. In 2022, we realized a 0.5% reduction in water consumption as compared to 2021. In 2024 we have increased our focus on water risk by improving the training we provide to site leaders as well as the information we are tracking per each site.

[Fixed row]

(9.2.4) Indicate whether water is withdrawn from areas with water stress, provide the volume, how it compares with the previous reporting year, and how it is forecasted to change.

(9.2.4.1) Withdrawals are from areas with water stress

Select from:

✓ Yes

(9.2.4.2) Volume withdrawn from areas with water stress (megaliters)

355

(9.2.4.3) Comparison with previous reporting year

Select from:

Higher

(9.2.4.4) Primary reason for comparison with previous reporting year

Select from:

✓ Mergers and acquisitions

(9.2.4.5) Five-year forecast

Select from:

✓ Lower

(9.2.4.6) Primary reason for forecast

Select from:

✓ Investment in water-smart technology/process

(9.2.4.7) % of total withdrawals that are withdrawn from areas with water stress

8.87

(9.2.4.8) Identification tool

Select all that apply

✓ WWF Water Risk Filter

(9.2.4.9) Please explain

We applied WWF Water Risk Filter Tool and CDP recommendation to use this tool to identify water stressed areas. According to CDP, 'water stressed' areas are the basins where their risk score for "Water Scarcity" risk category is equal to/greater than 3 (the risk scores range from 1 to 5). The risk category "Water Scarcity" refers to the physical abundance or lack of freshwater resources. It is a comprehensive and robust metric as it integrates a total of 7 best available and peer-reviewed datasets covering different aspects of water scarcity as well as different modelling approaches: aridity index, water depletion, baseline water stress, blue water scarcity, available water remaining, drought frequency probability, and projected change in drought occurrence. Aptar operates 56 sites of which 54 manufacturing facilities in 18 countries (all included in WWF Water Risk Filter Tool). We checked all facilities worldwide by location and address. We have 9 facilities out of total 56 facilities (8% from total water withdrawal) identified as water stressed areas since they were scored as equal to/greater than 3 for "Water Scarcity" risk category. In 2023, our water withdrawn from areas with water stress is higher compared to last yeasr (2022).

[Fixed row]

(9.2.7) Provide total water withdrawal data by source.

Fresh surface water, including rainwater, water from wetlands, rivers, and lakes

(9.2.7.1) Relevance

Select from:

✓ Relevant

(9.2.7.2) Volume (megaliters/year)

2997

(9.2.7.3) Comparison with previous reporting year

Select from:

☑ About the same

(9.2.7.4) Primary reason for comparison with previous reporting year

Select from:

✓ Increase/decrease in business activity

(9.2.7.5) Please explain

The fresh surface water source is relevant because in one of our Food and Beverage operation the cooling system for injection molding is strictly based on this water source (from rivers near the plants). In 2023 we decreased withdrawn due to business activity fluctuation. Aptar operations are not water intensive, thanks to the utilization of closed loop systems, and anodizing is the most water intensive process we participate in.

Brackish surface water/Seawater

(9.2.7.1) Relevance

Select from:

✓ Not relevant

(9.2.7.5) Please explain

The brackish surface water / seawater is not relevant for our operations because our sites are not located near sea cost and even if we'll have sites near seawater the salt concentration is too high and could generate problem for the quality of products.

Groundwater - renewable

(9.2.7.1) Relevance

Select from:

Relevant

(9.2.7.2) Volume (megaliters/year)

0.53

(9.2.7.3) Comparison with previous reporting year

Select from:

Much lower

(9.2.7.4) Primary reason for comparison with previous reporting year

Select from:

✓ Increase/decrease in business activity

(9.2.7.5) Please explain

The groundwater renewable source is relevant because in some of our Beauty and Home operation the cooling system for injection molding is strictly based on this water source. For reporting year 2023 the value is much lower due to the fact that sites changed the water input source.

Groundwater - non-renewable

(9.2.7.1) Relevance

Select from:

✓ Relevant

(9.2.7.2) Volume (megaliters/year)

(9.2.7.3) Comparison with previous reporting year

Select from:

Lower

(9.2.7.4) Primary reason for comparison with previous reporting year

Select from:

✓ Increase/decrease in business activity

(9.2.7.5) Please explain

The groundwater non-renewable source is relevant because in some of our Beauty and Home operation the cooling system for injection molding is strictly based on this water source. For reporting year 2023 the value is lower due to business activity fluctuations.

Produced/Entrained water

(9.2.7.1) Relevance

Select from:

✓ Not relevant

(9.2.7.5) Please explain

The produced water is not relevant for our operations because our sites does not have processes on which we can obtain water as result of the extraction, processing, or use of any raw material

Third party sources

(9.2.7.1) Relevance

Select from:

✓ Relevant

(9.2.7.2) Volume (megaliters/year)

916

(9.2.7.3) Comparison with previous reporting year

Select from:

(9.2.7.4) Primary reason for comparison with previous reporting year

Select from:

✓ Increase/decrease in business activity

(9.2.7.5) Please explain

The third party sources withdrawn is relevant because in the major part of our operations we have water withdrawn from municipal source. It is used not only for the processes but also for the employees. In this reporting year, due to the business activity fluctuation, we increased the total amount of water withdrawal from third party source compared to the previous year. Third party sources are based on municipal supplier and [Fixed row]

(9.2.8) Provide total water discharge data by destination.

Fresh surface water

(9.2.8.1) Relevance

Select from:

✓ Relevant

(9.2.8.2) Volume (megaliters/year)

2997

(9.2.8.3) Comparison with previous reporting year

Select from:

✓ About the same

(9.2.8.4) Primary reason for comparison with previous reporting year

Select from:

✓ Mergers and acquisitions

(9.2.8.5) Please explain

The fresh surface water discharged is relevant because our plant monitors concentration dissolved to be in compliance with local regulations. Future trends for this type of water discharged are expected to be the same considering market demands for molded components. In 2023 we increased discharge due to business activity fluctuations.

Brackish surface water/seawater

(9.2.8.1) Relevance

Select from:

✓ Not relevant

(9.2.8.5) Please explain

The brackish surface water / seawater is not relevant for our operations because our sites are not located near sea cost. Future trends are not expected to change.

Groundwater

(9.2.8.1) Relevance

Select from:

✓ Relevant

(9.2.8.2) Volume (megaliters/year)

(9.2.8.3) Comparison with previous reporting year

Select from:

✓ About the same

(9.2.8.4) Primary reason for comparison with previous reporting year

Select from:

✓ Mergers and acquisitions

(9.2.8.5) Please explain

The groundwater discharged is relevant because our plant monitors concentration dissolved to be in compliance with local regulations. Future trends for this type of water discharged are expected be the same considering market demands for molded components. Volumes or water from this source is based on estimation and calculation model. In 2023 we decreased discharge due to business activity fluctuations.

Third-party destinations

(9.2.8.1) Relevance

Select from:

✓ Relevant

(9.2.8.2) Volume (megaliters/year)

657

(9.2.8.3) Comparison with previous reporting year

Select from:

✓ Lower

(9.2.8.4) Primary reason for comparison with previous reporting year

Select from:

✓ Mergers and acquisitions

(9.2.8.5) Please explain

The third party discharged is relevant because our plant monitors concentration dissolved to be in compliance with local regulations. Future trends for this type of water discharged are expected be the same considering market demands for molded components. In this reporting year water discharged third party destinations is lower respect previous reporting year due to business activity fluctuations. This type or water source is not considering other organizations for further use. Volumes or water from this source is based on estimation and calculation model [Fixed row]

(9.2.9) Within your direct operations, indicate the highest level(s) to which you treat your discharge.

Tertiary treatment

(9.2.9.1) Relevance of treatment level to discharge

Select from:

✓ Relevant

(9.2.9.2) Volume (megaliters/year)

143

(9.2.9.3) Comparison of treated volume with previous reporting year

Select from:

✓ Lower

(9.2.9.4) Primary reason for comparison with previous reporting year

Select from:

Select from:

✓ 1-10

(9.2.9.6) Please explain

Aptar, during reporting year 2022, launched a water questionnaire focused on the mapping of water uses and water treatments. From this questionnaire we have identified 5% of sites with tertiary treatment of discharged water. The treatment is necessary for some of our injection molding and anodizing sites. In the workshop area we have wastewater (includind acids and chemical agents) produced by washing molds activities. In addition, also in our anodizing sites we have wastewater produced by special chemical treatments into the washing tanks. To be compliance with local regulatory aspects (e.g. to preserve marine biodiversity, quality of water etc...) we have implemented equipment for water treatment to remove suspended, colloidal and dissolved constituents (nutrients, heavy metals, inorganic and other contaminants). Our sites are respecting specific water regulatory standard (local environmental law by authorities). The future trends of these volumes will be very similar, so, no significant increase or decrease are expected. The thresholds much higher and much lower are based on the gap /- 30%

Secondary treatment

(9.2.9.1) Relevance of treatment level to discharge

Select from:

Relevant

(9.2.9.2) Volume (megaliters/year)

0.1

(9.2.9.3) Comparison of treated volume with previous reporting year

Select from:

Much lower

(9.2.9.4) Primary reason for comparison with previous reporting year

Select from:

☑ Maximum potential volume reduction already achieved

Select from:

✓ Less than 1%

(9.2.9.6) Please explain

Aptar, during reporting year 2022, launched a water questionnaire focused on the mapping of water uses and water treatments. From this questionnaire we have identified 5% of sites with secondary treatment of discharged water. The treatment is necessary for some of our injection molding and anodizing sites. In the workshop area we have wastewater (includind acids and chemical agents) produced by washing molds activities. In addition, also in our anodizing sites we have wastewater produced by special chemical treatments into the washing tanks. To be compliance with local regulatory aspects (e.g. to preserve marine biodiversity, quality of water etc...) we have implemented equipment for water treatment to remove suspended, colloidal and dissolved constituents (nutrients, heavy metals, inorganic and other contaminants). Our sites are respecting specific water regulatory standard (local environmental law by authorities). The future trends of these volumes will be very similar, so, no significant increase or decrease are expected. The thresholds much higher and much lower are based on the gap /- 30%

Primary treatment only

(9.2.9.1) Relevance of treatment level to discharge

Select from:

✓ Relevant

(9.2.9.2) Volume (megaliters/year)

124

(9.2.9.3) Comparison of treated volume with previous reporting year

Select from:

✓ About the same

(9.2.9.4) Primary reason for comparison with previous reporting year

Select from:

Select from:

✓ 1-10

(9.2.9.6) Please explain

Aptar, during reporting year 2022, launched a water questionnaire focused on the mapping of water uses and water treatments. From this questionnaire we have identified 5% of sites with primary treatment of discharged water. The treatment is necessary for some of our injection molding and anodizing sites. In the workshop area we have wastewater (including acids and chemical agents) produced by washing molds activities. In addition, also in our anodizing sites we have wastewater produced by special chemical treatments into the washing tanks. To be compliance with local regulatory aspects (e.g. to preserve marine biodiversity, quality of water etc...) we have implemented equipment for water treatment to remove suspended, colloidal and dissolved constituents (nutrients, heavy metals, inorganic and other contaminants). Our sites are respecting specific water regulatory standard (local environmental law by authorities). The future trends of these volumes will be very similar, so, no significant increase or decrease are expected. The thresholds much higher and much lower are based on the gap /- 30%

Discharge to the natural environment without treatment

(9.2.9.1) Relevance of treatment level to discharge

Select from:

Relevant

(9.2.9.2) Volume (megaliters/year)

2991

(9.2.9.3) Comparison of treated volume with previous reporting year

Select from:

About the same

(9.2.9.4) Primary reason for comparison with previous reporting year

Select from:

Select from:

✓ 1-10

(9.2.9.6) Please explain

Aptar, during reporting year 2022, launched a water questionnaire focused on the mapping of water uses and water treatments. Aptar identified 5% of sites discharge to the natural environment without treatment. The treatment is not necessary because the wastewater do not present chemical agents or substances that could damage marine biodiversity and/or quality of water. Our sites are respecting specific water regulatory standard (local environmental law by authorities). The quantity reported in one specific site located near the river this year decreased due to market fluctuation (less use of injection molding activities with less use of water to cooling molds). The future trends of these volumes will be very similar, so, no significant increase or decrease are expected. The thresholds much higher and much lower are based on the gap /- 30%

Discharge to a third party without treatment

(9.2.9.1) Relevance of treatment level to discharge

Select from:

✓ Relevant

(9.2.9.2) Volume (megaliters/year)

401

(9.2.9.3) Comparison of treated volume with previous reporting year

Select from:

Lower

(9.2.9.4) Primary reason for comparison with previous reporting year

Select from:

(9.2.9.5) % of your sites/facilities/operations this volume applies to

Select from:

☑ 81-90

(9.2.9.6) Please explain

Aptar, during reporting year 2022, launched a water questionnaire focused on the mapping of water uses and water treatments. Aptar identified 81% of sites discharge to a third party water without treatment. The treatment is not necessary because the wastewater do not present chemical agents or substances that could damage marine biodiversity and/or quality of water. Our sites are respecting specific water regulatory standard (local environmental law by authorities). The quantity reported in this year decreased due to market fluctuation (less use of injection molding activities with less use of water to cooling molds) and some sites were closed. The future trends of these volumes will be very similar, so, no significant increase or decrease are expected. Finally, we can assume that the highest level of treatment the third party applies is tertiary treatment. The thresholds much higher and much lower are based on the gap /- 30%

Other

(9.2.9.1) Relevance of treatment level to discharge

Select from:

✓ Not relevant

(9.2.9.6) Please explain

Not relevant for Aptar processes [Fixed row]

(9.2.10) Provide details of your organization's emissions of nitrates, phosphates, pesticides, and other priority substances to water in the reporting year.

(9.2.10.1) Emissions to water in the reporting year (metric tons)

(9.2.10.2) Categories of substances included

Select all that apply

✓ Priority substances listed under the EU Water Framework Directive

(9.2.10.3) List the specific substances included

Cadmium, Nickel, Lead

(9.2.10.4) Please explain

The total amount of pollutants mapped are 0.000464 tons, emitted from the auxiliaries process in one of our site located in France (no water stressed areas or vulnerable communities).

[Fixed row]

(9.3) In your direct operations and upstream value chain, what is the number of facilities where you have identified substantive water-related dependencies, impacts, risks, and opportunities?

Direct operations

(9.3.1) Identification of facilities in the value chain stage

Select from:

✓ Yes, we have assessed this value chain stage and identified facilities with water-related dependencies, impacts, risks, and opportunities

(9.3.2) Total number of facilities identified

8

(9.3.3) % of facilities in direct operations that this represents

Select from:

√ 1-25

(9.3.4) Please explain

We applied WWF Water Risk Filter Tool and CDP recommendation to use this tool to identify water stressed areas. According to CDP, 'water stressed' areas are the basins where their risk score for "Water Scarcity" risk category is equal to/greater than 3 (the risk scores range from 1 to 5). Percentage of facilities in direct operations that this represents is 15% which is calculated considering 56 sites of which 54 are manufacturing operations. (8/5415%)

Upstream value chain

(9.3.1) Identification of facilities in the value chain stage

Select from:

☑ No, we have not assessed this value chain stage for facilities with water-related dependencies, impacts, risks, and opportunities, and are not planning to do so in the next 2 years

(9.3.4) Please explain

Aptar during the current reporting year developed biodiversity road map, on which we have mapped upstream value chain nature pressures and dependencies about freshwater, in the next years we planned engage of our upstream value chain with more specific mapping on the water-related dependencies.

[Fixed row]

(9.3.1) For each facility referenced in 9.3, provide coordinates, water accounting data, and a comparison with the previous reporting year.

Row 1

(9.3.1.1) Facility reference number

Select from:

✓ Facility 1

(9.3.1.2) Facility name (optional)

Aptar Chieti

(9.3.1.3) Value chain stage

Select from:

✓ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility

Select all that apply

- Dependencies
- ✓ Impacts
- Risks
- Opportunities

(9.3.1.5) Withdrawals or discharges in the reporting year

Select from:

✓ Yes, withdrawals and discharges

(9.3.1.7) Country/Area & River basin

Spain

✓ Other, please specify :Mediterranean

(9.3.1.8) Latitude

42.304

(9.3.1.9) Longitude

14.052

(9.3.1.10) Located in area with water stress

Select from:

✓ Yes
(9.3.1.13) Total water withdrawals at this facility (megaliters)
6.4
(9.3.1.14) Comparison of total withdrawals with previous reporting year
Select from: ☑ About the same
(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
(9.3.1.16) Withdrawals from brackish surface water/seawater
O
(9.3.1.17) Withdrawals from groundwater - renewable
0
(9.3.1.18) Withdrawals from groundwater - non-renewable
o
(9.3.1.19) Withdrawals from produced/entrained water
0
(9.3.1.20) Withdrawals from third party sources
6.4

(9.3.1.21) Total water discharges at this facility (megaliters)

7	004	00)	• • • • • • • • •			• • • • • • • • • • • • • • • • • • • •		
11	9 3 1) Comparisoi	i ot total	diechard	100 With	nraviniie ra	nortina vear
V	7.0.1		Companison	i oi totai	discridi	JCS WILLI	pi cvious i c	porting year

Select from:

✓ About the same

(9.3.1.23) Discharges to fresh surface water

0

(9.3.1.24) Discharges to brackish surface water/seawater

0

(9.3.1.25) Discharges to groundwater

0

(9.3.1.26) Discharges to third party destinations

6.4

(9.3.1.27) Total water consumption at this facility (megaliters)

0

(9.3.1.28) Comparison of total consumption with previous reporting year

Select from:

☑ About the same

(9.3.1.29) Please explain

Aptar Chieti has been confirmed for the reporting year into the list of water stressed areas emerged from the risk analysis with WWF Risk Filter Tool. The water consumption is neutral thanks to the use of closed loop system implemented to optimize the water consumption for the cooling of injection molding activities. Water withdrawn and water discharged has been labout the same with respect previous year due to market fluctuations.

Row 2

(9.3.1.1) Facility reference number

Select from:

✓ Facility 2

(9.3.1.2) Facility name (optional)

Aptar Hyderabad

(9.3.1.3) Value chain stage

Select from:

✓ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility

Select all that apply

- Dependencies
- ✓ Impacts
- ✓ Risks
- Opportunities

(9.3.1.5) Withdrawals or discharges in the reporting year

Select from:

✓ Yes, withdrawals and discharges

(9.3.1.7) Country/Area & River basin

Afghanistan

✓ Other, please specify :Bay of Bengal

(9.3.1.8) Latitude

17.566

(9.3.1.9) Longitude

-1.561877

(9.3.1.10) Located in area with water stress

Select from:

Yes

(9.3.1.13) Total water withdrawals at this facility (megaliters)

0.99

(9.3.1.14) Comparison of total withdrawals with previous reporting year

Select from:

✓ About the same

(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes

0

(9.3.1.16) Withdrawals from brackish surface water/seawater

0

(9.3.1.17) Withdrawals from groundwater - renewable

(9.3.1.18) Withdrawals from groundwater - non-renewable

0

(9.3.1.19) Withdrawals from produced/entrained water

0

(9.3.1.20) Withdrawals from third party sources

0.99

(9.3.1.21) Total water discharges at this facility (megaliters)

0.09

(9.3.1.22) Comparison of total discharges with previous reporting year

Select from:

✓ About the same

(9.3.1.23) Discharges to fresh surface water

0

(9.3.1.24) Discharges to brackish surface water/seawater

0

(9.3.1.25) Discharges to groundwater

n

(9.3.1.26) Discharges to third party destinations

(9.3.1.27) Total water consumption at this facility (megaliters)

901

(9.3.1.28) Comparison of total consumption with previous reporting year

Select from:

✓ About the same

(9.3.1.29) Please explain

Aptar Hyderabad has been confirmed for the reporting year into the list of water stressed areas emerged from the risk analysis with WWF Risk Filter Tool. The water consumption is neutral thanks to the use of closed loop system implemented to optimize the water consumption for the cooling of injection molding activities. Water withdrawn and water discharged has been about the same respect previous year due to similar market fluctuations

Row 3

(9.3.1.1) Facility reference number

Select from:

✓ Facility 3

(9.3.1.2) Facility name (optional)

Aptar Queretaro

(9.3.1.3) Value chain stage

Select from:

✓ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility

Select all that apply

✓ Dependencies
✓ Impacts
☑ Risks
✓ Opportunities
(9.3.1.5) Withdrawals or discharges in the reporting year
Select from:
✓ Yes, withdrawals and discharges
(9.3.1.7) Country/Area & River basin
Afghanistan
✓ Other, please specify: North Pacific
(9.3.1.8) Latitude
20.561
(9.3.1.9) Longitude
-100.26
(9.3.1.10) Located in area with water stress
Select from:
✓ Yes
(0.2.1.12) Total water withdrawale at this facility (magalitage)

(9.3.1.13) Total water withdrawals at this facility (megaliters)

3.34

(9.3.1.14) Comparison of total withdrawals with previous reporting year

Select from: ✓ Lower
(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
(9.3.1.16) Withdrawals from brackish surface water/seawater
0
(9.3.1.17) Withdrawals from groundwater - renewable
0
(9.3.1.18) Withdrawals from groundwater - non-renewable
0
(9.3.1.19) Withdrawals from produced/entrained water
0
(9.3.1.20) Withdrawals from third party sources
3.34
(9.3.1.21) Total water discharges at this facility (megaliters)
0.26
(9.3.1.22) Comparison of total discharges with previous reporting year
Select from:

✓ Higher

(9.3.1.23) Discharges to fresh surface water

0

(9.3.1.24) Discharges to brackish surface water/seawater

0

(9.3.1.25) Discharges to groundwater

0

(9.3.1.26) Discharges to third party destinations

0.26

(9.3.1.27) Total water consumption at this facility (megaliters)

3.02

(9.3.1.28) Comparison of total consumption with previous reporting year

Select from:

✓ Lower

(9.3.1.29) Please explain

Aptar Queretaro has been confirmed for the reporting year into the list of water stressed areas emerged from the risk analysis with WWF Risk Filter Tool. The water consumption decreased respect previous year. The site is using a closed loop system implemented to optimize the water consumption for the cooling of injection molding activities. Water withdrawn has been lower respect previous year due to market fluctuations.

Row 4

(9.3.1.1) Facility reference number

Select from:

✓ Facility 4

(9.3.1.2) Facility name (optional)

Aptar Chonburi

(9.3.1.3) Value chain stage

Select from:

✓ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility

Select all that apply

- ✓ Dependencies
- ✓ Impacts
- Risks
- Opportunities

(9.3.1.5) Withdrawals or discharges in the reporting year

Select from:

✓ Yes, withdrawals and discharges

(9.3.1.7) Country/Area & River basin

Afghanistan

☑ Other, please specify: Gulf of Thailand

(9.3.1.8) Latitude

13.458

(9.3.1.9) Longitude

101.046
(9.3.1.10) Located in area with water stress
Select from: ✓ Yes
(9.3.1.13) Total water withdrawals at this facility (megaliters)
7.24
(9.3.1.14) Comparison of total withdrawals with previous reporting year
Select from: ☑ About the same
(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
(9.3.1.16) Withdrawals from brackish surface water/seawater
0
(9.3.1.17) Withdrawals from groundwater - renewable
0
(9.3.1.18) Withdrawals from groundwater - non-renewable
0

(9.3.1.19) Withdrawals from produced/entrained water

(9.3.1.20) Withdrawals from third party sources
7.24
(9.3.1.21) Total water discharges at this facility (megaliters)
7.13
(9.3.1.22) Comparison of total discharges with previous reporting year
Select from: ☑ About the same
(9.3.1.23) Discharges to fresh surface water
o
(9.3.1.24) Discharges to brackish surface water/seawater
0
(9.3.1.25) Discharges to groundwater
o
(9.3.1.26) Discharges to third party destinations
7.13
(9.3.1.27) Total water consumption at this facility (megaliters)
0.1
(9.3.1.28) Comparison of total consumption with previous reporting year
Select from:

☑ About the same

(9.3.1.29) Please explain

Aptar Chonburi, as into the previous reporting year, is part of the list of water stressed areas emerged from the risk analysis with WWF Risk Filter Tool. The water consumption is about the same, the site is using a closed loop system implemented to optimize the water consumption for the cooling of injection molding activities. The absolute quantity of water withdrawal is about the same respect the previous reporting year due to no big market fluctuations.

Row 5

(9.3.1.1) Facility reference number

Select from:

✓ Facility 5

(9.3.1.2) Facility name (optional)

Aptar Pescara

(9.3.1.3) Value chain stage

Select from:

✓ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility

Select all that apply

- Dependencies
- ✓ Impacts
- Risks
- Opportunities

(9.3.1.5) Withdrawals or discharges in the reporting year

Select from:

✓ Yes, withdrawals and discharges
(9.3.1.7) Country/Area & River basin
Zimbabwe ☑ Other, please specify
(9.3.1.8) Latitude
42.304
(9.3.1.9) Longitude
14.052
(9.3.1.10) Located in area with water stress
Select from: ✓ Yes
(9.3.1.13) Total water withdrawals at this facility (megaliters)
3.92
(9.3.1.14) Comparison of total withdrawals with previous reporting year
Select from: ✓ About the same
(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
(9.3.1.16) Withdrawals from brackish surface water/seawater

(9.3.1.17) Withdrawals from groundwater - renewable

0

(9.3.1.18) Withdrawals from groundwater - non-renewable

0

(9.3.1.19) Withdrawals from produced/entrained water

 \mathcal{C}

(9.3.1.20) Withdrawals from third party sources

3.92

(9.3.1.21) Total water discharges at this facility (megaliters)

3.92

(9.3.1.22) Comparison of total discharges with previous reporting year

Select from:

☑ About the same

(9.3.1.23) Discharges to fresh surface water

0

(9.3.1.24) Discharges to brackish surface water/seawater

0

(9.3.1.25) Discharges to groundwater

(9.3.1.26) Discharges to third party destinations

3.92

(9.3.1.27) Total water consumption at this facility (megaliters)

0

(9.3.1.28) Comparison of total consumption with previous reporting year

Select from:

✓ About the same

(9.3.1.29) Please explain

Aptar Pescara, as into the previous reporting year, is part of the list of water stressed areas emerged from the risk analysis with WWF Risk Filter Tool. The water consumption is about the same, the site is using a closed loop system implemented to optimize the water consumption for the cooling of injection molding activities. The absolute quantity of water withdrawal is about the same respect the previous reporting year due to no big market fluctuations.

Row 7

(9.3.1.1) Facility reference number

Select from:

✓ Facility 6

(9.3.1.2) Facility name (optional)

Aptar Camacari

(9.3.1.3) Value chain stage

Select from:

✓ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility

Select all that apply

- Dependencies
- ✓ Impacts
- Risks
- Opportunities

(9.3.1.5) Withdrawals or discharges in the reporting year

Select from:

✓ Yes, withdrawals and discharges

(9.3.1.7) Country/Area & River basin

Zimbabwe

✓ Other, please specify

(9.3.1.8) Latitude

-12.733

(9.3.1.9) Longitude

-38.311

(9.3.1.10) Located in area with water stress

Select from:

Yes

(9.3.1.13) Total water withdrawals at this facility (megaliters)

0.53

(9.3.1.14) Comparison of total withdrawals with previous reporting year
Select from: ☑ About the same
(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
(9.3.1.16) Withdrawals from brackish surface water/seawater
o
(9.3.1.17) Withdrawals from groundwater - renewable
o
(9.3.1.18) Withdrawals from groundwater - non-renewable
o
(9.3.1.19) Withdrawals from produced/entrained water
o
(9.3.1.20) Withdrawals from third party sources
0.53
(9.3.1.21) Total water discharges at this facility (megaliters)
0.1
(9.3.1.22) Comparison of total discharges with previous reporting year
Select from:

✓ About the same

(9.3.1.23) Discharges to fresh surface water

0

(9.3.1.24) Discharges to brackish surface water/seawater

0

(9.3.1.25) Discharges to groundwater

0

(9.3.1.26) Discharges to third party destinations

0.1

(9.3.1.27) Total water consumption at this facility (megaliters)

0.43

(9.3.1.28) Comparison of total consumption with previous reporting year

Select from:

About the same

(9.3.1.29) Please explain

Aptar Camacari, as into the previous reporting year, is part of the list of water stressed areas emerged from the risk analysis with WWF Risk Filter Tool. The water consumption is about the same, the site is using a closed loop system implemented to optimize the water consumption for the cooling of injection molding activities. The absolute quantity of water withdrawal is about the same respect the previous reporting year due to no big market fluctuations.

Row 8

(9.3.1.1) Facility reference number

Select from:

✓ Facility 7

(9.3.1.2) Facility name (optional)

Aptar Suzhou

(9.3.1.3) Value chain stage

Select from:

✓ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility

Select all that apply

- ✓ Dependencies
- Impacts
- ✓ Risks
- Opportunities

(9.3.1.5) Withdrawals or discharges in the reporting year

Select from:

✓ Yes, withdrawals and discharges

(9.3.1.7) Country/Area & River basin

Zimbabwe

✓ Other, please specify

(9.3.1.8) Latitude

31.283

(9.3.1.9) Longitude
120.769
(9.3.1.10) Located in area with water stress
Select from: ✓ Yes
(9.3.1.13) Total water withdrawals at this facility (megaliters)
50.95
(9.3.1.14) Comparison of total withdrawals with previous reporting year
Select from: ✓ About the same
(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
o
(9.3.1.16) Withdrawals from brackish surface water/seawater
o
(9.3.1.17) Withdrawals from groundwater - renewable
o
(9.3.1.18) Withdrawals from groundwater - non-renewable
o
(9.3.1.19) Withdrawals from produced/entrained water

(9.3.1.20)	Withdrawals from third party sources
------------	--------------------------------------

50.95

(9.3.1.21) Total water discharges at this facility (megaliters)

50.95

(9.3.1.22) Comparison of total discharges with previous reporting year

Select from:

✓ About the same

(9.3.1.23) Discharges to fresh surface water

0

(9.3.1.24) Discharges to brackish surface water/seawater

0

(9.3.1.25) Discharges to groundwater

0

(9.3.1.26) Discharges to third party destinations

50.95

(9.3.1.27) Total water consumption at this facility (megaliters)

0

(9.3.1.28) Comparison of total consumption with previous reporting year

Select from:

☑ About the same

(9.3.1.29) Please explain

Aptar Suzhou, as into the previous reporting year, is part of the list of water stressed areas emerged from the risk analysis with WWF Risk Filter Tool. The water consumption is about the same, the site is using a closed loop system implemented to optimize the water consumption for the cooling of injection molding activities. The absolute quantity of water withdrawal is about the same respect the previous reporting year due to no big market fluctuations.

Row 9

(9.3.1.1) Facility reference number

Select from:

✓ Facility 8

(9.3.1.2) Facility name (optional)

Aptar Torello

(9.3.1.3) Value chain stage

Select from:

✓ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility

Select all that apply

- Dependencies
- ✓ Impacts
- ✓ Risks
- Opportunities

(9.3.1.5) Withdrawals or discharges in the reporting year

Select from: ✓ Yes, withdrawals and discharges
(9.3.1.7) Country/Area & River basin
Spain ☑ Other, please specify :Cataluna
(9.3.1.8) Latitude
13.443
(9.3.1.9) Longitude
101.019
(9.3.1.10) Located in area with water stress
Select from: ✓ Yes
(9.3.1.13) Total water withdrawals at this facility (megaliters)
0.41
(9.3.1.14) Comparison of total withdrawals with previous reporting year
Select from: ✓ Lower
(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

(9.3.1.16) Withdrawals from brackish surface water/seawater

(9.3.1.17) Withdrawals from groundwater - renewable

0

(9.3.1.18) Withdrawals from groundwater - non-renewable

0

(9.3.1.19) Withdrawals from produced/entrained water

0

(9.3.1.20) Withdrawals from third party sources

0.41

(9.3.1.21) Total water discharges at this facility (megaliters)

0.41

(9.3.1.22) Comparison of total discharges with previous reporting year

Select from:

✓ Lower

(9.3.1.23) Discharges to fresh surface water

0

(9.3.1.24) Discharges to brackish surface water/seawater

0

(9.3.1.25) Discharges to groundwater

(9.3.1.26) Discharges to third party destinations

0.41

(9.3.1.27) Total water consumption at this facility (megaliters)

0

(9.3.1.28) Comparison of total consumption with previous reporting year

Select from:

✓ Lower

(9.3.1.29) Please explain

Aptar Torello has been confirmed for the reporting year into the list of water stressed areas emerged from the risk analysis with WWF Risk Filter Tool. The water consumption is neutral thanks to the use of closed loop system implemented to optimize the water consumption for the cooling of injection molding activities. Water withdrawn and water discharged has been lower respect previous year due to market fluctuations.

[Add row]

(9.3.2) For the facilities in your direct operations referenced in 9.3.1, what proportion of water accounting data has been third party verified?

Water withdrawals - total volumes

(9.3.2.1) % verified

Select from:

☑ 76-100

(9.3.2.2) Verification standard used

ISO 14064-1

Water withdrawals - volume by source

(9.3.2.1) % verified

Select from:

☑ 76-100

(9.3.2.2) Verification standard used

ISO 14064-1

Water withdrawals – quality by standard water quality parameters

(9.3.2.1) % verified

Select from:

☑ 76-100

(9.3.2.2) Verification standard used

Each site is in compliance with local regulatory standard about water discharges in terms of quality by standard water quality parameters. In addition, we also have ISO 14001 management system and an Internal EHS management system that is providing internal audit / third party audit for the verification of regulatory aspects linked to the water discharge quality standard.

Water discharges - total volumes

(9.3.2.1) % verified

Select from:

✓ 76-100

(9.3.2.2) Verification standard used

ISO 14064-1

Water discharges – volume by destination

(9.3.2.1) % verified

Select from:

☑ 76-100

(9.3.2.2) Verification standard used

ISO 14064-1

Water discharges – volume by final treatment level

(9.3.2.1) % verified

Select from:

☑ 76-100

(9.3.2.2) Verification standard used

ISO 14064-1

Water discharges - quality by standard water quality parameters

(9.3.2.1) % verified

Select from:

☑ 76-100

(9.3.2.2) Verification standard used

Each site is in compliance with local regulatory standard about water discharges in terms of quality by standard water quality parameters. In addition, we also have ISO 14001 management system and an Internal EHS management system that is providing internal audit / third party audit for the verification of regulatory aspects linked to the water discharge quality standard.

Water consumption - total volume

(9.3.2.1) % verified

Select from:

☑ 76-100

(9.3.2.2) Verification standard used

ISO 14064-1 [Fixed row]

(9.4) Could any of your facilities reported in 9.3.1 have an impact on a requesting CDP supply chain member?

Select from:

☑ Yes, CDP supply chain members buy goods or services from facilities listed in 9.3.1

(9.4.1) Indicate which of the facilities referenced in 9.3.1 could impact a requesting CDP supply chain member.

Row 1

(9.4.1.1) Facility reference number

Select from:

✓ Facility 1

(9.4.1.2) **Facility name**

Aptar Queretaro

(9.4.1.3) Requesting member

Select from:

(9.4.1.4) Description of potential impact on member

Aptar site implemented water contingency plan in order to minimize as much as possible the risk of the business interruption due to water scarcity and drought. No particular impact has been identified for the customer.

(9.4.1.5) Comment

Aptar process is not a water intensive process, but at the same time in our operations we implemented water conservation measures and circular solutions to reuse of water in our processes.

Row 2

(9.4.1.1) Facility reference number

Select from:

✓ Facility 2

(9.4.1.2) Facility name

Aptar Queretaro

(9.4.1.3) Requesting member

Select from:

(9.4.1.4) Description of potential impact on member

Aptar site implemented water contingency plan in order to minimize as much as possible the risk of the business interruption due to water scarcity and drought. No particular impact has been identified for the customer.

(9.4.1.5) Comment

Aptar process is not a water intensive process, but at the same time in our operations we implemented water conservation measures and circular solutions to reuse of water in our processes.

Row 3

(9.4.1.1) Facility reference number

Select from:

✓ Facility 3

(9.4.1.2) **Facility name**

Aptar Chieti

(9.4.1.3) Requesting member

Select from:

(9.4.1.4) Description of potential impact on member

Aptar site implemented water contingency plan in order to minimize as much as possible the risk of the business interruption due to water scarcity and drought. No particular impact has been identified for the customer.

(9.4.1.5) Comment

Aptar process is not a water intensive process, but at the same time in our operations we implemented water conservation measures and circular solutions to reuse of water in our processes.

Row 4

(9.4.1.1) Facility reference number

Select from:

✓ Facility 4

(9.4.1.2) Facility name

Aptar Hyderabad

(9.4.1.3) Requesting member

Select from:

(9.4.1.4) Description of potential impact on member

Aptar site implemented water contingency plan in order to minimize as much as possible the risk of the business interruption due to water scarcity and drought. No particular impact has been identified for the customer.

(9.4.1.5) Comment

Aptar process is not a water intensive process, but at the same time in our operations we implemented water conservation measures and circular solutions to reuse of water in our processes.

Row 5

(9.4.1.1) Facility reference number

Select from:

✓ Facility 5

(9.4.1.2) Facility name

Aptar Pescara

(9.4.1.3) Requesting member

Select from:

(9.4.1.4) Description of potential impact on member

Aptar site implemented water contingency plan in order to minimize as much as possible the risk of the business interruption due to water scarcity and drought. No particular impact has been identified for the customer.

(9.4.1.5) Comment

Aptar process is not a water intensive process, but at the same time in our operations we implemented water conservation measures and circular solutions to reuse of water in our processes.

Row 6

(9.4.1.1) Facility reference number

Select from:

✓ Facility 6

(9.4.1.2) Facility name

Aptar Torello

(9.4.1.3) Requesting member

Select from:

(9.4.1.4) Description of potential impact on member

Aptar site implemented water contingency plan in order to minimize as much as possible the risk of the business interruption due to water scarcity and drought. No particular impact has been identified for the customer.

(9.4.1.5) Comment

Aptar process is not a water intensive process, but at the same time in our operations we implemented water conservation measures and circular solutions to reuse of water in our processes.

Row 7

(9.4.1.1) Facility reference number

Select from:

✓ Facility 7

(9.4.1.2) Facility name

Aptar Suzhou

(9.4.1.3) Requesting member

Select from:

(9.4.1.4) Description of potential impact on member

Aptar site implemented water contingency plan in order to minimize as much as possible the risk of the business interruption due to water scarcity and drought. No particular impact has been identified for the customer.

(9.4.1.5) Comment

Aptar process is not a water intensive process, but at the same time in our operations we implemented water conservation measures and circular solutions to reuse of water in our processes.

Row 8

(9.4.1.1) Facility reference number

Select from:

✓ Facility 8

(9.4.1.2) Facility name

Aptar Suzhou

(9.4.1.3) Requesting member

Select from:

(9.4.1.4) Description of potential impact on member

Aptar site implemented water contingency plan in order to minimize as much as possible the risk of the business interruption due to water scarcity and drought. No particular impact has been identified for the customer.

(9.4.1.5) Comment

Aptar process is not a water intensive process, but at the same time in our operations we implemented water conservation measures and circular solutions to reuse of water in our processes.

Row 9

(9.4.1.1) Facility reference number

Select from:

✓ Facility 9

(9.4.1.2) Facility name

Aptar Chieti

(9.4.1.3) Requesting member

Select from:

(9.4.1.4) Description of potential impact on member

Aptar site implemented water contingency plan in order to minimize as much as possible the risk of the business interruption due to water scarcity and drought. No particular impact has been identified for the customer.

(9.4.1.5) Comment

Aptar process is not a water intensive process, but at the same time in our operations we implemented water conservation measures and circular solutions to reuse of water in our processes.

Row 10

(9.4.1.1) Facility reference number

Select from:

✓ Facility 10

(9.4.1.2) Facility name

(9.4.1.3) Requesting member

Select from:

(9.4.1.4) Description of potential impact on member

Aptar site implemented water contingency plan in order to minimize as much as possible the risk of the business interruption due to water scarcity and drought. No particular impact has been identified for the customer.

(9.4.1.5) Comment

Aptar process is not a water intensive process, but at the same time in our operations we implemented water conservation measures and circular solutions to reuse of water in our processes.

Row 11

(9.4.1.1) Facility reference number

Select from:

✓ Facility 11

(9.4.1.2) **Facility name**

Aptar Pescara

(9.4.1.3) Requesting member

Select from:

(9.4.1.4) Description of potential impact on member

Aptar site implemented water contingency plan in order to minimize as much as possible the risk of the business interruption due to water scarcity and drought. No particular impact has been identified for the customer.

(9.4.1.5) Comment

Aptar process is not a water intensive process, but at the same time in our operations we implemented water conservation measures and circular solutions to reuse of water in our processes.

Row 12

(9.4.1.1) Facility reference number

Select from:

✓ Facility 12

(9.4.1.2) Facility name

Aptar Chieti

(9.4.1.3) Requesting member

Select from:

(9.4.1.4) Description of potential impact on member

Aptar site implemented water contingency plan in order to minimize as much as possible the risk of the business interruption due to water scarcity and drought. No particular impact has been identified for the customer.

(9.4.1.5) Comment

Aptar process is not a water intensive process, but at the same time in our operations we implemented water conservation measures and circular solutions to reuse of water in our processes.

Row 13

(9.4.1.1) Facility reference number

Select from:

✓ Facility 13

(9.4.1.2) **Facility name**

Aptar Hyderabad

(9.4.1.3) Requesting member

Select from:

(9.4.1.4) Description of potential impact on member

Aptar site implemented water contingency plan in order to minimize as much as possible the risk of the business interruption due to water scarcity and drought. No particular impact has been identified for the customer.

(9.4.1.5) Comment

Aptar process is not a water intensive process, but at the same time in our operations we implemented water conservation measures and circular solutions to reuse of water in our processes.

Row 14

(9.4.1.1) Facility reference number

Select from:

✓ Facility 14

(9.4.1.2) **Facility name**

Aptar Chieti

(9.4.1.3) Requesting member

Select from:

(9.4.1.4) Description of potential impact on member

Aptar site implemented water contingency plan in order to minimize as much as possible the risk of the business interruption due to water scarcity and drought. No particular impact has been identified for the customer.

(9.4.1.5) Comment

Aptar process is not a water intensive process, but at the same time in our operations we implemented water conservation measures and circular solutions to reuse of water in our processes.

Row 15

(9.4.1.1) Facility reference number

Select from:

✓ Facility 15

(9.4.1.2) Facility name

Aptar Queretaro

(9.4.1.3) Requesting member

Select from:

(9.4.1.4) Description of potential impact on member

Aptar site implemented water contingency plan in order to minimize as much as possible the risk of the business interruption due to water scarcity and drought. No particular impact has been identified for the customer.

(9.4.1.5) Comment

Aptar process is not a water intensive process, but at the same time in our operations we implemented water conservation measures and circular solutions to reuse of water in our processes.

Row 16

(9.4.1.1) Facility reference number

Select from:

✓ Facility 16

(9.4.1.2) Facility name

Aptar Chieti

(9.4.1.3) Requesting member

Select from:

(9.4.1.4) Description of potential impact on member

Aptar site implemented water contingency plan in order to minimize as much as possible the risk of the business interruption due to water scarcity and drought. No particular impact has been identified for the customer.

(9.4.1.5) Comment

Aptar process is not a water intensive process, but at the same time in our operations we implemented water conservation measures and circular solutions to reuse of water in our processes.

Row 17

(9.4.1.1) Facility reference number

Select from:

✓ Facility 17

(9.4.1.2) Facility name

Aptar Hyderabad

(9.4.1.3) Requesting member

Select from:

(9.4.1.4) Description of potential impact on member

Aptar site implemented water contingency plan in order to minimize as much as possible the risk of the business interruption due to water scarcity and drought. No particular impact has been identified for the customer.

(9.4.1.5) Comment

Aptar process is not a water intensive process, but at the same time in our operations we implemented water conservation measures and circular solutions to reuse of water in our processes.

Row 18

(9.4.1.1) Facility reference number

Select from:

✓ Facility 18

(9.4.1.2) Facility name

Aptar Queretaro

(9.4.1.3) Requesting member

Select from:

(9.4.1.4) Description of potential impact on member

Aptar site implemented water contingency plan in order to minimize as much as possible the risk of the business interruption due to water scarcity and drought. No particular impact has been identified for the customer.

(9.4.1.5) Comment

Aptar process is not a water intensive process, but at the same time in our operations we implemented water conservation measures and circular solutions to reuse of water in our processes.

Row 19

(9.4.1.1) Facility reference number

Select from:

✓ Facility 19

(9.4.1.2) Facility name

Aptar Torello

(9.4.1.3) Requesting member

Select from:

(9.4.1.4) Description of potential impact on member

Aptar site implemented water contingency plan in order to minimize as much as possible the risk of the business interruption due to water scarcity and drought. No particular impact has been identified for the customer.

(9.4.1.5) Comment

Aptar process is not a water intensive process, but at the same time in our operations we implemented water conservation measures and circular solutions to reuse of water in our processes.

Row 20

(9.4.1.1) Facility reference number

Select from:

✓ Facility 20

(9.4.1.2) Facility name

Aptar Suzhou

(9.4.1.3) Requesting member

Select from:

(9.4.1.4) Description of potential impact on member

Aptar site implemented water contingency plan in order to minimize as much as possible the risk of the business interruption due to water scarcity and drought. No particular impact has been identified for the customer.

(9.4.1.5) Comment

Aptar process is not a water intensive process, but at the same time in our operations we implemented water conservation measures and circular solutions to reuse of water in our processes.

Row 21

(9.4.1.1) Facility reference number

Select from:

✓ Facility 21

(9.4.1.2) Facility name

Aptar Chieti

(9.4.1.3) Requesting member

Select from:

(9.4.1.4) Description of potential impact on member

Aptar site implemented water contingency plan in order to minimize as much as possible the risk of the business interruption due to water scarcity and drought. No particular impact has been identified for the customer.

(9.4.1.5) Comment

Aptar process is not a water intensive process, but at the same time in our operations we implemented water conservation measures and circular solutions to reuse of water in our processes.

Row 22

(9.4.1.1) Facility reference number

Select from:

✓ Facility 22

(9.4.1.2) Facility name

Aptar Suzhou

(9.4.1.3) Requesting member

Select from:

(9.4.1.4) Description of potential impact on member

Aptar site implemented water contingency plan in order to minimize as much as possible the risk of the business interruption due to water scarcity and drought. No particular impact has been identified for the customer.

(9.4.1.5) Comment

Aptar process is not a water intensive process, but at the same time in our operations we implemented water conservation measures and circular solutions to reuse of water in our processes.

Row 23

(9.4.1.1) Facility reference number

Select from:

✓ Facility 23

(9.4.1.2) Facility name

Aptar Chieti

(9.4.1.3) Requesting member

Select from:

(9.4.1.4) Description of potential impact on member

Aptar site implemented water contingency plan in order to minimize as much as possible the risk of the business interruption due to water scarcity and drought. No particular impact has been identified for the customer.

(9.4.1.5) Comment

Aptar process is not a water intensive process, but at the same time in our operations we implemented water conservation measures and circular solutions to reuse of water in our processes.

[Add row]

(9.5) Provide a figure for your organization's total water withdrawal efficiency.

(9.5.1) Revenue (currency)

284486844

(9.5.2) Total water withdrawal efficiency

71103.94

(9.5.3) Anticipated forward trend

Forward trend is under investigation but the expectation is that our withdrawal efficiency will increase thanks to the water conservation measures at our sites. [Fixed row]

(9.12) Provide any available water intensity values for your organization's products or services.

Row 1

(9.12.1) Product name

The finished products are dispensing systems produced in Aptar sites for CDP customer Johnson & Johnson

(9.12.2) Water intensity value

0.301

(9.12.3) Numerator: Water aspect

Select from:

✓ Water consumed

(9.12.4) Denominator

Total number of finished products produced as invoiced quantities from Aptar sites listed

(9.12.5) Comment

The water intensity indicator is based on the calculation mass based for water consumed by plants. The total water consumed has been allocated considering the tons of total finished products produced by the plant and tons of finished products produced for CDP customer. The water intensity indicator is expressed as m3 per single tons of invoiced quantities. Note: the water intensity indicator is calculated only for the Aptar sites located in the water stressed areas and where we identified water consumption.

Row 2

(9.12.1) Product name

The finished products are dispensing systems produced in Aptar sites for CDP customer Unilever

(9.12.2) Water intensity value

2.5

(9.12.3) Numerator: Water aspect

Select from:

Water consumed

(9.12.4) Denominator

Total number of finished products produced as invoiced quantities from Aptar sites listed

(9.12.5) Comment

The water intensity indicator is based on the calculation mass based for water consumed by plants. The total water consumed has been allocated considering the tons of total finished products produced by the plant and tons of finished products produced for CDP customer. The water intensity indicator is expressed as m3 per single tons of invoiced quantities. Note: the water intensity indicator is calculated only for the Aptar sites located in the water stressed areas and where we identified water consumption.

Row 3

(9.12.1) **Product name**

The finished products are dispensing systems produced in Aptar sites for CDP customer L'Oréal

(9.12.2) Water intensity value

0.68

(9.12.3) Numerator: Water aspect

Select from:

Water consumed

(9.12.4) Denominator

Total number of finished products produced as invoiced quantities from Aptar sites listed

(9.12.5) Comment

The water intensity indicator is based on the calculation mass based for water consumed by plants. The total water consumed has been allocated considering the tons of total finished products produced by the plant and tons of finished products produced for CDP customer. The water intensity indicator is expressed as m3 per single tons of invoiced quantities. Note: the water intensity indicator is calculated only for the Aptar sites located in the water stressed areas and where we identified water consumption.

Row 4

(9.12.1) Product name

The finished products are dispensing systems produced in Aptar sites for CDP customer SC Johnson

(9.12.2) Water intensity value

0.03

(9.12.3) Numerator: Water aspect

Select from:

Water consumed

(9.12.4) Denominator

Total number of finished products produced as invoiced quantities from Aptar sites listed

(9.12.5) Comment

The water intensity indicator is based on the calculation mass based for water consumed by plants. The total water consumed has been allocated considering the tons of total finished products produced by the plant and tons of finished products produced for CDP customer. The water intensity indicator is expressed as m3 per single tons of invoiced quantities. Note: the water intensity indicator is calculated only for the Aptar sites located in the water stressed areas and where we identified water consumption.

Row 5

(9.12.1) **Product name**

The finished products are dispensing systems produced in Aptar sites for CDP customer Coca Cola

(9.12.2) Water intensity value

0.98

(9.12.3) Numerator: Water aspect

Select from:

✓ Water consumed

(9.12.4) Denominator

Total number of finished products produced as invoiced quantities from Aptar sites listed

(9.12.5) Comment

The water intensity indicator is based on the calculation mass based for water consumed by plants. The total water consumed has been allocated considering the tons of total finished products produced by the plant and tons of finished products produced for CDP customer. The water intensity indicator is expressed as m3 per single tons of invoiced quantities. Note: the water intensity indicator is calculated only for the Aptar sites located in the water stressed areas and where we identified water consumption.

Row 6

(9.12.1) Product name

The finished products are dispensing systems produced in Aptar sites for CDP customer Shisheido

(9.12.2) Water intensity value

0.25

(9.12.3) Numerator: Water aspect

Select from:

Water consumed

(9.12.4) Denominator

Total number of finished products produced as invoiced quantities from Aptar sites listed

(9.12.5) Comment

The water intensity indicator is based on the calculation mass based for water consumed by plants. The total water consumed has been allocated considering the tons of total finished products produced by the plant and tons of finished products produced for CDP customer. The water intensity indicator is expressed as m3 per single tons of invoiced quantities. Note: the water intensity indicator is calculated only for the Aptar sites located in the water stressed areas and where we identified water consumption.

Row 7

(9.12.1) Product name

The finished products are dispensing systems produced in Aptar sites for CDP customer EsteeLauder

(9.12.2) Water intensity value

0.04

(9.12.3) Numerator: Water aspect

Select from:

✓ Water consumed

(9.12.4) Denominator

Total number of finished products produced as invoiced quantities from Aptar sites listed

(9.12.5) Comment

The water intensity indicator is based on the calculation mass based for water consumed by plants. The total water consumed has been allocated considering the tons of total finished products produced by the plant and tons of finished products produced for CDP customer. The water intensity indicator is expressed as m3 per single tons of invoiced quantities. Note: the water intensity indicator is calculated only for the Aptar sites located in the water stressed areas and where we identified water consumption.

[Add row]

(9.13) Do any of your products contain substances classified as hazardous by a regulatory authority?

(9.13.1) Products contain hazardous substances

Select from:

✓ No

(9.13.2) Comment

Aptar produces plastic packaging, the raw materials used in our processes are not classified as compounds exhibiting intrinsically negative properties such as being persistent, bioaccumulative and toxic (PBT), very persistent and very bioaccumulative (vPvB), carcinogenic, mutagenic and toxic for reproduction (CMR), or endocrine disruptors (ED) (ZDHC, 2022).

[Fixed row]

(9.14) Do you classify any of your current products and/or services as low water impact?

(9.14.1) Products and/or services classified as low water impact

Select from:

Yes

(9.14.2) Definition used to classify low water impact

Our Product Sustainability Team is promoting conversion plan on which our efforts are focused on the use of recycled content material (mostly based on the mechanical recycling). This aspect allow to produce finished products that we can consider "low water impact" at upstream value chain becasue the fact that we are not using conventional materials can demonstrate a lower use and consumption of water to produce plastics, metals etc.... In addition, our GMI and Marketing are investigating also the reusability of our products, so, in this case we have water saving always into the upstream value chain thanks to the reuse and refilling of products. Further investigation is also focused on the use phase of product from end user perspective. Our definition used to classify low water impact is "Lifecycle water use for the new material or new product is lower than the conventional product or material. This criteria applies to our upstream value chain and intensity is considered."

(9.14.4) Please explain

Our Product Sustainability Team is promoting conversion plan on which our efforts are focused on the use of recycled content material (mostly based on the mechanical recycling). This aspect allow to produce finished products that we can consider "low water impact" at upstream value chain becasue the fact that we are not using conventional materials can demonstrate a lower use and consumption of water to produce plastics, metals etc.... In addition, our GMI and Marketing are investigating also the reusability of our products, so, in this case we have water saving always into the upstream value chain thanks to the reuse and refilling of products. Further investigation is also focused on the use phase of product from end user perspective.

[Fixed row]

(9.15.1) Indicate whether you have targets relating to water pollution, water withdrawals, WASH, or other water-related categories.

Water pollution

(9.15.1.1) Target set in this category

Select from:

✓ No, but we plan to within the next two years

(9.15.1.2) Please explain

Water pollution target will be defined during next reporting years and it is evaluated for regulatory compliance and SBTN after materiality assessment about pressure on nature due to wastewater pollution.

Water withdrawals

(9.15.1.1) Target set in this category

Select from:

✓ Yes

Water, Sanitation, and Hygiene (WASH) services

(9.15.1.1) Target set in this category

Sel	lect	from:	
\mathbf{c}	$-c_{\iota}$	II OIII.	

Yes

Other

(9.15.1.1) Target set in this category

Select from:

Yes

[Fixed row]

(9.15.2) Provide details of your water-related targets and the progress made.

Row 1

(9.15.2.1) Target reference number

Select from:

✓ Target 1

(9.15.2.2) Target coverage

Select from:

✓ Organization-wide (direct operations only)

(9.15.2.3) Category of target & Quantitative metric

Monitoring of water use

✓ Increase in the proportion of sites monitoring water discharge total volumes

(9.15.2.4) Date target was set

12/31/2021

(9.15.2.5) End date of base year 12/30/2022 (9.15.2.6) Base year figure 0 (9.15.2.7) End date of target year 12/30/2030 (9.15.2.8) Target year figure 50 (9.15.2.9) Reporting year figure 0 (9.15.2.10) Target status in reporting year Select from: Underway (9.15.2.11) % of target achieved relative to base year 0 (9.15.2.12) Global environmental treaties/initiatives/ frameworks aligned with or supported by this target Select all that apply

✓ Science Based Targets for Nature

(9.15.2.13) Explain target coverage and identify any exclusions

During reporting year 2022, our organization set a target to increase the proportion of sites monitoring water discharges volumes by 50% by 2027. Progress is monitored using the number of water metering installed in our operations to track megaliters as the unit of measurement for the water discharged. This target applies company-wide with no exclusions in our direct operations, and is expected to extend to our new acquisitions during next years. The motivation for the target stemmed from a corporate objective on increase reliability of water data that will drive future water conservation measures in our sites, while the target is also in alignment with our water policy commitment to increase process efficiency from reliable baseline data. As we have just started it, we are underway to meet this target by 2030

(9.15.2.14) Plan for achieving target, and progress made to the end of the reporting year

The plan for achieving target is to identify dedicated capex for the water management supporting the new Aptar road map for the biodiversity, especially for the SBTN target related to the freshwater. At the end of this reporting year we have not made progress to this target due to the fact that we are still working on the road map implementation,.

(9.15.2.16) Further details of target

The target will be achieved once sites installed water monitoring systems connected into the internal management system tool that will allow real time monitoring of parameters.

Row 2

(9.15.2.1) Target reference number

Select from:

✓ Target 2

(9.15.2.2) Target coverage

Select from:

✓ Organization-wide (direct operations only)

(9.15.2.3) Category of target & Quantitative metric

Other

☑ Other, please specify: Number of water audit completed in our operations

(9.15.2.4) Date target was set

(9.15.2.5) End date of base year

08/11/2022

(9.15.2.6) Base year figure

0

(9.15.2.7) End date of target year

12/30/2025

(9.15.2.8) Target year figure

8

(9.15.2.9) Reporting year figure

3

(9.15.2.10) Target status in reporting year

Select from:

Revised

(9.15.2.11) % of target achieved relative to base year

38

(9.15.2.12) Global environmental treaties/initiatives/ frameworks aligned with or supported by this target

Select all that apply

✓ Sustainable Development Goal 6

(9.15.2.13) Explain target coverage and identify any exclusions

During reporting year, our organization revised a target to complete water audit (secondary part) in operations located in water stressed areas (8 sites identified and listed by 2025). Progress is monitored using the number of water audit report released in our operations to track opportunities and water conservation measures at local site. This target applies only to the sites located in water stressed areas (scarcity) from water-related risk assessment and is expected to extend to new sites if risk analysis will be updated during next years. The motivation for the target stemmed from a corporate objective on the identification of water conservation measures and opportunities in our sites that can drive the reduction of consumptions, process efficiency and water quality. As we have just started it, we are underway to meet this target by 2025. Has been excluded offices where we do not have intensive water consumption.

(9.15.2.14) Plan for achieving target, and progress made to the end of the reporting year

Dedicated budget for the water audit onsite at list of sites identified in water stressed areas (water scarcity). The progress made to the end of the current reporting year is 3 sites audited on 8 sites identified.

(9.15.2.16) Further details of target

Please note that each year, thanks to the updating of water risk assessment, the list of sites located in water stressed areas can be updated. [Add row]

C10. Environmental performance - Plastics

(10.1) Do you have plastics-related targets, and if so what type?

(10.1.1) Targets in place

Select from:

✓ Yes

(10.1.2) Target type and metric

Plastic packaging

- ☑ Eliminate single-use plastic packaging
- ☑ Reduce or eliminate the use of hazardous substances
- ☑ Eliminate problematic and unnecessary plastic packaging
- ✓ Increase the proportion of plastic packaging that is reusable
- ☑ Reduce the total weight of virgin content in plastic packaging
- ☑ Reduce the total weight of plastic packaging used and/or produced
- ✓ Increase the proportion of post-consumer recycled content in plastic packaging
- ✓ Increase the proportion of plastic packaging that is recyclable in practice and at scale
- ✓ Increase the proportion of renewable content from responsibly managed sources in plastic packaging

(10.1.3) Please explain

Aptar believes the packaging industry must move beyond the "make, use, dispose" behaviors of the past and actively work toward a circular economy. To this end, our approach to improving product sustainability is built on four foundational pillars. Aptar's near-term product sustainability goals for 2025 include: achieve 10% recycled resin content in personal care, beauty, home care and food/beverage solutions; reach 100% recyclable, reusable or compostable solutions in personal care, beauty, home care, and food/beverage solutions, eliminate 100% of formaldehyde (POM), styrene (ABS, SAN), vinyl chloride (PVC) and Bisphenol (PC, epoxy) in personal care, beauty, home care, and food/beverage solutions. We completed more than 170 lifecycle analysis studies during the year, further evidence that sustainability, as a key to circular design, is being considered more and more during product development across all three segments of Aptar's business. In addition,

our Material Science and Innovation Excellence teams have evaluated dozens of new and emerging materials that could give greater choice to Aptar customers, enabling them to move closer to their ambitions for more sustainable packaging. In 2023, Aptar continued the conversion to recycled resin content in our personal care, beauty, home care, food and beverage solutions, ending the year with 1.64% of our total resin volume sales being recycled resin content*. Increasing the volume of recycled materials in the future is a key priority across our entire product portfolio. Currently, the biggest challenge is the lack of food-grade, post-consumer recycled resin on the market. Greater availability is expected in the coming years, which will support our progress. In 2023, 69.2% of our solutions in personal care, beauty, home care, and food/beverage were recyclable, reusable or compostable according to the Ellen MacArthur Foundation guidelines. We remain on track with an increasing number of our products being recyclable in these categories. Due to report timing and sales volumes, the introduction of products like the Future monomaterial pump and the SimpliCycle, recyclable valve, is not yet visible within this indicator but will soon be a part of our reporting aligned to the Ellen MacArthur Foundation's New Plastics Economy Global Commitment. [Fixed row]

(10.2) Indicate whether your organization engages in the following activities.

Production/commercialization of plastic polymers (including plastic converters)

(10.2.1) Activity applies

Select from:

✓ No

(10.2.2) Comment

Aptar is not a producer of plastic polymers.

Production/commercialization of durable plastic goods and/or components (including mixed materials)

(10.2.1) Activity applies

Select from:

✓ No

(10.2.2) Comment

Aptar is not a producer of durable plastic goods

Usage of durable plastics goods and/or components (including mixed materials)

(10.2.1) Activity applies

Select from:

✓ No

(10.2.2) Comment

Aptar is not usage of plastic polymers.

Production/commercialization of plastic packaging

(10.2.1) Activity applies

Select from:

Yes

(10.2.2) Comment

Aptar is a global leader in drug and consumer product dosing, dispensing and protection technologies. Aptar serves a number of attractive end markets including pharmaceutical, beauty, food, beverage, personal care and home care

Production/commercialization of goods/products packaged in plastics

(10.2.1) Activity applies

Select from:

✓ No

(10.2.2) Comment

Aptar is a global leader in drug and consumer product dosing, dispensing and protection technologies. Aptar serves a number of attractive end markets including pharmaceutical, beauty, food, beverage, personal care and home care

Provision/commercialization of services that use plastic packaging (e.g., food services)

(10.2.1) Activity applies

Select from:

✓ No

(10.2.2) Comment

Aptar is a global leader in drug and consumer product dosing, dispensing and protection technologies. Aptar serves a number of attractive end markets including pharmaceutical, beauty, food, beverage, personal care and home care

Provision of waste management and/or water management services

(10.2.1) Activity applies

Select from:

✓ No

(10.2.2) Comment

Aptar is a global leader in drug and consumer product dosing, dispensing and protection technologies. Aptar serves a number of attractive end markets including pharmaceutical, beauty, food, beverage, personal care and home care

Provision of financial products and/or services for plastics-related activities

(10.2.1) Activity applies

Select from:

✓ No

(10.2.2) Comment

Aptar is a global leader in drug and consumer product dosing, dispensing and protection technologies. Aptar serves a number of attractive end markets including pharmaceutical, beauty, food, beverage, personal care and home care

Other activities not specified

(10.2.1) Activity applies

Select from:

✓ No

(10.2.2) Comment

Aptar is a global leader in drug and consumer product dosing, dispensing and protection technologies. Aptar serves a number of attractive end markets including pharmaceutical, beauty, food, beverage, personal care and home care [Fixed row]

(10.5) Provide the total weight of plastic packaging sold and/or used and indicate the raw material content.

Plastic packaging sold

(10.5.1) Total weight during the reporting year (Metric tons)

92387

(10.5.2) Raw material content percentages available to report

Select all that apply

✓ % virgin fossil-based content

✓ % post-consumer recycled content

(10.5.3) % virgin fossil-based content

98.4

(10.5.6) % post-consumer recycled content

1.6

(10.5.7) Please explain

Aptar Product Sustainability Team is leading the calculation of the total plastic packaging weight reported in different reporting tools and public commitments. More in accuracy the calculation is based on the total packaging weight produced and sold to the market (pharma excluded). At the moment we do not have third-party verification, but, we are planning to have it in the next 2 years. The % is based on the market requests and trends, so, we can expect fluctuations of the recyclable percentage and total amount of renewables and non-renewable materials. The Product Sustainability Team promote ecodesign solutions and tool for the maximization of the recycled content. At the moment Aptar is not subject to the plastic tax.

[Fixed row]

(10.5.1) Indicate the circularity potential of the plastic packaging you sold and/or used.

Plastic packaging sold

(10.5.1.1) Percentages available to report for circularity potential

Select all that apply

- ✓ % reusable
- √ % technically recyclable
- ☑ % recyclable in practice and at scale

(10.5.1.2) % of plastic packaging that is reusable

0.8

(10.5.1.3) % of plastic packaging that is technically recyclable

69.2

(10.5.1.4) % of plastic packaging that is recyclable in practice at scale

68.4

(10.5.1.5) Please explain

The percentage calculated is based on the Ellen MacArthur Foundation methology.

(10.6) Provide the total weight of waste generated by the plastic you produce, commercialize, use and/or process and indicate the end-of-life management pathways.

Production of plastic

(10.6.1) Total weight of waste generated during the reporting year (Metric tons)

50655

(10.6.2) End-of-life management pathways available to report

Select all that apply

- Recycling
- ✓ Waste to Energy
- ✓ Incineration
- ✓ Landfill

(10.6.4) % recycling

42

(10.6.6) % waste to energy

7

(10.6.7) % incineration

1

(10.6.8) % landfill

6

(10.6.12) Please explain

The total amount of waste generated by the plastic produced has been calculated from internal mapping site by site, the residual percentage of 44% is based on other waste treatment scenarios.

Commercialization of plastic

(10.6.1) Total weight of waste generated during the reporting year (Metric tons)

92387

(10.6.2) End-of-life management pathways available to report

Select all that apply

Recycling

(10.6.4) % recycling

68.4

(10.6.12) Please explain

The total amount of plastic commercialized has been calculated starting from the Ellen MacArthur Foundation report on which we have calculated the total amount of plastic sold to the market and end of life scenarios to recycle in practice and at scale.
[Fixed row]

C11. Environmental performance - Biodiversity

(11.2) What actions has your organization taken in the reporting year to progress your biodiversity-related commitments?

(11.2.1) Actions taken in the reporting period to progress your biodiversity-related commitments

Select from:

✓ Yes, we are taking actions to progress our biodiversity-related commitments

(11.2.2) Type of action taken to progress biodiversity-related commitments

Select all that apply

- ✓ Land/water management
- ✓ Education & awareness
- ✓ Other, please specify: Materiality assessment and Value Chain Mapping and State of Nature description [Fixed row]

(11.3) Does your organization use biodiversity indicators to monitor performance across its activities?

Does your organization use indicators to monitor biodiversity performance?	Indicators used to monitor biodiversity performance
Select from: ✓ Yes, we use indicators	Select all that apply ✓ Pressure indicators ✓ Response indicators

	Does your organization use indicators to monitor biodiversity performance?	Indicators used to monitor biodiversity performance
		☑ Other, please specify: We identified and quantified nature-related risks in compliance with TNFD methodology.

[Fixed row]

(11.4) Does your organization have activities located in or near to areas important for biodiversity in the reporting year?

Legally protected areas

(11.4.1) Indicate whether any of your organization's activities are located in or near to this type of area important for biodiversity

Select from:

Yes

(11.4.2) Comment

From nature-related risk assessment in compliance with TNFD methodology and using WWF Biodiversity Risk Filter, we have identified operations located in legally protected areas.

UNESCO World Heritage sites

(11.4.1) Indicate whether any of your organization's activities are located in or near to this type of area important for biodiversity

Select from:

✓ No

(11.4.2) Comment

not present

UNESCO Man and the Biosphere Reserves

(11.4.1) Indicate whether any of your organization's activities are located in or near to this type of area important for biodiversity

Select from:

✓ No

(11.4.2) Comment

not present

Ramsar sites

(11.4.1) Indicate whether any of your organization's activities are located in or near to this type of area important for biodiversity

Select from:

Yes

(11.4.2) Comment

From nature-related risk assessment in compliance with TNFD methodology and using WWF Biodiversity Risk Filter, we have identified operations located in Ramsar sites.

Key Biodiversity Areas

(11.4.1) Indicate whether any of your organization's activities are located in or near to this type of area important for biodiversity

Yes

(11.4.2) Comment

From nature-related risk assessment in compliance with TNFD methodology and using WWF Biodiversity Risk Filter, we have identified operations located in key biodiversity areas.

Other areas important for biodiversity

(11.4.1) Indicate whether any of your organization's activities are located in or near to this type of area important for biodiversity

Select from:

✓ No

(11.4.2) Comment

not present [Fixed row]

(11.4.1) Provide details of your organization's activities in the reporting year located in or near to areas important for biodiversity.

Row 1

(11.4.1.2) Types of area important for biodiversity

Select all that apply

✓ Legally protected areas

(11.4.1.3) Protected area category (IUCN classification)

Select from:

✓ Category IV-VI

(11.4.1.4) Country/area

Select from:

✓ Brazil

(11.4.1.5) Name of the area important for biodiversity

Apa Cajamar

(11.4.1.6) Proximity

Select from:

Adjacent

(11.4.1.8) Briefly describe your organization's activities in the reporting year located in or near to the selected area

Aptar Cajamar production processes are based on the injection molding and assembling of plastic components for packaging products. The main inputs are electrical energy, raw materials plastics, and water used for cooling molds activities. Please note that the process adopt closed loop water system, so, the water withdrawn and consumption is very limited, in addition, about wastewater management process, the site is under control of local regulatory aspects about discharges pollutants (with internal EHS management system).

(11.4.1.9) Indicate whether any of your organization's activities located in or near to the selected area could negatively affect biodiversity

Select from:

✓ Not assessed

Row 2

(11.4.1.2) Types of area important for biodiversity

Select all that apply

✓ Legally protected areas

(11.4.1.3) Protected area category (IUCN classification)

Select from:

✓ Category IV-VI

(11.4.1.4) Country/area

Select from:

✓ France

(11.4.1.5) Name of the area important for biodiversity

Vosges Des Nord Areas

(11.4.1.6) Proximity

Select from:

Adjacent

(11.4.1.8) Briefly describe your organization's activities in the reporting year located in or near to the selected area

Aptar CSP Niederbronne production processes are based on the injection molding and assembling of plastic components for packaging products. The main inputs are electrical energy, raw materials plastics, and water used for cooling molds activities. Please note that the process adopt closed loop water system, so, the water withdrawn and consumption is very limited, in addition, about wastewater management process, the site is under control of local regulatory aspects about discharges pollutants (with internal EHS management system).

(11.4.1.9) Indicate whether any of your organization's activities located in or near to the selected area could negatively affect biodiversity

Select from:

✓ Not assessed

Row 3

(11.4.1.2) Types of area important for biodiversity

✓ Ramsar sites

(11.4.1.4) Country/area

Select from:

✓ France

(11.4.1.5) Name of the area important for biodiversity

Baie du Mont Saint-Michel

(11.4.1.6) Proximity

Select from:

✓ Up to 5 km

(11.4.1.8) Briefly describe your organization's activities in the reporting year located in or near to the selected area

Aptar Granville production processes are based on the injection molding and assembling of plastic components for packaging products. The main inputs are electrical energy, raw materials plastics, and water used for cooling molds activities. Please note that the process adopt closed loop water system, so, the water withdrawn and consumption is very limited, in addition, about wastewater management process, the site is under control of local regulatory aspects about discharges pollutants (with internal EHS management system).

(11.4.1.9) Indicate whether any of your organization's activities located in or near to the selected area could negatively affect biodiversity

Select from:

✓ Not assessed

Row 4

(11.4.1.2) Types of area important for biodiversity

Select all that apply

✓ Ramsar sites

(11.4.1.4) Country/area

Select from:

Germany

(11.4.1.5) Name of the area important for biodiversity

Wollmatinger Ried, Giehrenmoos & Mindelsee

(11.4.1.6) Proximity

Select from:

✓ Up to 5 km

(11.4.1.8) Briefly describe your organization's activities in the reporting year located in or near to the selected area

Aptar Radolfzell production processes are based on the injection molding and assembling of plastic components for packaging products. The main inputs are electrical energy, raw materials plastics, and water used for cooling molds activities. Please note that the process adopt closed loop water system, so, the water withdrawn and consumption is very limited, in addition, about wastewater management process, the site is under control of local regulatory aspects about discharges pollutants (with internal EHS management system).

(11.4.1.9) Indicate whether any of your organization's activities located in or near to the selected area could negatively affect biodiversity

Select from:

✓ Not assessed

Row 5

(11.4.1.2) Types of area important for biodiversity

Select all that apply

☑ Key Biodiversity Areas

(11.4.1.4) Country/area

Select from:

Czechia

(11.4.1.5) Name of the area important for biodiversity

Onšovice - Mlýny

(11.4.1.6) Proximity

Select from:

✓ Data not available

(11.4.1.8) Briefly describe your organization's activities in the reporting year located in or near to the selected area

Aptar Ckyne production processes are based on the injection molding and assembling of plastic components for packaging products. The main inputs are electrical energy, raw materials plastics, and water used for cooling molds activities. Please note that the process adopt closed loop water system, so, the water withdrawn and consumption is very limited, in addition, about wastewater management process, the site is under control of local regulatory aspects about discharges pollutants (with internal EHS management system).

(11.4.1.9) Indicate whether any of your organization's activities located in or near to the selected area could negatively affect biodiversity

Select from:

Not assessed

Row 6

(11.4.1.2) Types of area important for biodiversity

Select all that apply

✓ Key Biodiversity Areas

(11.4.1.4) Country/area

Select from:

Germany

(11.4.1.5) Name of the area important for biodiversity

LSG-Massen, LSG Wickeder Feld, LSG Fleier - Brackel - Asseln - Wickede, LSG-Afferde-Niedermassen

(11.4.1.6) Proximity

Select from:

✓ Up to 5 km

(11.4.1.8) Briefly describe your organization's activities in the reporting year located in or near to the selected area

Aptar Dortmund production processes are based on the injection molding and assembling of plastic components for packaging products. The main inputs are electrical energy, raw materials plastics, and water used for cooling molds activities. Please note that the process adopt closed loop water system, so, the water withdrawn and consumption is very limited, in addition, about wastewater management process, the site is under control of local regulatory aspects about discharges pollutants (with internal EHS management system).

(11.4.1.9) Indicate whether any of your organization's activities located in or near to the selected area could negatively affect biodiversity

Select from:

✓ Not assessed

Row 7

(11.4.1.2) Types of area important for biodiversity

Select all that apply

✓ Key Biodiversity Areas

(11.4.1.4) Country/area

Select from:

✓ United Kingdom of Great Britain and Northern Ireland

(11.4.1.5) Name of the area important for biodiversity

Middleton Woods, Oakwell Park

(11.4.1.6) Proximity

Select from:

✓ Data not available

(11.4.1.8) Briefly describe your organization's activities in the reporting year located in or near to the selected area

Aptar Leeds production processes are based on the injection molding and assembling of plastic components for packaging products. The main inputs are electrical energy, raw materials plastics, and water used for cooling molds activities. Please note that the process adopt closed loop water system, so, the water withdrawn and consumption is very limited, in addition, about wastewater management process, the site is under control of local regulatory aspects about discharges pollutants (with internal EHS management system).

(11.4.1.9) Indicate whether any of your organization's activities located in or near to the selected area could negatively affect biodiversity

Select from:

✓ Not assessed

Row 8

(11.4.1.2) Types of area important for biodiversity

Select all that apply

✓ Key Biodiversity Areas

(11.4.1.4) Country/area

Select from:

✓ Italy

(11.4.1.5) Name of the area important for biodiversity

Natura 2000: Calanchi di Bucchianico (Ripe dello Spagnolo) IUCN Cat V: Riserva naturale di interesse provinciale Pineta Dannunziana

(11.4.1.6) Proximity

Select from:

✓ Up to 25 km

(11.4.1.8) Briefly describe your organization's activities in the reporting year located in or near to the selected area

Aptar Chieti production processes are based on the injection molding and assembling of plastic components for packaging products. The main inputs are electrical energy, raw materials plastics, and water used for cooling molds activities. Please note that the process adopt closed loop water system, so, the water withdrawn and consumption is very limited, in addition, about wastewater management process, the site is under control of local regulatory aspects about discharges pollutants (with internal EHS management system).

(11.4.1.9) Indicate whether any of your organization's activities located in or near to the selected area could negatively affect biodiversity

Select from:

✓ Not assessed

Row 9

(11.4.1.2) Types of area important for biodiversity

Select all that apply

Key Biodiversity Areas

(11.4.1.4) Country/area

Select from:

✓ Italy

(11.4.1.5) Name of the area important for biodiversity

(11.4.1.6) Proximity

Select from:

✓ Up to 5 km

(11.4.1.8) Briefly describe your organization's activities in the reporting year located in or near to the selected area

Aptar Pescara production processes are based on the injection molding and assembling of plastic components for packaging products. The main inputs are electrical energy, raw materials plastics, and water used for cooling molds activities. Please note that the process adopt closed loop water system, so, the water withdrawn and consumption is very limited, in addition, about wastewater management process, the site is under control of local regulatory aspects about discharges pollutants (with internal EHS management system).

(11.4.1.9) Indicate whether any of your organization's activities located in or near to the selected area could negatively affect biodiversity

Select from:

✓ Not assessed

Row 10

(11.4.1.2) Types of area important for biodiversity

Select all that apply

✓ Key Biodiversity Areas

(11.4.1.4) Country/area

Select from:

✓ France

(11.4.1.5) Name of the area important for biodiversity

Natura 2000: Vallée de la Sée

(11.4.1.6) Proximity

Select from:

✓ Data not available

(11.4.1.8) Briefly describe your organization's activities in the reporting year located in or near to the selected area

Aptar Brecey production processes are based on the injection molding and assembling of plastic components for packaging products. The main inputs are electrical energy, raw materials plastics, and water used for cooling molds activities. Please note that the process adopt closed loop water system, so, the water withdrawn and consumption is very limited, in addition, about wastewater management process, the site is under control of local regulatory aspects about discharges pollutants (with internal EHS management system).

(11.4.1.9) Indicate whether any of your organization's activities located in or near to the selected area could negatively affect biodiversity

Select from:

✓ Not assessed

Row 11

(11.4.1.2) Types of area important for biodiversity

Select all that apply

✓ Key Biodiversity Areas

(11.4.1.4) Country/area

Select from:

Germany

(11.4.1.5) Name of the area important for biodiversity

EU Habitats Directive: Östlicher Hegau und Linzgau, Westlicher Hegau IUCN Cat IV: Langensteiner Durchbruchstal, Weitenried

(11.4.1.6) Proximity

Select from:

✓ Up to 5 km

(11.4.1.8) Briefly describe your organization's activities in the reporting year located in or near to the selected area

Aptar Eigeltinghen production processes are based on the injection molding and assembling of plastic components for packaging products. The main inputs are electrical energy, raw materials plastics, and water used for cooling molds activities. Please note that the process adopt closed loop water system, so, the water withdrawn and consumption is very limited, in addition, about wastewater management process, the site is under control of local regulatory aspects about discharges pollutants (with internal EHS management system).

(11.4.1.9) Indicate whether any of your organization's activities located in or near to the selected area could negatively affect biodiversity

Select from:

✓ Not assessed

Row 12

(11.4.1.2) Types of area important for biodiversity

Select all that apply

✓ Key Biodiversity Areas

(11.4.1.4) Country/area

Select from:

Germany

(11.4.1.5) Name of the area important for biodiversity

IUCN Cat V: LSG 'Bayerischer Wald'

(11.4.1.6) Proximity

Select from:

(11.4.1.8) Briefly describe your organization's activities in the reporting year located in or near to the selected area

Aptar Freyung production processes are based on the injection molding and assembling of plastic components for packaging products. The main inputs are electrical energy, raw materials plastics, and water used for cooling molds activities. Please note that the process adopt closed loop water system, so, the water withdrawn and consumption is very limited, in addition, about wastewater management process, the site is under control of local regulatory aspects about discharges pollutants (with internal EHS management system).

(11.4.1.9) Indicate whether any of your organization's activities located in or near to the selected area could negatively affect biodiversity

Select from:

✓ Not assessed

Row 13

(11.4.1.2) Types of area important for biodiversity

Select all that apply

✓ Key Biodiversity Areas

(11.4.1.4) Country/area

Select from:

Germany

(11.4.1.5) Name of the area important for biodiversity

IUCN Cat V: LSG-Maerkischer Kreis, LSG-Froendenberg-Ost

(11.4.1.6) Proximity

Select from:

✓ Up to 5 km

(11.4.1.8) Briefly describe your organization's activities in the reporting year located in or near to the selected area

Aptar Menden production processes are based on the injection molding and assembling of plastic components for packaging products. The main inputs are electrical energy, raw materials plastics, and water used for cooling molds activities. Please note that the process adopt closed loop water system, so, the water withdrawn and consumption is very limited, in addition, about wastewater management process, the site is under control of local regulatory aspects about discharges pollutants (with internal EHS management system).

(11.4.1.9) Indicate whether any of your organization's activities located in or near to the selected area could negatively affect biodiversity

Select from:

Not assessed

Row 14

(11.4.1.2) Types of area important for biodiversity

Select all that apply

✓ Key Biodiversity Areas

(11.4.1.4) Country/area

Select from:

Switzerland

(11.4.1.5) Name of the area important for biodiversity

IUCN Cat IV: Gola di Lago, M. Tamaro, Stagno Motto della Costa, Bolle di Magadino (TI)

(11.4.1.6) Proximity

Select from:

✓ Data not available

Aptar Mezzovico production processes are based on the injection molding and assembling of plastic components for packaging products. The main inputs are electrical energy, raw materials plastics, and water used for cooling molds activities. Please note that the process adopt closed loop water system, so, the water withdrawn and consumption is very limited, in addition, about wastewater management process, the site is under control of local regulatory aspects about discharges pollutants (with internal EHS management system).

(11.4.1.9) Indicate whether any of your organization's activities located in or near to the selected area could negatively affect biodiversity

Select from:

Not assessed

Row 15

(11.4.1.2) Types of area important for biodiversity

Select all that apply

✓ Key Biodiversity Areas

(11.4.1.4) Country/area

Select from:

✓ France

(11.4.1.5) Name of the area important for biodiversity

IUCN Cat IV: Protection Des Oiseaux Rupestres, Marais tuffeux de la belloire IUCN Cat V: Haut-Jura

(11.4.1.6) Proximity

Select from:

✓ Data not available

Aptar Oyonnax production processes are based on the injection molding and assembling of plastic components for packaging products. The main inputs are electrical energy, raw materials plastics, and water used for cooling molds activities. Please note that the process adopt closed loop water system, so, the water withdrawn and consumption is very limited, in addition, about wastewater management process, the site is under control of local regulatory aspects about discharges pollutants (with internal EHS management system).

(11.4.1.9) Indicate whether any of your organization's activities located in or near to the selected area could negatively affect biodiversity

Select from:

Not assessed

Row 16

(11.4.1.2) Types of area important for biodiversity

Select all that apply

✓ Key Biodiversity Areas

(11.4.1.4) Country/area

Select from:

Argentina

(11.4.1.5) Name of the area important for biodiversity

Unesco Biosphere reserve: Pereyra Iraola

(11.4.1.6) Proximity

Select from:

✓ Data not available

Aptar Berazategui production processes are based on the injection molding and assembling of plastic components for packaging products. The main inputs are electrical energy, raw materials plastics, and water used for cooling molds activities. Please note that the process adopt closed loop water system, so, the water withdrawn and consumption is very limited, in addition, about wastewater management process, the site is under control of local regulatory aspects about discharges pollutants (with internal EHS management system).

(11.4.1.9) Indicate whether any of your organization's activities located in or near to the selected area could negatively affect biodiversity

Select from:

✓ Not assessed

Row 17

(11.4.1.2) Types of area important for biodiversity

Select all that apply

✓ Key Biodiversity Areas

(11.4.1.4) Country/area

Select from:

✓ United States of America

(11.4.1.5) Name of the area important for biodiversity

IUCN Cat V: Whale Pond Brook, Swimming River

(11.4.1.6) Proximity

Select from:

✓ Data not available

Aptar Eatontown production processes are based on the injection molding and assembling of plastic components for packaging products. The main inputs are electrical energy, raw materials plastics, and water used for cooling molds activities. Please note that the process adopt closed loop water system, so, the water withdrawn and consumption is very limited, in addition, about wastewater management process, the site is under control of local regulatory aspects about discharges pollutants (with internal EHS management system).

(11.4.1.9) Indicate whether any of your organization's activities located in or near to the selected area could negatively affect biodiversity

Select from:

✓ Not assessed [Add row]

C13. Further information & sign off

(13.1) Indicate if any environmental information included in your CDP response (not already reported in 7.9.1/2/3, 8.9.1/2/3/4, and 9.3.2) is verified and/or assured by a third party?

Other environmental information included in your CDP response is verified and/or assured by a third party
Select from: ✓ Yes

[Fixed row]

(13.1.1) Which data points within your CDP response are verified and/or assured by a third party, and which standards were used?

Row 1

(13.1.1.1) Environmental issue for which data has been verified and/or assured

Select all that apply

- ✓ Climate change
- Water

(13.1.1.2) Disclosure module and data verified and/or assured

Environmental performance – Water security

- ✓ Water consumption total volume
- ✓ Water discharges total volumes

- ✓ Water discharges volumes by destination
- ☑ Water intensities of products and services

- ✓ Water withdrawals total volumes
- ✓ Water withdrawals volumes by source
- ☑ Emissions to water in the reporting year

- ✓ Water discharges volumes by treatment method
- ✓ Volume withdrawn from areas with water stress (megaliters)
- ☑ Facilities with water-related dependencies, impacts, risks and opportunities

(13.1.1.3) Verification/assurance standard

Water-related standards

✓ Other water verification standard, please specify: ISO 14064-1

Climate change-related standards

☑ ISO 14064-1

(13.1.1.4) Further details of the third-party verification/assurance process

We have received reasonable approach audit for Scope 12 emissions and limited approach for Scope 3 emissions.

(13.1.1.5) Attach verification/assurance evidence/report (optional)

ISO 14064-1 Statement- Aptargroup - 2024.pdf [Add row]

(13.2) Use this field to provide any additional information or context that you feel is relevant to your organization's response. Please note that this field is optional and is not scored.

Additional information	Attachment (optional)
	2024-05-28_Aptar-CSR- 23_Final.pdf

[Fixed row]

(13.3) Provide the following information for the person that has signed off (approved) your CDP response.

(13.3.1) Job title

Chief Executive Officer

(13.3.2) Corresponding job category

Select from:

✓ Chief Executive Officer (CEO)

[Fixed row]